CWE

Common Weakness Enumeration

A Community-Developed List of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (3.0)  
ID

CWE-196: Unsigned to Signed Conversion Error

Weakness ID: 196
Abstraction: Variant
Structure: Simple
Status: Draft
Presentation Filter:
+ Description
The software uses an unsigned primitive and performs a cast to a signed primitive, which can produce an unexpected value if the value of the unsigned primitive can not be represented using a signed primitive.
+ Extended Description
Although less frequent an issue than signed-to-unsigned conversion, unsigned-to-signed conversion can be the perfect precursor to dangerous buffer underwrite conditions that allow attackers to move down the stack where they otherwise might not have access in a normal buffer overflow condition. Buffer underwrites occur frequently when large unsigned values are cast to signed values, and then used as indexes into a buffer or for pointer arithmetic.
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
+ Relevant to the view "Development Concepts" (CWE-699)
NatureTypeIDName
ChildOfClassClass681Incorrect Conversion between Numeric Types
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Implementation
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

C: (Undetermined Prevalence)

C++: (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Availability

Technical Impact: DoS: Crash, Exit, or Restart

Incorrect sign conversions generally lead to undefined behavior, and therefore crashes.
Integrity

Technical Impact: Modify Memory

If a poor cast lead to a buffer overflow or similar condition, data integrity may be affected.
Integrity
Confidentiality
Availability
Access Control

Technical Impact: Execute Unauthorized Code or Commands; Bypass Protection Mechanism

Improper signed-to-unsigned conversions without proper checking can sometimes trigger buffer overflows which can be used to execute arbitrary code. This is usually outside the scope of a program's implicit security policy.
+ Likelihood Of Exploit
Medium
+ Potential Mitigations

Phase: Requirements

Choose a language which is not subject to these casting flaws.

Phase: Architecture and Design

Design object accessor functions to implicitly check values for valid sizes. Ensure that all functions which will be used as a size are checked previous to use as a size. If the language permits, throw exceptions rather than using in-band errors.

Phase: Implementation

Error check the return values of all functions. Be aware of implicit casts made, and use unsigned variables for sizes if at all possible.
+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory998SFP Secondary Cluster: Glitch in Computation
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
CLASPUnsigned to signed conversion error
Software Fault PatternsSFP1Glitch in computation
+ References
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 6, "Type Conversions", Page 223.. 1st Edition. Addison Wesley. 2006.
+ Content History
Submissions
Submission DateSubmitterOrganizationSource
CLASP
Modifications
Modification DateModifierOrganizationSource
2008-09-08CWE Content TeamMITRE
updated Applicable_Platforms, Common_Consequences, Relationships, Other_Notes, Taxonomy_Mappings
2009-05-27CWE Content TeamMITRE
updated Demonstrative_Examples
2009-10-29CWE Content TeamMITRE
updated Common_Consequences
2010-12-13CWE Content TeamMITRE
updated Other_Notes
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated References, Relationships
2012-10-30CWE Content TeamMITRE
updated Potential_Mitigations
2014-06-23CWE Content TeamMITRE
updated Demonstrative_Examples, Description, Other_Notes
2014-07-30CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings

More information is available — Please select a different filter.
Page Last Updated: November 14, 2017