CWE-777: Regular Expression without Anchors
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a regular expression to perform neutralization, but the regular expression is not anchored and may allow malicious or malformed data to slip through.
When performing tasks such as validating against a set of allowed inputs (allowlist), data is examined and possibly modified to ensure that it is well-formed and adheres to a list of safe values. If the regular expression is not anchored, malicious or malformed data may be included before or after any string matching the regular expression. The type of malicious data that is allowed will depend on the context of the application and which anchors are omitted from the regular expression.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Consider a web application that supports multiple languages. It selects messages for an appropriate language by using the lang parameter. (bad code)
Example Language: PHP
$dir = "/home/cwe/languages";
$lang = $_GET['lang']; if (preg_match("/[A-Za-z0-9]+/", $lang)) { include("$dir/$lang"); }else { echo "You shall not pass!\n"; }The previous code attempts to match only alphanumeric values so that language values such as "english" and "french" are valid while also protecting against path traversal, CWE-22. However, the regular expression anchors are omitted, so any text containing at least one alphanumeric character will now pass the validation step. For example, the attack string below will match the regular expression. (attack code)
../../etc/passwd
If the attacker can inject code sequences into a file, such as the web server's HTTP request log, then the attacker may be able to redirect the lang parameter to the log file and execute arbitrary code. Example 2 This code uses a regular expression to validate an IP string prior to using it in a call to the "ping" command. (bad code)
Example Language: Python
import subprocess
import re def validate_ip_regex(ip: str):
ip_validator = re.compile(r"((25[0-5]|(2[0-4]|1\d|[1-9]|)\d)\.?\b){4}")
if ip_validator.match(ip):
return ip
else:
raise ValueError("IP address does not match valid pattern.")
def run_ping_regex(ip: str):
validated = validate_ip_regex(ip)
# The ping command treats zero-prepended IP addresses as octal result = subprocess.call(["ping", validated]) print(result) Since the regular expression does not have anchors (CWE-777), i.e. is unbounded without ^ or $ characters, then prepending a 0 or 0x to the beginning of the IP address will still result in a matched regex pattern. Since the ping command supports octal and hex prepended IP addresses, it will use the unexpectedly valid IP address (CWE-1389). For example, "0x63.63.63.63" would be considered equivalent to "99.63.63.63". As a result, the attacker could potentially ping systems that the attacker cannot reach directly. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
|
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |
||

