CWE-1339: Insufficient Precision or Accuracy of a Real Number
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product processes a real number with an implementation in which the number's representation does not preserve required accuracy and precision in its fractional part, causing an incorrect result.
When a security decision or calculation requires highly precise, accurate numbers such as financial calculations or prices, then small variations in the number could be exploited by an attacker. There are multiple ways to store the fractional part of a real number in a computer. In all of these cases, there is a limit to the accuracy of recording a fraction. If the fraction can be represented in a fixed number of digits (binary or decimal), there might not be enough digits assigned to represent the number. In other cases the number cannot be represented in a fixed number of digits due to repeating in decimal or binary notation (e.g. 0.333333...) or due to a transcendental number such as Π or √2. Rounding of numbers can lead to situations where the computer results do not adequately match the result of sufficiently accurate math. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Example 1 Muller's Recurrence is a series that is supposed to converge to the number 5. When running this series with the following code, different implementations of real numbers fail at specific iterations: (bad code)
Example Language: Rust
fn rec_float(y: f64, z: f64) -> f64
{
108.0 - ((815.0 - 1500.0 / z) / y);
}fn float_calc(turns: usize) -> f64 {
let mut x: Vec<f64> = vec![4.0, 4.25];
}(2..turns + 1).for_each(|number| {
x.push(rec_float(x[number - 1], x[number - 2]));
});x[turns] The chart below shows values for different data structures in the rust language when Muller's recurrence is executed to 80 iterations. The data structure f64 is a 64 bit float. The data structures I<number>F<number> are fixed representations 128 bits in length that use the first number as the size of the integer and the second size as the size of the fraction (e.g. I16F112 uses 16 bits for the integer and 112 bits for the fraction). The data structure of Ratio comes in three different implementations: i32 uses a ratio of 32 bit signed integers, i64 uses a ratio of 64 bit signed integers and BigInt uses a ratio of signed integer with up to 2^32 digits of base 256. Notice how even with 112 bits of fractions or ratios of 64bit unsigned integers, this math still does not converge to an expected value of 5. (good code)
Example Language: Rust
Use num_rational::BigRational;
fn rec_big(y: BigRational, z: BigRational) -> BigRational {
BigRational::from_integer(BigInt::from(108))
}
- ((BigRational::from_integer(BigInt::from(815))
- BigRational::from_integer(BigInt::from(1500)) / z) / y) fn big_calc(turns: usize) -> BigRational {
let mut x: Vec<BigRational> = vec![BigRational::from_float(4.0).unwrap(), BigRational::from_float(4.25).unwrap(),];
}(2..turns + 1).for_each(|number| {
x.push(rec_big(x[number - 1].clone(), x[number - 2].clone()));
});x[turns].clone() Example 2 On February 25, 1991, during the eve of the Iraqi invasion of Saudi Arabia, a Scud missile fired from Iraqi positions hit a US Army barracks in Dhahran, Saudi Arabia. It miscalculated time and killed 28 people [REF-1190].
Example 3 Sleipner A, an offshore drilling platform in the North Sea, was incorrectly constructed with an underestimate of 50% of strength in a critical cluster of buoyancy cells needed for construction. This led to a leak in buoyancy cells during lowering, causing a seismic event of 3.0 on the Richter Scale and about $700M loss [REF-1281].
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |