Home > CWE List > CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request/Response Smuggling') (4.16) |
|
CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request/Response Smuggling')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product acts as an intermediary HTTP agent
(such as a proxy or firewall) in the data flow between two
entities such as a client and server, but it does not
interpret malformed HTTP requests or responses in ways that
are consistent with how the messages will be processed by
those entities that are at the ultimate destination.
HTTP requests or responses ("messages") can be malformed or unexpected in ways that cause web servers or clients to interpret the messages in different ways than intermediary HTTP agents such as load balancers, reverse proxies, web caching proxies, application firewalls, etc. For example, an adversary may be able to add duplicate or different header fields that a client or server might interpret as one set of messages, whereas the intermediary might interpret the same sequence of bytes as a different set of messages. For example, discrepancies can arise in how to handle duplicate headers like two Transfer-encoding (TE) or two Content-length (CL), or the malicious HTTP message will have different headers for TE and CL. The inconsistent parsing and interpretation of messages can allow the adversary to "smuggle" a message to the client/server without the intermediary being aware of it. This weakness is usually the result of the usage of outdated or incompatible HTTP protocol versions in the HTTP agents. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Technologies Class: Web Based (Undetermined Prevalence) Example 1 In the following example, a malformed HTTP request is sent to a website that includes a proxy server and a web server with the intent of poisoning the cache to associate one webpage with another malicious webpage. (attack code)
POST http://www.website.com/foobar.html HTTP/1.1
Host: www.website.com Connection: Keep-Alive Content-Type: application/x-www-form-urlencoded Content-Length: 0 Content-Length: 54 GET /poison.html HTTP/1.1 Host: www.website.com Bla: GET http://www.website.com/page_to_poison.html HTTP/1.1 Host: www.website.com Connection: Keep-Alive When this request is sent to the proxy server, the proxy server parses the first four lines of the POST request and encounters the two "Content-Length" headers. The proxy server ignores the first header, so it assumes the request has a body of length 54 bytes. Therefore, it treats the data in the next three lines that contain exactly 54 bytes as the first request's body: (result)
GET /poison.html HTTP/1.1
Host: www.website.com Bla: The proxy then parses the remaining bytes, which it treats as the client's second request: (attack code)
GET http://www.website.com/page_to_poison.html HTTP/1.1
Host: www.website.com Connection: Keep-Alive The original request is forwarded by the proxy server to the web server. Unlike the proxy, the web server uses the first "Content-Length" header and considers that the first POST request has no body. (attack code)
POST http://www.website.com/foobar.html HTTP/1.1
Host: www.website.com Connection: Keep-Alive Content-Type: application/x-www-form-urlencoded Content-Length: 0 Content-Length: 54 (ignored by server) Because the web server has assumed the original POST request was length 0, it parses the second request that follows, i.e. for GET /poison.html: (attack code)
GET /poison.html HTTP/1.1
Host: www.website.com Bla: GET http://www.website.com/page_to_poison.html HTTP/1.1 Host: www.website.com Connection: Keep-Alive Note that the "Bla:" header is treated as a regular header, so it is not parsed as a separate GET request. The requests the web server sees are "POST /foobar.html" and "GET /poison.html", so it sends back two responses with the contents of the "foobar.html" page and the "poison.html" page, respectively. The proxy matches these responses to the two requests it thinks were sent by the client - "POST /foobar.html" and "GET /page_to_poison.html". If the response is cacheable, the proxy caches the contents of "poison.html" under the URL "page_to_poison.html", and the cache is poisoned! Any client requesting "page_to_poison.html" from the proxy would receive the "poison.html" page. When a website includes both a proxy server and a web server, some protection against this type of attack can be achieved by installing a web application firewall, or using a web server that includes a stricter HTTP parsing procedure or make all webpages non-cacheable. Additionally, if a web application includes a Java servlet for processing requests, the servlet can check for multiple "Content-Length" headers and if they are found the servlet can return an error response thereby preventing the poison page to be cached, as shown below. (good code)
Example Language: Java
protected void processRequest(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
// Set up response writer object ... try {
// check for multiple content length headers
Enumeration contentLengthHeaders = request.getHeaders("Content-Length"); int count = 0; while (contentLengthHeaders.hasMoreElements()) { count++;
}
if (count > 1) {
// output error response
}
else {
// process request
Example 2 In the following example, a malformed HTTP request is sent to a website that includes a web server with a firewall with the intent of bypassing the web server firewall to smuggle malicious code into the system. (attack code)
POST /page.asp HTTP/1.1
Host: www.website.com Connection: Keep-Alive Content-Length: 49223 zzz...zzz ["z" x 49152] POST /page.asp HTTP/1.0 Connection: Keep-Alive Content-Length: 30 POST /page.asp HTTP/1.0 Bla: POST /page.asp?cmd.exe HTTP/1.0 Connection: Keep-Alive When this request is sent to the web server, the first POST request has a content-length of 49,223 bytes, and the firewall treats the line with 49,152 copies of "z" and the lines with an additional lines with 71 bytes as its body (49,152+71=49,223). The firewall then continues to parse what it thinks is the second request starting with the line with the third POST request. Note that there is no CRLF after the "Bla: " header so the POST in the line is parsed as the value of the "Bla:" header. Although the line contains the pattern identified with a worm ("cmd.exe"), it is not blocked, since it is considered part of a header value. Therefore, "cmd.exe" is smuggled through the firewall. When the request is passed through the firewall the web server the first request is ignored because the web server does not find an expected "Content-Type: application/x-www-form-urlencoded" header, and starts parsing the second request. This second request has a content-length of 30 bytes, which is exactly the length of the next two lines up to the space after the "Bla:" header. And unlike the firewall, the web server processes the final POST as a separate third request and the "cmd.exe" worm is smuggled through the firewall to the web server. To avoid this attack a Web server firewall product must be used that is designed to prevent this type of attack. Example 3 The interpretation of HTTP responses can be manipulated if response headers include a space between the header name and colon, or if HTTP 1.1 headers are sent through a proxy configured for HTTP 1.0, allowing for HTTP response smuggling. This can be exploited in web browsers and other applications when used in combination with various proxy servers. For instance, the HTTP response interpreted by the front-end/client HTTP agent/entity - in this case the web browser - can interpret a single response from an adversary-compromised web server as being two responses from two different web sites. In the Example below, notice the extra space after the Content-Length and Set-Cookie headers. (attack code)
HTTP/1.1 200 OK
Date: Fri, 08 Aug 2016 08:12:31 GMT Server: Apache (Unix) Connection: Keep-Alive Content-Encoding: gzip Content-Type: text/html Content-Length : 2345 Transfer-Encoding: chunked Set-Cookie : token="Malicious Code" <HTML> ... "Malicious Code"
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Theoretical
Request smuggling can be performed due to a multiple interpretation error, where the target is an intermediary or monitor, via a consistency manipulation (Transfer-Encoding and Content-Length headers).
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |