CWE-369: Divide By Zero
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This weakness typically occurs when an unexpected value is provided to the product, or if an error occurs that is not properly detected. It frequently occurs in calculations involving physical dimensions such as size, length, width, and height.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
Example 1 The following Java example contains a function to compute an average but does not validate that the input value used as the denominator is not zero. This will create an exception for attempting to divide by zero. If this error is not handled by Java exception handling, unexpected results can occur. (bad code)
Example Language: Java
public int computeAverageResponseTime (int totalTime, int numRequests) {
return totalTime / numRequests; }By validating the input value used as the denominator the following code will ensure that a divide by zero error will not cause unexpected results. The following Java code example will validate the input value, output an error message, and throw an exception. (good code)
public int computeAverageResponseTime (int totalTime, int numRequests) throws ArithmeticException {
if (numRequests == 0) { }System.out.println("Division by zero attempted!"); }throw ArithmeticException; return totalTime / numRequests; Example 2 The following C/C++ example contains a function that divides two numeric values without verifying that the input value used as the denominator is not zero. This will create an error for attempting to divide by zero, if this error is not caught by the error handling capabilities of the language, unexpected results can occur. (bad code)
Example Language: C
double divide(double x, double y){
return x/y; }By validating the input value used as the denominator the following code will ensure that a divide by zero error will not cause unexpected results. If the method is called and a zero is passed as the second argument a DivideByZero error will be thrown and should be caught by the calling block with an output message indicating the error. (good code)
const int DivideByZero = 10;
double divide(double x, double y){ if ( 0 == y ){ }throw DivideByZero; }return x/y; ... try{ divide(10, 0); }catch( int i ){ if(i==DivideByZero) { }cerr<<"Divide by zero error"; }
Example 3 The following C# example contains a function that divides two numeric values without verifying that the input value used as the denominator is not zero. This will create an error for attempting to divide by zero, if this error is not caught by the error handling capabilities of the language, unexpected results can occur. (bad code)
Example Language: C#
int Division(int x, int y){
return (x / y); }The method can be modified to raise, catch and handle the DivideByZeroException if the input value used as the denominator is zero. (good code)
int SafeDivision(int x, int y){
try{ }return (x / y); }catch (System.DivideByZeroException dbz){ System.Console.WriteLine("Division by zero attempted!"); }return 0;
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |