CWE-400: Uncontrolled Resource Consumption
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not properly control the allocation and maintenance of a limited resource, thereby enabling an actor to influence the amount of resources consumed, eventually leading to the exhaustion of available resources.
Limited resources include memory, file system storage, database connection pool entries, and CPU. If an attacker can trigger the allocation of these limited resources, but the number or size of the resources is not controlled, then the attacker could cause a denial of service that consumes all available resources. This would prevent valid users from accessing the product, and it could potentially have an impact on the surrounding environment. For example, a memory exhaustion attack against an application could slow down the application as well as its host operating system. There are at least three distinct scenarios which can commonly lead to resource exhaustion:
Resource exhaustion problems are often result due to an incorrect implementation of the following situations:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Example 1 The following example demonstrates the weakness. (bad code)
Example Language: Java
class Worker implements Executor {
...
public void execute(Runnable r) { try { ... }catch (InterruptedException ie) { // postpone response Thread.currentThread().interrupt(); public Worker(Channel ch, int nworkers) { ... }protected void activate() { Runnable loop = new Runnable() { public void run() { try { for (;;) { }Runnable r = ...; }r.run(); catch (InterruptedException ie) { ... }new Thread(loop).start(); There are no limits to runnables. Potentially an attacker could cause resource problems very quickly. Example 2 This code allocates a socket and forks each time it receives a new connection. (bad code)
Example Language: C
sock=socket(AF_INET, SOCK_STREAM, 0);
while (1) { newsock=accept(sock, ...); }printf("A connection has been accepted\n"); pid = fork(); The program does not track how many connections have been made, and it does not limit the number of connections. Because forking is a relatively expensive operation, an attacker would be able to cause the system to run out of CPU, processes, or memory by making a large number of connections. Alternatively, an attacker could consume all available connections, preventing others from accessing the system remotely. Example 3 In the following example a server socket connection is used to accept a request to store data on the local file system using a specified filename. The method openSocketConnection establishes a server socket to accept requests from a client. When a client establishes a connection to this service the getNextMessage method is first used to retrieve from the socket the name of the file to store the data, the openFileToWrite method will validate the filename and open a file to write to on the local file system. The getNextMessage is then used within a while loop to continuously read data from the socket and output the data to the file until there is no longer any data from the socket. (bad code)
Example Language: C
int writeDataFromSocketToFile(char *host, int port)
{ char filename[FILENAME_SIZE]; char buffer[BUFFER_SIZE]; int socket = openSocketConnection(host, port); if (socket < 0) { printf("Unable to open socket connection"); }return(FAIL); if (getNextMessage(socket, filename, FILENAME_SIZE) > 0) { if (openFileToWrite(filename) > 0) {
while (getNextMessage(socket, buffer, BUFFER_SIZE) > 0){
if (!(writeToFile(buffer) > 0)) }break;
closeFile(); closeSocket(socket); This example creates a situation where data can be dumped to a file on the local file system without any limits on the size of the file. This could potentially exhaust file or disk resources and/or limit other clients' ability to access the service. Example 4 In the following example, the processMessage method receives a two dimensional character array containing the message to be processed. The two-dimensional character array contains the length of the message in the first character array and the message body in the second character array. The getMessageLength method retrieves the integer value of the length from the first character array. After validating that the message length is greater than zero, the body character array pointer points to the start of the second character array of the two-dimensional character array and memory is allocated for the new body character array. (bad code)
Example Language: C
/* process message accepts a two-dimensional character array of the form [length][body] containing the message to be processed */ int processMessage(char **message) { char *body;
int length = getMessageLength(message[0]); if (length > 0) { body = &message[1][0]; }processMessageBody(body); return(SUCCESS); else { printf("Unable to process message; invalid message length"); }return(FAIL); This example creates a situation where the length of the body character array can be very large and will consume excessive memory, exhausting system resources. This can be avoided by restricting the length of the second character array with a maximum length check Also, consider changing the type from 'int' to 'unsigned int', so that you are always guaranteed that the number is positive. This might not be possible if the protocol specifically requires allowing negative values, or if you cannot control the return value from getMessageLength(), but it could simplify the check to ensure the input is positive, and eliminate other errors such as signed-to-unsigned conversion errors (CWE-195) that may occur elsewhere in the code. (good code)
Example Language: C
unsigned int length = getMessageLength(message[0]);
if ((length > 0) && (length < MAX_LENGTH)) {...} Example 5 In the following example, a server object creates a server socket and accepts client connections to the socket. For every client connection to the socket a separate thread object is generated using the ClientSocketThread class that handles request made by the client through the socket. (bad code)
Example Language: Java
public void acceptConnections() {
try {
ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0; boolean hasConnections = true; while (hasConnections) { Socket client = serverSocket.accept(); }Thread t = new Thread(new ClientSocketThread(client)); t.setName(client.getInetAddress().getHostName() + ":" + counter++); t.start(); serverSocket.close(); } catch (IOException ex) {...} In this example there is no limit to the number of client connections and client threads that are created. Allowing an unlimited number of client connections and threads could potentially overwhelm the system and system resources. The server should limit the number of client connections and the client threads that are created. This can be easily done by creating a thread pool object that limits the number of threads that are generated. (good code)
Example Language: Java
public static final int SERVER_PORT = 4444;
public static final int MAX_CONNECTIONS = 10; ... public void acceptConnections() { try {
ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0; boolean hasConnections = true; while (hasConnections) { hasConnections = checkForMoreConnections(); }Socket client = serverSocket.accept(); Thread t = new Thread(new ClientSocketThread(client)); t.setName(client.getInetAddress().getHostName() + ":" + counter++); ExecutorService pool = Executors.newFixedThreadPool(MAX_CONNECTIONS); pool.execute(t); serverSocket.close(); } catch (IOException ex) {...} Example 6 In the following example, the serve function receives an http request and an http response writer. It reads the entire request body. (bad code)
Example Language: Go
func serve(w http.ResponseWriter, r *http.Request) {
var body []byte
}if r.Body != nil {
if data, err := io.ReadAll(r.Body); err == nil {
}
body = data
}Because ReadAll is defined to read from src until EOF, it does not treat an EOF from Read as an error to be reported. This example creates a situation where the length of the body supplied can be very large and will consume excessive memory, exhausting system resources. This can be avoided by ensuring the body does not exceed a predetermined length of bytes. MaxBytesReader prevents clients from accidentally or maliciously sending a large request and wasting server resources. If possible, the code could be changed to tell ResponseWriter to close the connection after the limit has been reached. (good code)
Example Language: Go
func serve(w http.ResponseWriter, r *http.Request) {
var body []byte
}const MaxRespBodyLength = 1e6 if r.Body != nil {
r.Body = http.MaxBytesReader(w, r.Body, MaxRespBodyLength)
}if data, err := io.ReadAll(r.Body); err == nil {
body = data
}
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Theoretical
Vulnerability theory is largely about how behaviors and resources interact. "Resource exhaustion" can be regarded as either a consequence or an attack, depending on the perspective. This entry is an attempt to reflect the underlying weaknesses that enable these attacks (or consequences) to take place.
Other Database queries that take a long time to process are good DoS targets. An attacker would have to write a few lines of Perl code to generate enough traffic to exceed the site's ability to keep up. This would effectively prevent authorized users from using the site at all. Resources can be exploited simply by ensuring that the target machine must do much more work and consume more resources in order to service a request than the attacker must do to initiate a request. A prime example of this can be found in old switches that were vulnerable to "macof" attacks (so named for a tool developed by Dugsong). These attacks flooded a switch with random IP and MAC address combinations, therefore exhausting the switch's cache, which held the information of which port corresponded to which MAC addresses. Once this cache was exhausted, the switch would fail in an insecure way and would begin to act simply as a hub, broadcasting all traffic on all ports and allowing for basic sniffing attacks. Maintenance
"Resource consumption" could be interpreted as a consequence instead of an insecure behavior, so this entry is being considered for modification. It appears to be referenced too frequently when more precise mappings are available. Some of its children, such as CWE-771, might be better considered as a chain.
Maintenance
The Taxonomy_Mappings to ISA/IEC 62443 were added in CWE 4.10, but they are still under review and might change in future CWE versions. These draft mappings were performed by members of the "Mapping CWE to 62443" subgroup of the CWE-CAPEC ICS/OT Special Interest Group (SIG), and their work is incomplete as of CWE 4.10. The mappings are included to facilitate discussion and review by the broader ICS/OT community, and they are likely to change in future CWE versions.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |