Common Weakness Enumeration

A Community-Developed List of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (3.0)  

CWE-170: Improper Null Termination

Weakness ID: 170
Abstraction: Base
Structure: Simple
Status: Incomplete
Presentation Filter:
+ Description
The software does not terminate or incorrectly terminates a string or array with a null character or equivalent terminator.
+ Extended Description
Null termination errors frequently occur in two different ways. An off-by-one error could cause a null to be written out of bounds, leading to an overflow. Or, a program could use a strncpy() function call incorrectly, which prevents a null terminator from being added at all. Other scenarios are possible.
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
+ Relevant to the view "Development Concepts" (CWE-699)
ChildOfClassClass138Improper Neutralization of Special Elements
+ Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)
ChildOfClassClass20Improper Input Validation
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.


C: (Undetermined Prevalence)

C++: (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.


Technical Impact: Read Memory; Execute Unauthorized Code or Commands

The case of an omitted null character is the most dangerous of the possible issues. This will almost certainly result in information disclosure, and possibly a buffer overflow condition, which may be exploited to execute arbitrary code.

Technical Impact: DoS: Crash, Exit, or Restart; Read Memory; DoS: Resource Consumption (CPU); DoS: Resource Consumption (Memory)

If a null character is omitted from a string, then most string-copying functions will read data until they locate a null character, even outside of the intended boundaries of the string. This could: cause a crash due to a segmentation fault cause sensitive adjacent memory to be copied and sent to an outsider trigger a buffer overflow when the copy is being written to a fixed-size buffer

Technical Impact: Modify Memory; DoS: Crash, Exit, or Restart

Misplaced null characters may result in any number of security problems. The biggest issue is a subset of buffer overflow, and write-what-where conditions, where data corruption occurs from the writing of a null character over valid data, or even instructions. A randomly placed null character may put the system into an undefined state, and therefore make it prone to crashing. A misplaced null character may corrupt other data in memory.
Access Control

Technical Impact: Alter Execution Logic; Execute Unauthorized Code or Commands

Should the null character corrupt the process flow, or affect a flag controlling access, it may lead to logical errors which allow for the execution of arbitrary code.
+ Likelihood Of Exploit
+ Demonstrative Examples

Example 1

The following code reads from cfgfile and copies the input into inputbuf using strcpy(). The code mistakenly assumes that inputbuf will always contain a NULL terminator.

Example Language:
#define MAXLEN 1024
char *pathbuf[MAXLEN];
read(cfgfile,inputbuf,MAXLEN); //does not null terminate
strcpy(pathbuf,input_buf); //requires null terminated input

The code above will behave correctly if the data read from cfgfile is null terminated on disk as expected. But if an attacker is able to modify this input so that it does not contain the expected NULL character, the call to strcpy() will continue copying from memory until it encounters an arbitrary NULL character. This will likely overflow the destination buffer and, if the attacker can control the contents of memory immediately following inputbuf, can leave the application susceptible to a buffer overflow attack.

Example 2

In the following code, readlink() expands the name of a symbolic link stored in the buffer path so that the buffer filename contains the absolute path of the file referenced by the symbolic link. The length of the resulting value is then calculated using strlen().

Example Language:
char buf[MAXPATH];
readlink(path, buf, MAXPATH);
int length = strlen(filename);

The code above will not behave correctly because the value read into buf by readlink() will not be null terminated. In testing, vulnerabilities like this one might not be caught because the unused contents of buf and the memory immediately following it may be NULL, thereby causing strlen() to appear as if it is behaving correctly. However, in the wild strlen() will continue traversing memory until it encounters an arbitrary NULL character on the stack, which results in a value of length that is much larger than the size of buf and may cause a buffer overflow in subsequent uses of this value. Buffer overflows aside, whenever a single call to readlink() returns the same value that has been passed to its third argument, it is impossible to know whether the name is precisely that many bytes long, or whether readlink() has truncated the name to avoid overrunning the buffer. Traditionally, strings are represented as a region of memory containing data terminated with a NULL character. Older string-handling methods frequently rely on this NULL character to determine the length of the string. If a buffer that does not contain a NULL terminator is passed to one of these functions, the function will read past the end of the buffer. Malicious users typically exploit this type of vulnerability by injecting data with unexpected size or content into the application. They may provide the malicious input either directly as input to the program or indirectly by modifying application resources, such as configuration files. In the event that an attacker causes the application to read beyond the bounds of a buffer, the attacker may be able use a resulting buffer overflow to inject and execute arbitrary code on the system.

Example 3

While the following example is not exploitable, it provides a good example of how nulls can be omitted or misplaced, even when "safe" functions are used:

Example Language:
#include <stdio.h>
#include <string.h>

int main() {

char longString[] = "String signifying nothing";
char shortString[16];

strncpy(shortString, longString, 16);
printf("The last character in shortString is: %c %1$x\n", shortString[15]);
return (0);


The above code gives the following output: The last character in shortString is: l 6c So, the shortString array does not end in a NULL character, even though the "safe" string function strncpy() was used.

+ Observed Examples
Attacker does not null-terminate argv[] when invoking another program.
Interrupted step causes resultant lack of null termination.
Fault causes resultant lack of null termination, leading to buffer expansion.
Multiple vulnerabilities related to improper null termination.
Product does not null terminate a message buffer after snprintf-like call, leading to overflow.
Chain: product does not handle when an input string is not NULL terminated (CWE-170), leading to buffer over-read (CWE-125) or heap-based buffer overflow (CWE-122).
+ Potential Mitigations

Phase: Requirements

Use a language that is not susceptible to these issues. However, be careful of null byte interaction errors (CWE-626) with lower-level constructs that may be written in a language that is susceptible.

Phase: Implementation

Ensure that all string functions used are understood fully as to how they append null characters. Also, be wary of off-by-one errors when appending nulls to the end of strings.

Phase: Implementation

If performance constraints permit, special code can be added that validates null-termination of string buffers, this is a rather naive and error-prone solution.

Phase: Implementation

Switch to bounded string manipulation functions. Inspect buffer lengths involved in the buffer overrun trace reported with the defect.

Phase: Implementation

Add code that fills buffers with nulls (however, the length of buffers still needs to be inspected, to ensure that the non null-terminated string is not written at the physical end of the buffer).
+ Weakness Ordinalities
(where the weakness is typically related to the presence of some other weaknesses)
+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
+ Notes

Applicable Platform

Conceptually, this does not just apply to the C language; any language or representation that involves a terminator could have this type of problem.


As currently described, this entry is more like a category than a weakness.


Factors: this is usually resultant from other weaknesses such as off-by-one errors, but it can be primary to boundary condition violations such as buffer overflows. In buffer overflows, it can act as an expander for assumed-immutable data.


Overlaps missing input terminator.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
PLOVERImproper Null Termination
7 Pernicious KingdomsString Termination Error
CLASPMiscalculated null termination
OWASP Top Ten 2004A9CWE More SpecificDenial of Service
CERT C Secure CodingPOS30-CCWE More AbstractUse the readlink() function properly
CERT C Secure CodingSTR03-CDo not inadvertently truncate a null-terminated byte string
CERT C Secure CodingSTR32-CExactDo not pass a non-null-terminated character sequence to a library function that expects a string
Software Fault PatternsSFP11Improper Null Termination
+ Content History
Submission DateSubmitterOrganizationSource
Modification DateModifierOrganizationSource
2008-07-01Eric DalciCigital
updated Time_of_Introduction
2008-08-01KDM Analytics
added/updated white box definitions
2008-09-08CWE Content TeamMITRE
updated Applicable_Platforms, Causal_Nature, Common_Consequences, Description, Likelihood_of_Exploit, Maintenance_Notes, Relationships, Other_Notes, Relationship_Notes, Taxonomy_Mappings, Weakness_Ordinalities
2008-11-24CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2009-03-10CWE Content TeamMITRE
updated Common_Consequences
2009-05-27CWE Content TeamMITRE
updated Demonstrative_Examples
2009-07-17KDM Analytics
Improved the White_Box_Definition
2009-07-27CWE Content TeamMITRE
updated Common_Consequences, Other_Notes, Potential_Mitigations, White_Box_Definitions
2009-10-29CWE Content TeamMITRE
updated Description
2011-03-29CWE Content TeamMITRE
updated Common_Consequences
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2011-09-13CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2012-05-11CWE Content TeamMITRE
updated Relationships
2014-06-23CWE Content TeamMITRE
updated Observed_Examples
2014-07-30CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2017-11-08CWE Content TeamMITRE
updated Causal_Nature, Observed_Examples, Relationships, Taxonomy_Mappings, White_Box_Definitions

More information is available — Please select a different filter.
Page Last Updated: November 14, 2017