CWE-114: Process Control
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterExecuting commands or loading libraries from an untrusted source or in an untrusted environment can cause an application to execute malicious commands (and payloads) on behalf of an attacker.
Process control vulnerabilities take two forms:
Process control vulnerabilities of the first type occur when either data enters the application from an untrusted source and the data is used as part of a string representing a command that is executed by the application. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Architectural Concepts" (CWE-1008)
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Example 1 The following code uses System.loadLibrary() to load code from a native library named library.dll, which is normally found in a standard system directory. (bad code)
Example Language: Java
...
System.loadLibrary("library.dll"); ... The problem here is that System.loadLibrary() accepts a library name, not a path, for the library to be loaded. From the Java 1.4.2 API documentation this function behaves as follows [1]: A file containing native code is loaded from the local file system from a place where library files are conventionally obtained. The details of this process are implementation-dependent. The mapping from a library name to a specific filename is done in a system-specific manner. If an attacker is able to place a malicious copy of library.dll higher in the search order than file the application intends to load, then the application will load the malicious copy instead of the intended file. Because of the nature of the application, it runs with elevated privileges, which means the contents of the attacker's library.dll will now be run with elevated privileges, possibly giving them complete control of the system. Example 2 The following code from a privileged application uses a registry entry to determine the directory in which it is installed and loads a library file based on a relative path from the specified directory. (bad code)
Example Language: C
...
RegQueryValueEx(hkey, "APPHOME", 0, 0, (BYTE*)home, &size); char* lib=(char*)malloc(strlen(home)+strlen(INITLIB)); if (lib) { strcpy(lib,home); strcat(lib,INITCMD); LoadLibrary(lib); ... The code in this example allows an attacker to load an arbitrary library, from which code will be executed with the elevated privilege of the application, by modifying a registry key to specify a different path containing a malicious version of INITLIB. Because the program does not validate the value read from the environment, if an attacker can control the value of APPHOME, they can fool the application into running malicious code. Example 3 The following code is from a web-based administration utility that allows users access to an interface through which they can update their profile on the system. The utility makes use of a library named liberty.dll, which is normally found in a standard system directory. (bad code)
Example Language: C
LoadLibrary("liberty.dll");
The problem is that the program does not specify an absolute path for liberty.dll. If an attacker is able to place a malicious library named liberty.dll higher in the search order than file the application intends to load, then the application will load the malicious copy instead of the intended file. Because of the nature of the application, it runs with elevated privileges, which means the contents of the attacker's liberty.dll will now be run with elevated privileges, possibly giving the attacker complete control of the system. The type of attack seen in this example is made possible because of the search order used by LoadLibrary() when an absolute path is not specified. If the current directory is searched before system directories, as was the case up until the most recent versions of Windows, then this type of attack becomes trivial if the attacker can execute the program locally. The search order is operating system version dependent, and is controlled on newer operating systems by the value of the registry key: HKLM\System\CurrentControlSet\Control\Session Manager\SafeDllSearchMode
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |