CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-682: Incorrect Calculation (4.16)  
ID

CWE-682: Incorrect Calculation

Weakness ID: 682
Vulnerability Mapping: DISCOURAGED This CWE ID should not be used to map to real-world vulnerabilities
Abstraction: Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product performs a calculation that generates incorrect or unintended results that are later used in security-critical decisions or resource management.
+ Extended Description
When product performs a security-critical calculation incorrectly, it might lead to incorrect resource allocations, incorrect privilege assignments, or failed comparisons among other things. Many of the direct results of an incorrect calculation can lead to even larger problems such as failed protection mechanisms or even arbitrary code execution.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Availability

Technical Impact: DoS: Crash, Exit, or Restart

If the incorrect calculation causes the program to move into an unexpected state, it may lead to a crash or impairment of service.
Integrity
Confidentiality
Availability

Technical Impact: DoS: Crash, Exit, or Restart; DoS: Resource Consumption (Other); Execute Unauthorized Code or Commands

If the incorrect calculation is used in the context of resource allocation, it could lead to an out-of-bounds operation (CWE-119) leading to a crash or even arbitrary code execution. Alternatively, it may result in an integer overflow (CWE-190) and / or a resource consumption problem (CWE-400).
Access Control

Technical Impact: Gain Privileges or Assume Identity

In the context of privilege or permissions assignment, an incorrect calculation can provide an attacker with access to sensitive resources.
Access Control

Technical Impact: Bypass Protection Mechanism

If the incorrect calculation leads to an insufficient comparison (CWE-697), it may compromise a protection mechanism such as a validation routine and allow an attacker to bypass the security-critical code.
+ Potential Mitigations

Phase: Implementation

Understand your programming language's underlying representation and how it interacts with numeric calculation. Pay close attention to byte size discrepancies, precision, signed/unsigned distinctions, truncation, conversion and casting between types, "not-a-number" calculations, and how your language handles numbers that are too large or too small for its underlying representation.

Phase: Implementation

Strategy: Input Validation

Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that the input meets both the minimum and maximum requirements for the expected range.

Phase: Implementation

Use the appropriate type for the desired action. For example, in C/C++, only use unsigned types for values that could never be negative, such as height, width, or other numbers related to quantity.

Phase: Architecture and Design

Strategy: Language Selection

Use languages, libraries, or frameworks that make it easier to handle numbers without unexpected consequences.

Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++).

Phase: Architecture and Design

Strategy: Libraries or Frameworks

Use languages, libraries, or frameworks that make it easier to handle numbers without unexpected consequences.

Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++).

Phase: Implementation

Strategy: Compilation or Build Hardening

Examine compiler warnings closely and eliminate problems with potential security implications, such as signed / unsigned mismatch in memory operations, or use of uninitialized variables. Even if the weakness is rarely exploitable, a single failure may lead to the compromise of the entire system.

Phase: Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques use data flow analysis to minimize the number of false positives. This is not a perfect solution, since 100% accuracy and coverage are not feasible.

Phase: Testing

Use dynamic tools and techniques that interact with the product using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The product's operation may slow down, but it should not become unstable, crash, or generate incorrect results.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
MemberOf View View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1000 Research Concepts
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 128 Wrap-around Error
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 131 Incorrect Calculation of Buffer Size
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 135 Incorrect Calculation of Multi-Byte String Length
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 190 Integer Overflow or Wraparound
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 191 Integer Underflow (Wrap or Wraparound)
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 193 Off-by-one Error
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 369 Divide By Zero
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 468 Incorrect Pointer Scaling
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 469 Use of Pointer Subtraction to Determine Size
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1335 Incorrect Bitwise Shift of Integer
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1339 Insufficient Precision or Accuracy of a Real Number
CanFollow Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 681 Incorrect Conversion between Numeric Types
CanFollow Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 839 Numeric Range Comparison Without Minimum Check
CanPrecede Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 170 Improper Null Termination
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Nature Type ID Name
MemberOf View View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1003 Weaknesses for Simplified Mapping of Published Vulnerabilities
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 131 Incorrect Calculation of Buffer Size
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 190 Integer Overflow or Wraparound
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 191 Integer Underflow (Wrap or Wraparound)
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 193 Off-by-one Error
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 369 Divide By Zero
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Nature Type ID Name
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 131 Incorrect Calculation of Buffer Size
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 369 Divide By Zero
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
Nature Type ID Name
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 131 Incorrect Calculation of Buffer Size
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 369 Divide By Zero
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Technologies

Class: Not Technology-Specific (Undetermined Prevalence)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

The following image processing code allocates a table for images.

(bad code)
Example Language:
img_t table_ptr; /*struct containing img data, 10kB each*/
int num_imgs;
...
num_imgs = get_num_imgs();
table_ptr = (img_t*)malloc(sizeof(img_t)*num_imgs);
...

This code intends to allocate a table of size num_imgs, however as num_imgs grows large, the calculation determining the size of the list will eventually overflow (CWE-190). This will result in a very small list to be allocated instead. If the subsequent code operates on the list as if it were num_imgs long, it may result in many types of out-of-bounds problems (CWE-119).


Example 2

This code attempts to calculate a football team's average number of yards gained per touchdown.

(bad code)
Example Language: Java 
...
int touchdowns = team.getTouchdowns();
int yardsGained = team.getTotalYardage();
System.out.println(team.getName() + " averages " + yardsGained / touchdowns + "yards gained for every touchdown scored");
...

The code does not consider the event that the team they are querying has not scored a touchdown, but has gained yardage. In that case, we should expect an ArithmeticException to be thrown by the JVM. This could lead to a loss of availability if our error handling code is not set up correctly.


Example 3

This example attempts to calculate the position of the second byte of a pointer.

(bad code)
Example Language:
int *p = x;
char * second_char = (char *)(p + 1);

In this example, second_char is intended to point to the second byte of p. But, adding 1 to p actually adds sizeof(int) to p, giving a result that is incorrect (3 bytes off on 32-bit platforms). If the resulting memory address is read, this could potentially be an information leak. If it is a write, it could be a security-critical write to unauthorized memory-- whether or not it is a buffer overflow. Note that the above code may also be wrong in other ways, particularly in a little endian environment.


+ Observed Examples
Reference Description
chain: mobile phone Bluetooth implementation does not include offset when calculating packet length (CWE-682), leading to out-of-bounds write (CWE-787)
substitution overflow: buffer overflow using environment variables that are expanded after the length check is performed
+ Detection Methods

Manual Analysis

This weakness can be detected using tools and techniques that require manual (human) analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester to record and modify an active session.

Specifically, manual static analysis is useful for evaluating the correctness of allocation calculations. This can be useful for detecting overflow conditions (CWE-190) or similar weaknesses that might have serious security impacts on the program.

Effectiveness: High

Note: These may be more effective than strictly automated techniques. This is especially the case with weaknesses that are related to design and business rules.
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 738 CERT C Secure Coding Standard (2008) Chapter 5 - Integers (INT)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 739 CERT C Secure Coding Standard (2008) Chapter 6 - Floating Point (FLP)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 752 2009 Top 25 - Risky Resource Management
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 872 CERT C++ Secure Coding Section 04 - Integers (INT)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 873 CERT C++ Secure Coding Section 05 - Floating Point Arithmetic (FLP)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 977 SFP Secondary Cluster: Design
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1137 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 03. Numeric Types and Operations (NUM)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1158 SEI CERT C Coding Standard - Guidelines 04. Integers (INT)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1159 SEI CERT C Coding Standard - Guidelines 05. Floating Point (FLP)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1306 CISQ Quality Measures - Reliability
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1308 CISQ Quality Measures - Security
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1340 CISQ Data Protection Measures
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1408 Comprehensive Categorization: Incorrect Calculation
+ Vulnerability Mapping Notes

Usage: DISCOURAGED

(this CWE ID should not be used to map to real-world vulnerabilities)

Reason: Abstraction

Rationale:

This CWE entry is extremely high-level, a Pillar. In many cases, lower-level children or descendants are more appropriate. However, sometimes this weakness is forced to be used due to the lack of in-depth weakness research. See Research Gaps.

