CWE

Common Weakness Enumeration

A Community-Developed List of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (3.0)  
ID

CWE-192: Integer Coercion Error

Weakness ID: 192
Abstraction: Class
Structure: Simple
Status: Incomplete
Presentation Filter:
+ Description
Integer coercion refers to a set of flaws pertaining to the type casting, extension, or truncation of primitive data types.
+ Extended Description
Several flaws fall under the category of integer coercion errors. For the most part, these errors in and of themselves result only in availability and data integrity issues. However, in some circumstances, they may result in other, more complicated security related flaws, such as buffer overflow conditions.
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfClassClass681Incorrect Conversion between Numeric Types
+ Relevant to the view "Development Concepts" (CWE-699)
NatureTypeIDName
ChildOfClassClass682Incorrect Calculation
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Implementation
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

C: (Undetermined Prevalence)

C++: (Undetermined Prevalence)

Java: (Undetermined Prevalence)

C#: (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Availability

Technical Impact: DoS: Resource Consumption (CPU); DoS: Resource Consumption (Memory); DoS: Crash, Exit, or Restart

Integer coercion often leads to undefined states of execution resulting in infinite loops or crashes.
Integrity
Confidentiality
Availability

Technical Impact: Execute Unauthorized Code or Commands

In some cases, integer coercion errors can lead to exploitable buffer overflow conditions, resulting in the execution of arbitrary code.
Integrity
Other

Technical Impact: Other

Integer coercion errors result in an incorrect value being stored for the variable in question.
+ Likelihood Of Exploit
Medium
+ Demonstrative Examples

Example 1

The following code is intended to read an incoming packet from a socket and extract one or more headers.

(bad)
Example Language:
DataPacket *packet;
int numHeaders;
PacketHeader *headers;

sock=AcceptSocketConnection();
ReadPacket(packet, sock);
numHeaders =packet->headers;

if (numHeaders > 100) {
ExitError("too many headers!");

}
headers = malloc(numHeaders * sizeof(PacketHeader);
ParsePacketHeaders(packet, headers);

The code performs a check to make sure that the packet does not contain too many headers. However, numHeaders is defined as a signed int, so it could be negative. If the incoming packet specifies a value such as -3, then the malloc calculation will generate a negative number (say, -300 if each header can be a maximum of 100 bytes). When this result is provided to malloc(), it is first converted to a size_t type. This conversion then produces a large value such as 4294966996, which may cause malloc() to fail or to allocate an extremely large amount of memory (CWE-195). With the appropriate negative numbers, an attacker could trick malloc() into using a very small positive number, which then allocates a buffer that is much smaller than expected, potentially leading to a buffer overflow.

Example 2

The following code reads a maximum size and performs a sanity check on that size. It then performs a strncpy, assuming it will not exceed the boundaries of the array. While the use of "short s" is forced in this particular example, short int's are frequently used within real-world code, such as code that processes structured data.

(bad)
Example Language:
int GetUntrustedInt () {
return(0x0000FFFF);

}

void main (int argc, char **argv) {
char path[256];
char *input;
int i;
short s;
unsigned int sz;

i = GetUntrustedInt();
s = i;
/* s is -1 so it passes the safety check - CWE-697 */
if (s > 256) {
DiePainfully("go away!\n");

}

/* s is sign-extended and saved in sz */
sz = s;

/* output: i=65535, s=-1, sz=4294967295 - your mileage may vary */
printf("i=%d, s=%d, sz=%u\n", i, s, sz);

input = GetUserInput("Enter pathname:");

/* strncpy interprets s as unsigned int, so it's treated as MAX_INT
(CWE-195), enabling buffer overflow (CWE-119) */
strncpy(path, input, s);
path[255] = '\0'; /* don't want CWE-170 */
printf("Path is: %s\n", path);

}

This code first exhibits an example of CWE-839, allowing "s" to be a negative number. When the negative short "s" is converted to an unsigned integer, it becomes an extremely large positive integer. When this converted integer is used by strncpy() it will lead to a buffer overflow (CWE-119).

+ Potential Mitigations

Phase: Requirements

A language which throws exceptions on ambiguous data casts might be chosen.

Phase: Architecture and Design

Design objects and program flow such that multiple or complex casts are unnecessary

Phase: Implementation

Ensure that any data type casting that you must used is entirely understood in order to reduce the plausibility of error in use.
+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
+ Notes

Maintenance

Within C, it might be that "coercion" is semantically different than "casting", possibly depending on whether the programmer directly specifies the conversion, or if the compiler does it implicitly. This has implications for the presentation of this node and others, such as CWE-681, and whether there is enough of a difference for these nodes to be split.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
CLASPInteger coercion error
CERT C Secure CodingINT02-CUnderstand integer conversion rules
CERT C Secure CodingINT05-CDo not use input functions to convert character data if they cannot handle all possible inputs
CERT C Secure CodingINT31-CExactEnsure that integer conversions do not result in lost or misinterpreted data
+ References
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 7: Integer Overflows." Page 119. McGraw-Hill. 2010.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 6, "Sign Extension", Page 248.. 1st Edition. Addison Wesley. 2006.
+ Content History
Submissions
Submission DateSubmitterOrganizationSource
CLASP
Modifications
Modification DateModifierOrganizationSource
2008-09-08CWE Content TeamMITRE
updated Applicable_Platforms, Common_Consequences, Maintenance_Notes, Relationships, Other_Notes, Taxonomy_Mappings
2008-11-24CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2009-12-28CWE Content TeamMITRE
updated Description, Other_Notes
2010-04-05CWE Content TeamMITRE
updated Demonstrative_Examples
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2011-09-13CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2012-05-11CWE Content TeamMITRE
updated Demonstrative_Examples, References
2012-10-30CWE Content TeamMITRE
updated Potential_Mitigations
2017-11-08CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings, Type

More information is available — Please select a different filter.
Page Last Updated: November 14, 2017