CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.15)  
ID

CWE-321: Use of Hard-coded Cryptographic Key

Weakness ID: 321
Vulnerability Mapping: ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities
Abstraction: VariantVariant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The use of a hard-coded cryptographic key significantly increases the possibility that encrypted data may be recovered.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Access Control

Technical Impact: Bypass Protection Mechanism; Gain Privileges or Assume Identity

If hard-coded cryptographic keys are used, it is almost certain that malicious users will gain access through the account in question.
+ Potential Mitigations

Phase: Architecture and Design

Prevention schemes mirror that of hard-coded password storage.
+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.798Use of Hard-coded Credentials
PeerOfVariantVariant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.259Use of Hard-coded Password
PeerOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.1291Public Key Re-Use for Signing both Debug and Production Code
CanFollowClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.656Reliance on Security Through Obscurity
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Architectural Concepts" (CWE-1008)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1013Encrypt Data
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
NatureTypeIDName
ChildOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.798Use of Hard-coded Credentials
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
NatureTypeIDName
ChildOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.798Use of Hard-coded Credentials
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
Architecture and DesignREALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Technologies

Class: ICS/OT (Undetermined Prevalence)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

The following code examples attempt to verify a password using a hard-coded cryptographic key.

(bad code)
Example Language:
int VerifyAdmin(char *password) {
if (strcmp(password,"68af404b513073584c4b6f22b6c63e6b")) {

printf("Incorrect Password!\n");
return(0);
}
printf("Entering Diagnostic Mode...\n");
return(1);
}
(bad code)
Example Language: Java 
public boolean VerifyAdmin(String password) {
if (password.equals("68af404b513073584c4b6f22b6c63e6b")) {
System.out.println("Entering Diagnostic Mode...");
return true;
}
System.out.println("Incorrect Password!");
return false;
(bad code)
Example Language: C# 
int VerifyAdmin(String password) {
if (password.Equals("68af404b513073584c4b6f22b6c63e6b")) {
Console.WriteLine("Entering Diagnostic Mode...");
return(1);
}
Console.WriteLine("Incorrect Password!");
return(0);
}

The cryptographic key is within a hard-coded string value that is compared to the password. It is likely that an attacker will be able to read the key and compromise the system.


Example 2

In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications.

Multiple vendors used hard-coded keys for critical functionality in their OT products.


+ Observed Examples
ReferenceDescription
Engineering Workstation uses hard-coded cryptographic keys that could allow for unathorized filesystem access and privilege escalation
Remote Terminal Unit (RTU) uses a hard-coded SSH private key that is likely to be used by default.
WiFi router service has a hard-coded encryption key, allowing root access
Communications / collaboration product has a hardcoded SSH private key, allowing access to root account
+ Detection Methods

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.719OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.720OWASP Top Ten 2007 Category A9 - Insecure Communications
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.729OWASP Top Ten 2004 Category A8 - Insecure Storage
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.950SFP Secondary Cluster: Hardcoded Sensitive Data
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1346OWASP Top Ten 2021 Category A02:2021 - Cryptographic Failures
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1396Comprehensive Categorization: Access Control
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID could be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Other

The main difference between the use of hard-coded passwords and the use of hard-coded cryptographic keys is the false sense of security that the former conveys. Many people believe that simply hashing a hard-coded password before storage will protect the information from malicious users. However, many hashes are reversible (or at least vulnerable to brute force attacks) -- and further, many authentication protocols simply request the hash itself, making it no better than a password.

Maintenance

The Taxonomy_Mappings to ISA/IEC 62443 were added in CWE 4.10, but they are still under review and might change in future CWE versions. These draft mappings were performed by members of the "Mapping CWE to 62443" subgroup of the CWE-CAPEC ICS/OT Special Interest Group (SIG), and their work is incomplete as of CWE 4.10. The mappings are included to facilitate discussion and review by the broader ICS/OT community, and they are likely to change in future CWE versions.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
CLASPUse of hard-coded cryptographic key
OWASP Top Ten 2007A8CWE More SpecificInsecure Cryptographic Storage
OWASP Top Ten 2007A9CWE More SpecificInsecure Communications
OWASP Top Ten 2004A8CWE More SpecificInsecure Storage
Software Fault PatternsSFP33Hardcoded sensitive data
ISA/IEC 62443Part 2-4Req SP.03.10 RE(1)
ISA/IEC 62443Part 2-4Req SP.03.10 RE(3)
ISA/IEC 62443Part 3-3Req SR 1.5
ISA/IEC 62443Part 3-3Req SR 4.3
ISA/IEC 62443Part 4-1Req SD-1
ISA/IEC 62443Part 4-2Req SR 4.3
ISA/IEC 62443Part 4-2Req CR 7.3
+ References
[REF-18] Secure Software, Inc.. "The CLASP Application Security Process". 2005. <https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf>.
[REF-1283] Forescout Vedere Labs. "OT:ICEFALL: The legacy of "insecure by design" and its implications for certifications and risk management". 2022-06-20. <https://www.forescout.com/resources/ot-icefall-report/>.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2006-07-19
(CWE Draft 3, 2006-07-19)
CLASP
+ Contributions
Contribution DateContributorOrganization
2023-01-24
(CWE 4.10, 2023-01-31)
"Mapping CWE to 62443" Sub-Working GroupCWE-CAPEC ICS/OT SIG
Suggested mappings to ISA/IEC 62443.
2023-04-25"Mapping CWE to 62443" Sub-Working GroupCWE-CAPEC ICS/OT SIG
Suggested mappings to ISA/IEC 62443.
+ Modifications
Modification DateModifierOrganization
2008-07-01Eric DalciCigital
updated Time_of_Introduction
2008-08-15Veracode
Suggested OWASP Top Ten 2004 mapping
2008-09-08CWE Content TeamMITRE
updated Common_Consequences, Relationships, Other_Notes, Taxonomy_Mappings
2009-05-27CWE Content TeamMITRE
updated Demonstrative_Examples
2010-02-16CWE Content TeamMITRE
updated Relationships
2010-09-27CWE Content TeamMITRE
updated Relationships
2010-12-13CWE Content TeamMITRE
updated Relationships
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated Demonstrative_Examples, Relationships
2014-07-30CWE Content TeamMITRE
updated Demonstrative_Examples, Relationships, Taxonomy_Mappings
2017-11-08CWE Content TeamMITRE
updated Applicable_Platforms, Demonstrative_Examples, Modes_of_Introduction, Relationships
2020-02-24CWE Content TeamMITRE
updated References, Relationships, Type
2020-08-20CWE Content TeamMITRE
updated Relationships
2020-12-10CWE Content TeamMITRE
updated Relationships
2021-10-28CWE Content TeamMITRE
updated Relationships
2022-10-13CWE Content TeamMITRE
updated Demonstrative_Examples, Observed_Examples, References
2023-01-31CWE Content TeamMITRE
updated Applicable_Platforms, Maintenance_Notes, Taxonomy_Mappings
2023-04-27CWE Content TeamMITRE
updated Detection_Factors, Relationships, Taxonomy_Mappings
2023-06-29CWE Content TeamMITRE
updated Mapping_Notes, Taxonomy_Mappings
Page Last Updated: July 16, 2024