Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors Common Weakness Scoring System
Common Weakness Risk Analysis Framework
Home > CWE List > CWE- Individual Dictionary Definition (2.7)  

Presentation Filter:

CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
Weakness ID: 120 (Weakness Base)Status: Incomplete
+ Description

Description Summary

The program copies an input buffer to an output buffer without verifying that the size of the input buffer is less than the size of the output buffer, leading to a buffer overflow.

Extended Description

A buffer overflow condition exists when a program attempts to put more data in a buffer than it can hold, or when a program attempts to put data in a memory area outside of the boundaries of a buffer. The simplest type of error, and the most common cause of buffer overflows, is the "classic" case in which the program copies the buffer without restricting how much is copied. Other variants exist, but the existence of a classic overflow strongly suggests that the programmer is not considering even the most basic of security protections.

+ Alternate Terms
buffer overrun:

Some prominent vendors and researchers use the term "buffer overrun," but most people use "buffer overflow."

Unbounded Transfer
+ Terminology Notes

Many issues that are now called "buffer overflows" are substantively different than the "classic" overflow, including entirely different bug types that rely on overflow exploit techniques, such as integer signedness errors, integer overflows, and format string bugs. This imprecise terminology can make it difficult to determine which variant is being reported.

+ Time of Introduction
  • Implementation
+ Applicable Platforms





+ Common Consequences

Technical Impact: Execute unauthorized code or commands

Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope of a program's implicit security policy. This can often be used to subvert any other security service.

Technical Impact: DoS: crash / exit / restart; DoS: resource consumption (CPU)

Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are possible, including putting the program into an infinite loop.

+ Likelihood of Exploit

High to Very High

+ Detection Methods

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools use data flow analysis or constraint-based techniques to minimize the number of false positives.

Automated static analysis generally does not account for environmental considerations when reporting out-of-bounds memory operations. This can make it difficult for users to determine which warnings should be investigated first. For example, an analysis tool might report buffer overflows that originate from command line arguments in a program that is not expected to run with setuid or other special privileges.

Effectiveness: High

Detection techniques for buffer-related errors are more mature than for most other weakness types.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the software using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The software's operation may slow down, but it should not become unstable, crash, or generate incorrect results.

Manual Analysis

Manual analysis can be useful for finding this weakness, but it might not achieve desired code coverage within limited time constraints. This becomes difficult for weaknesses that must be considered for all inputs, since the attack surface can be too large.

+ Demonstrative Examples

Example 1

The following code asks the user to enter their last name and then attempts to store the value entered in the last_name array.

(Bad Code)
Example Language:
char last_name[20];
printf ("Enter your last name: ");
scanf ("%s", last_name);

The problem with the code above is that it does not restrict or limit the size of the name entered by the user. If the user enters "Very_very_long_last_name" which is 24 characters long, then a buffer overflow will occur since the array can only hold 20 characters total.

Example 2

The following code attempts to create a local copy of a buffer to perform some manipulations to the data.

(Bad Code)
Example Language:
void manipulate_string(char* string){
char buf[24];
strcpy(buf, string);

However, the programmer does not ensure that the size of the data pointed to by string will fit in the local buffer and blindly copies the data with the potentially dangerous strcpy() function. This may result in a buffer overflow condition if an attacker can influence the contents of the string parameter.

Example 3

The excerpt below calls the gets() function in C, which is inherently unsafe.

(Bad Code)
Example Language:
char buf[24];
printf("Please enter your name and press <Enter>\n");

However, the programmer uses the function gets() which is inherently unsafe because it blindly copies all input from STDIN to the buffer without restricting how much is copied. This allows the user to provide a string that is larger than the buffer size, resulting in an overflow condition.

Example 4

In the following example, a server accepts connections from a client and processes the client request. After accepting a client connection, the program will obtain client information using the gethostbyaddr method, copy the hostname of the client that connected to a local variable and output the hostname of the client to a log file.

(Bad Code)
Example Languages: C and C++ 
struct hostent *clienthp;
char hostname[MAX_LEN];

// create server socket, bind to server address and listen on socket

// accept client connections and process requests
int count = 0;
for (count = 0; count < MAX_CONNECTIONS; count++) {

int clientlen = sizeof(struct sockaddr_in);
int clientsocket = accept(serversocket, (struct sockaddr *)&clientaddr, &clientlen);

if (clientsocket >= 0) {
clienthp = gethostbyaddr((char*) &clientaddr.sin_addr.s_addr, sizeof(clientaddr.sin_addr.s_addr), AF_INET);
strcpy(hostname, clienthp->h_name);
logOutput("Accepted client connection from host ", hostname);

// process client request

However, the hostname of the client that connected may be longer than the allocated size for the local hostname variable. This will result in a buffer overflow when copying the client hostname to the local variable using the strcpy method.

