CWE-192: Integer Coercion Error
Presentation Filter:
Integer coercion refers to a set of flaws pertaining to the type casting, extension, or truncation of primitive data types. Several flaws fall under the category of integer coercion errors. For the most part, these errors in and of themselves result only in availability and data integrity issues. However, in some circumstances, they may result in other, more complicated security related flaws, such as buffer overflow conditions. The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore. ![]()
![]()
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance. Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Example 1 The following code is intended to read an incoming packet from a socket and extract one or more headers. (bad code) Example Language: C DataPacket *packet;
int numHeaders; PacketHeader *headers; sock=AcceptSocketConnection(); ReadPacket(packet, sock); numHeaders =packet->headers; if (numHeaders > 100) { ExitError("too many headers!"); }headers = malloc(numHeaders * sizeof(PacketHeader); ParsePacketHeaders(packet, headers); The code performs a check to make sure that the packet does not contain too many headers. However, numHeaders is defined as a signed int, so it could be negative. If the incoming packet specifies a value such as -3, then the malloc calculation will generate a negative number (say, -300 if each header can be a maximum of 100 bytes). When this result is provided to malloc(), it is first converted to a size_t type. This conversion then produces a large value such as 4294966996, which may cause malloc() to fail or to allocate an extremely large amount of memory (CWE-195). With the appropriate negative numbers, an attacker could trick malloc() into using a very small positive number, which then allocates a buffer that is much smaller than expected, potentially leading to a buffer overflow. Example 2 The following code reads a maximum size and performs validation on that size. It then performs a strncpy, assuming it will not exceed the boundaries of the array. While the use of "short s" is forced in this particular example, short int's are frequently used within real-world code, such as code that processes structured data. (bad code) Example Language: C int GetUntrustedInt () {
return(0x0000FFFF); }void main (int argc, char **argv) { char path[256];
char *input; int i; short s; unsigned int sz; i = GetUntrustedInt(); s = i; /* s is -1 so it passes the safety check - CWE-697 */ if (s > 256) { DiePainfully("go away!\n"); }/* s is sign-extended and saved in sz */ sz = s; /* output: i=65535, s=-1, sz=4294967295 - your mileage may vary */ printf("i=%d, s=%d, sz=%u\n", i, s, sz); input = GetUserInput("Enter pathname:"); /* strncpy interprets s as unsigned int, so it's treated as MAX_INT (CWE-195), enabling buffer overflow (CWE-119) */ strncpy(path, input, s); path[255] = '\0'; /* don't want CWE-170 */ printf("Path is: %s\n", path); This code first exhibits an example of CWE-839, allowing "s" to be a negative number. When the negative short "s" is converted to an unsigned integer, it becomes an extremely large positive integer. When this converted integer is used by strncpy() it will lead to a buffer overflow (CWE-119).
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Maintenance Within C, it might be that "coercion" is semantically different than "casting", possibly depending on whether the programmer directly specifies the conversion, or if the compiler does it implicitly. This has implications for the presentation of this entry and others, such as CWE-681, and whether there is enough of a difference for these entries to be split.
More information is available — Please select a different filter. |
Use of the Common Weakness Enumeration (CWE) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006-2021, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |