CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer (4.16)  
ID

CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer

Weakness ID: 785
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product invokes a function for normalizing paths or file names, but it provides an output buffer that is smaller than the maximum possible size, such as PATH_MAX.
+ Extended Description
Passing an inadequately-sized output buffer to a path manipulation function can result in a buffer overflow. Such functions include realpath(), readlink(), PathAppend(), and others.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Integrity
Confidentiality
Availability

Technical Impact: Modify Memory; Execute Unauthorized Code or Commands; DoS: Crash, Exit, or Restart

+ Potential Mitigations

Phase: Implementation

Always specify output buffers large enough to handle the maximum-size possible result from path manipulation functions.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 676 Use of Potentially Dangerous Function
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 20 Improper Input Validation
+ Background Details
Windows provides a large number of utility functions that manipulate buffers containing filenames. In most cases, the result is returned in a buffer that is passed in as input. (Usually the filename is modified in place.) Most functions require the buffer to be at least MAX_PATH bytes in length, but you should check the documentation for each function individually. If the buffer is not large enough to store the result of the manipulation, a buffer overflow can occur.
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

C (Undetermined Prevalence)

C++ (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

In this example the function creates a directory named "output\<name>" in the current directory and returns a heap-allocated copy of its name.

(bad code)
Example Language:
char *createOutputDirectory(char *name) {
char outputDirectoryName[128];
if (getCurrentDirectory(128, outputDirectoryName) == 0) {
return null;
}
if (!PathAppend(outputDirectoryName, "output")) {
return null;
}
if (!PathAppend(outputDirectoryName, name)) {

return null;
}
if (SHCreateDirectoryEx(NULL, outputDirectoryName, NULL) != ERROR_SUCCESS) {

return null;
}
return StrDup(outputDirectoryName);
}

For most values of the current directory and the name parameter, this function will work properly. However, if the name parameter is particularly long, then the second call to PathAppend() could overflow the outputDirectoryName buffer, which is smaller than MAX_PATH bytes.


+ Affected Resources
  • Memory
  • File or Directory
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 972 SFP Secondary Cluster: Faulty String Expansion
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1412 Comprehensive Categorization: Poor Coding Practices
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Maintenance

This entry is at a much lower level of abstraction than most entries because it is function-specific. It also has significant overlap with other entries that can vary depending on the perspective. For example, incorrect usage could trigger either a stack-based overflow (CWE-121) or a heap-based overflow (CWE-122). The CWE team has not decided how to handle such entries.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Often Misused: File System
Software Fault Patterns SFP9 Faulty String Expansion
+ References
[REF-6] Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools Techniques and Metrics. NIST. 2005-11-07. <https://samate.nist.gov/SSATTM_Content/papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf>.
+ Content History
+ Submissions
Submission Date Submitter Organization
2009-07-27
(CWE 1.5, 2009-07-27)
7 Pernicious Kingdoms
Note: this date reflects when the entry was first published. Draft versions of this entry were provided to members of the CWE community and modified before initial publication.
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-08-01 KDM Analytics
added/updated white box definitions
2008-09-08 CWE Content Team MITRE
updated Applicable_Platforms, Relationships, Other_Notes, Taxonomy_Mappings
2009-05-27 CWE Content Team MITRE
updated Demonstrative_Examples
2009-07-17 KDM Analytics
Improved the White_Box_Definition
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2012-05-11 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Affected_Resources, Demonstrative_Examples, Relationships, White_Box_Definitions
2020-02-24 CWE Content Team MITRE
updated References, Relationships
2021-03-15 CWE Content Team MITRE
updated Maintenance_Notes
2023-01-31 CWE Content Team MITRE
updated Description
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
Page Last Updated: November 19, 2024