+ Observed Examples
buffer overflow using command with long argument
buffer overflow in local program using long environment variable
buffer overflow in comment characters, when product increments a counter for a ">" but does not decrement for "<"
By replacing a valid cookie value with an extremely long string of characters, an attacker may overflow the application's buffers.
By replacing a valid cookie value with an extremely long string of characters, an attacker may overflow the application's buffers.
+ Potential Mitigations

Phase: Requirements

Strategy: Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

Phase: Architecture and Design

Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

Examples include the Safe C String Library (SafeStr) by Messier and Viega [R.120.4], and the Strsafe.h library from Microsoft [R.120.3]. These libraries provide safer versions of overflow-prone string-handling functions.

This is not a complete solution, since many buffer overflows are not related to strings.

Phase: Build and Compilation

Strategy: Compilation or Build Hardening

Run or compile the software using features or extensions that automatically provide a protection mechanism that mitigates or eliminates buffer overflows.

For example, certain compilers and extensions provide automatic buffer overflow detection mechanisms that are built into the compiled code. Examples include the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.

Effectiveness: Defense in Depth

This is not necessarily a complete solution, since these mechanisms can only detect certain types of overflows. In addition, an attack could still cause a denial of service, since the typical response is to exit the application.

Phase: Implementation

Consider adhering to the following rules when allocating and managing an application's memory:

  • Double check that your buffer is as large as you specify.

  • When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.

  • Check buffer boundaries if accessing the buffer in a loop and make sure you are not in danger of writing past the allocated space.

  • If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.

Phase: Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, blacklists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.

Phase: Operation

Strategy: Environment Hardening

Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

Examples include Address Space Layout Randomization (ASLR) [R.120.5] [R.120.7] and Position-Independent Executables (PIE) [R.120.14].

Effectiveness: Defense in Depth

This is not a complete solution. However, it forces the attacker to guess an unknown value that changes every program execution. In addition, an attack could still cause a denial of service, since the typical response is to exit the application.

Phase: Operation

Strategy: Environment Hardening

Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent [R.120.7] [R.120.9].

Effectiveness: Defense in Depth

This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.

Phases: Build and Compilation; Operation

Most mitigating technologies at the compiler or OS level to date address only a subset of buffer overflow problems and rarely provide complete protection against even that subset. It is good practice to implement strategies to increase the workload of an attacker, such as leaving the attacker to guess an unknown value that changes every program execution.

Phase: Implementation

Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.

Effectiveness: Moderate

This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).

Phase: Architecture and Design

Strategy: Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs, and reject all other inputs.

Phases: Architecture and Design; Operation

Strategy: Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks [R.120.10]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations.

Phases: Architecture and Design; Operation

Strategy: Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between the process and the operating system. This may effectively restrict which files can be accessed in a particular directory or which commands can be executed by the software.

OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some protection. For example, in the Java SecurityManager allows the software to specify restrictions on file operations.

This may not be a feasible solution, and it only limits the impact to the operating system; the rest of the application may still be subject to compromise.

Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness: Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox or jail being used and might only help to reduce the scope of an attack, such as restricting the attacker to certain system calls or limiting the portion of the file system that can be accessed.

+ Weakness Ordinalities
(where the weakness is typically related to the presence of some other weaknesses)
(where the weakness exists independent of other weaknesses)
+ Relationships
NatureTypeIDNameView(s) this relationship pertains toView(s)
ChildOfWeakness ClassWeakness Class20Improper Input Validation
Seven Pernicious Kingdoms (primary)700
ChildOfWeakness ClassWeakness Class119Improper Restriction of Operations within the Bounds of a Memory Buffer
Development Concepts (primary)699
Research Concepts (primary)1000
ChildOfCategoryCategory633Weaknesses that Affect Memory
Resource-specific Weaknesses (primary)631
ChildOfCategoryCategory722OWASP Top Ten 2004 Category A1 - Unvalidated Input
Weaknesses in OWASP Top Ten (2004)711
ChildOfCategoryCategory726OWASP Top Ten 2004 Category A5 - Buffer Overflows
Weaknesses in OWASP Top Ten (2004) (primary)711
ChildOfCategoryCategory741CERT C Secure Coding Section 07 - Characters and Strings (STR)
Weaknesses Addressed by the CERT C Secure Coding Standard (primary)734
ChildOfCategoryCategory8022010 Top 25 - Risky Resource Management
Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors (primary)800
ChildOfCategoryCategory8652011 Top 25 - Risky Resource Management
Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors (primary)900
ChildOfCategoryCategory875CERT C++ Secure Coding Section 07 - Characters and Strings (STR)
Weaknesses Addressed by the CERT C++ Secure Coding Standard (primary)868
ChildOfCategoryCategory890SFP Cluster: Memory Access
Software Fault Pattern (SFP) Clusters (primary)888
CanPrecedeWeakness BaseWeakness Base123Write-what-where Condition
Research Concepts1000
ParentOfWeakness VariantWeakness Variant785Use of Path Manipulation Function without Maximum-sized Buffer
Development Concepts (primary)699
Research Concepts1000
MemberOfViewView884CWE Cross-section
CWE Cross-section (primary)884
CanFollowWeakness BaseWeakness Base170Improper Null Termination
Research Concepts1000
CanFollowWeakness VariantWeakness Variant231Improper Handling of Extra Values
Research Concepts1000
CanFollowWeakness BaseWeakness Base242Use of Inherently Dangerous Function
Research Concepts1000
CanFollowWeakness BaseWeakness Base416Use After Free
Research Concepts1000
CanFollowWeakness BaseWeakness Base456Missing Initialization of a Variable
Research Concepts1000
CanAlsoBeWeakness VariantWeakness Variant196Unsigned to Signed Conversion Error
Research Concepts1000
+ Relationship Notes

At the code level, stack-based and heap-based overflows do not differ significantly, so there usually is not a need to distinguish them. From the attacker perspective, they can be quite different, since different techniques are required to exploit them.

+ Affected Resources
  • Memory
+ Functional Areas
  • Memory Management
+ Causal Nature


+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
PLOVERUnbounded Transfer ('classic overflow')
7 Pernicious KingdomsBuffer Overflow
CLASPBuffer overflow
OWASP Top Ten 2004A1Unvalidated Input
OWASP Top Ten 2004A5Buffer Overflows
CERT C Secure CodingSTR35-CDo not copy data from an unbounded source to a fixed-length array
WASC7Buffer Overflow
CERT C++ Secure CodingSTR35-CPPDo not copy data from an unbounded source to a fixed-length array
+ White Box Definitions

A weakness where the code path includes a Buffer Write Operation such that:

1. the expected size of the buffer is greater than the actual size of the buffer where expected size is equal to the sum of the size of the data item and the position in the buffer

Where Buffer Write Operation is a statement that writes a data item of a certain size into a buffer at a certain position and at a certain index

+ References
[R.120.1] [REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 5, "Public Enemy #1: The Buffer Overrun" Page 127. 2nd Edition. Microsoft. 2002.
[R.120.2] [REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 5: Buffer Overruns." Page 89. McGraw-Hill. 2010.
[R.120.3] [REF-27] Microsoft. "Using the Strsafe.h Functions". <>.
[R.120.4] [REF-26] Matt Messier and John Viega. "Safe C String Library v1.0.3". <>.
[R.120.5] [REF-22] Michael Howard. "Address Space Layout Randomization in Windows Vista". <>.
[R.120.6] Arjan van de Ven. "Limiting buffer overflows with ExecShield". <>.
[R.120.7] [REF-29] "PaX". <>.
[R.120.8] Jason Lam. "Top 25 Series - Rank 3 - Classic Buffer Overflow". SANS Software Security Institute. 2010-03-02. <>.
[R.120.9] [REF-25] Microsoft. "Understanding DEP as a mitigation technology part 1". <>.
[R.120.10] [REF-31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. <>.
[R.120.11] [REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 3, "Nonexecutable Stack", Page 76.. 1st Edition. Addison Wesley. 2006.
[R.120.12] [REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 5, "Protection Mechanisms", Page 189.. 1st Edition. Addison Wesley. 2006.
[R.120.13] [REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 8, "C String Handling", Page 388.. 1st Edition. Addison Wesley. 2006.
[R.120.14] [REF-37] Grant Murphy. "Position Independent Executables (PIE)". Red Hat. 2012-11-28. <>.
+ Content History
Submission DateSubmitterOrganizationSource
Externally Mined
Modification DateModifierOrganizationSource
updated Time_of_Introduction
2008-08-01KDM AnalyticsExternal
added/updated white box definitions
Suggested OWASP Top Ten 2004 mapping
updated Alternate_Terms, Applicable_Platforms, Common_Consequences, Relationships, Observed_Example, Other_Notes, Taxonomy_Mappings, Weakness_Ordinalities
Changed name and description to more clearly emphasize the "classic" nature of the overflow.
updated Alternate_Terms, Description, Name, Other_Notes, Terminology_Notes
updated Other_Notes, Relationships, Taxonomy_Mappings
updated Common_Consequences, Other_Notes, Potential_Mitigations, References, Relationship_Notes, Relationships
updated Other_Notes, Potential_Mitigations, Relationships
updated Common_Consequences, Relationships
updated Applicable_Platforms, Common_Consequences, Demonstrative_Examples, Detection_Factors, Potential_Mitigations, References, Related_Attack_Patterns, Relationships, Taxonomy_Mappings, Time_of_Introduction, Type
updated Demonstrative_Examples, Related_Attack_Patterns
updated Common_Consequences, Potential_Mitigations, References
updated Potential_Mitigations
updated Potential_Mitigations
updated Demonstrative_Examples, Description
updated Common_Consequences
updated Relationships
updated Potential_Mitigations, References, Relationships, Taxonomy_Mappings
updated References, Relationships
updated Potential_Mitigations
updated Potential_Mitigations, References
Previous Entry Names
Change DatePrevious Entry Name
2008-10-14Unbounded Transfer ('Classic Buffer Overflow')
Page Last Updated: June 23, 2014