Comments:

Where feasible, consider children or descendants of this entry instead.
+ Notes

Research Gap

Weaknesses related to this Pillar appear to be under-studied, especially with respect to classification schemes. Input from academic and other communities could help identify and resolve gaps or organizational difficulties within CWE.

+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding FLP32-C CWE More Abstract Prevent or detect domain and range errors in math functions
CERT C Secure Coding INT07-C Use only explicitly signed or unsigned char type for numeric values
CERT C Secure Coding INT13-C Use bitwise operators only on unsigned operands
CERT C Secure Coding INT33-C CWE More Abstract Ensure that division and remainder operations do not result in divide-by-zero errors
CERT C Secure Coding INT34-C CWE More Abstract Do not shift an expression by a negative number of bits or by greater than or equal to the number of bits that exist in the operand
+ References
[REF-106] David LeBlanc and Niels Dekker. "SafeInt". <http://safeint.codeplex.com/>.
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 7: Integer Overflows." Page 119. McGraw-Hill. 2010.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 6, "Signed Integer Boundaries", Page 220. 1st Edition. Addison Wesley. 2006.
+ Content History
+ Submissions
Submission Date Submitter Organization
2008-04-11
(CWE Draft 9, 2008-04-11)
CWE Content Team MITRE
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Potential_Mitigations, Time_of_Introduction
2008-09-08 CWE Content Team MITRE
updated Relationships
2008-10-14 CWE Content Team MITRE
updated Type
2008-11-24 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2009-01-12 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Demonstrative_Examples, Description, Likelihood_of_Exploit, Potential_Mitigations, Relationships
2009-03-10 CWE Content Team MITRE
updated Potential_Mitigations
2009-05-27 CWE Content Team MITRE
updated Demonstrative_Examples
2009-07-27 CWE Content Team MITRE
updated Demonstrative_Examples, Related_Attack_Patterns
2009-10-29 CWE Content Team MITRE
updated Demonstrative_Examples, Relationships
2010-02-16 CWE Content Team MITRE
updated Potential_Mitigations
2010-04-05 CWE Content Team MITRE
updated Detection_Factors, Potential_Mitigations, References
2010-06-21 CWE Content Team MITRE
updated Potential_Mitigations
2010-09-27 CWE Content Team MITRE
updated Potential_Mitigations
2011-03-29 CWE Content Team MITRE
updated Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-05-11 CWE Content Team MITRE
updated Demonstrative_Examples, References, Relationships
2014-02-18 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships
2015-12-07 CWE Content Team MITRE
updated Relationships
2017-01-19 CWE Content Team MITRE
updated Applicable_Platforms
2017-11-08 CWE Content Team MITRE
updated Taxonomy_Mappings
2019-01-03 CWE Content Team MITRE
updated Relationships
2019-06-20 CWE Content Team MITRE
updated Related_Attack_Patterns, Relationships
2020-02-24 CWE Content Team MITRE
updated Applicable_Platforms, Observed_Examples, Relationships, Type
2020-08-20 CWE Content Team MITRE
updated Relationships
2020-12-10 CWE Content Team MITRE
updated Relationships
2021-07-20 CWE Content Team MITRE
updated Relationships
2023-01-31 CWE Content Team MITRE
updated Description, Potential_Mitigations
2023-04-27 CWE Content Team MITRE
updated Relationships, Time_of_Introduction
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes, Research_Gaps
Page Last Updated: November 19, 2024