CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-705: Incorrect Control Flow Scoping (4.16)  
ID

CWE-705: Incorrect Control Flow Scoping

Weakness ID: 705
Vulnerability Mapping: ALLOWED This CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review (with careful review of mapping notes)
Abstraction: Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product does not properly return control flow to the proper location after it has completed a task or detected an unusual condition.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Other

Technical Impact: Alter Execution Logic; Other

+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 691 Insufficient Control Flow Management
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 248 Uncaught Exception
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 382 J2EE Bad Practices: Use of System.exit()
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 395 Use of NullPointerException Catch to Detect NULL Pointer Dereference
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 396 Declaration of Catch for Generic Exception
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 397 Declaration of Throws for Generic Exception
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 455 Non-exit on Failed Initialization
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 584 Return Inside Finally Block
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 698 Execution After Redirect (EAR)
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

The following example attempts to resolve a hostname.

(bad code)
Example Language: Java 
protected void doPost (HttpServletRequest req, HttpServletResponse res) throws IOException {
String ip = req.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip);
...
out.println("hello " + addr.getHostName());
}

A DNS lookup failure will cause the Servlet to throw an exception.


Example 2

This code queries a server and displays its status when a request comes from an authorized IP address.

(bad code)
Example Language: PHP 
$requestingIP = $_SERVER['REMOTE_ADDR'];
if(!in_array($requestingIP,$ipAllowList)){
echo "You are not authorized to view this page";
http_redirect($errorPageURL);
}
$status = getServerStatus();
echo $status;
...

This code redirects unauthorized users, but continues to execute code after calling http_redirect(). This means even unauthorized users may be able to access the contents of the page or perform a DoS attack on the server being queried. Also, note that this code is vulnerable to an IP address spoofing attack (CWE-212).


Example 3

Included in the doPost() method defined below is a call to System.exit() in the event of a specific exception.

(bad code)
Example Language: Java 
Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
try {
...
} catch (ApplicationSpecificException ase) {
logger.error("Caught: " + ase.toString());
System.exit(1);
}
}

+ Observed Examples
Reference Description
Java code in a smartphone OS can encounter a "boot loop" due to an uncaught exception
chain: incorrect "goto" in Apple SSL product bypasses certificate validation, allowing Adversary-in-the-Middle (AITM) attack (Apple "goto fail" bug). CWE-705 (Incorrect Control Flow Scoping) -> CWE-561 (Dead Code) -> CWE-295 (Improper Certificate Validation) -> CWE-393 (Return of Wrong Status Code) -> CWE-300 (Channel Accessible by Non-Endpoint).
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 744 CERT C Secure Coding Standard (2008) Chapter 11 - Environment (ENV)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 746 CERT C Secure Coding Standard (2008) Chapter 13 - Error Handling (ERR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 851 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 8 - Exceptional Behavior (ERR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 854 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 11 - Thread APIs (THI)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 878 CERT C++ Secure Coding Section 10 - Environment (ENV)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 880 CERT C++ Secure Coding Section 12 - Exceptions and Error Handling (ERR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 977 SFP Secondary Cluster: Design
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1141 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior (ERR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1147 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1165 SEI CERT C Coding Standard - Guidelines 10. Environment (ENV)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1181 SEI CERT Perl Coding Standard - Guidelines 03. Expressions (EXP)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1410 Comprehensive Categorization: Insufficient Control Flow Management
+ Vulnerability Mapping Notes

Usage: ALLOWED-WITH-REVIEW

(this CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review)

Reason: Abstraction

Rationale:

This CWE entry is a Class and might have Base-level children that would be more appropriate

Comments:

Examine children of this entry to see if there is a better fit
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding ENV32-C CWE More Abstract All exit handlers must return normally
CERT C Secure Coding ERR04-C Choose an appropriate termination strategy
The CERT Oracle Secure Coding Standard for Java (2011) THI05-J Do not use Thread.stop() to terminate threads
The CERT Oracle Secure Coding Standard for Java (2011) ERR04-J Do not complete abruptly from a finally block
The CERT Oracle Secure Coding Standard for Java (2011) ERR05-J Do not let checked exceptions escape from a finally block
SEI CERT Perl Coding Standard EXP31-PL Imprecise Do not suppress or ignore exceptions
+ Content History
+ Submissions
Submission Date Submitter Organization
2008-09-09
(CWE 1.0, 2008-09-09)
CWE Content Team MITRE
Note: this date reflects when the entry was first published. Draft versions of this entry were provided to members of the CWE community and modified between Draft 9 and 1.0.
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-11-24 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-03-29 CWE Content Team MITRE
updated Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-05-11 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2014-06-23 CWE Content Team MITRE
updated Observed_Examples
2014-07-30 CWE Content Team MITRE
updated Relationships
2017-01-19 CWE Content Team MITRE
updated Relationships
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Relationships, Taxonomy_Mappings
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2020-02-24 CWE Content Team MITRE
updated Observed_Examples, Relationships
2021-03-15 CWE Content Team MITRE
updated Relationships
2021-07-20 CWE Content Team MITRE
updated Observed_Examples
2023-01-31 CWE Content Team MITRE
updated Description
2023-04-27 CWE Content Team MITRE
updated Relationships, Time_of_Introduction
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Demonstrative_Examples, Observed_Examples
Page Last Updated: November 19, 2024