CWE-426: Untrusted Search Path
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product searches for critical resources using an externally-supplied search path that can point to resources that are not under the product's direct control.
This might allow attackers to execute their own programs, access unauthorized data files, or modify configuration in unexpected ways. If the product uses a search path to locate critical resources such as programs, then an attacker could modify that search path to point to a malicious program, which the targeted product would then execute. The problem extends to any type of critical resource that the product trusts. Some of the most common variants of untrusted search path are:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Relevant to the view "Architectural Concepts" (CWE-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Example 1 This program is intended to execute a command that lists the contents of a restricted directory, then performs other actions. Assume that it runs with setuid privileges in order to bypass the permissions check by the operating system. (bad code)
Example Language: C
#define DIR "/restricted/directory"
char cmd[500]; sprintf(cmd, "ls -l %480s", DIR); /* Raise privileges to those needed for accessing DIR. */ RaisePrivileges(...); system(cmd); DropPrivileges(...); ... This code may look harmless at first, since both the directory and the command are set to fixed values that the attacker can't control. The attacker can only see the contents for DIR, which is the intended program behavior. Finally, the programmer is also careful to limit the code that executes with raised privileges. However, because the program does not modify the PATH environment variable, the following attack would work: (attack code)
Example 2 The following code from a system utility uses the system property APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory. (bad code)
Example Language: Java
...
String home = System.getProperty("APPHOME"); String cmd = home + INITCMD; java.lang.Runtime.getRuntime().exec(cmd); ... The code above allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system. Example 3 This code prints all of the running processes belonging to the current user. (bad code)
Example Language: PHP
//assume getCurrentUser() returns a username that is guaranteed to be alphanumeric (avoiding CWE-78) $userName = getCurrentUser(); $command = 'ps aux | grep ' . $userName; system($command); If invoked by an unauthorized web user, it is providing a web page of potentially sensitive information on the underlying system, such as command-line arguments (CWE-497). This program is also potentially vulnerable to a PATH based attack (CWE-426), as an attacker may be able to create malicious versions of the ps or grep commands. While the program does not explicitly raise privileges to run the system commands, the PHP interpreter may by default be running with higher privileges than users. Example 4 The following code is from a web application that allows users access to an interface through which they can update their password on the system. In this environment, user passwords can be managed using the Network Information System (NIS), which is commonly used on UNIX systems. When performing NIS updates, part of the process for updating passwords is to run a make command in the /var/yp directory. Performing NIS updates requires extra privileges. (bad code)
Example Language: Java
...
System.Runtime.getRuntime().exec("make"); ... The problem here is that the program does not specify an absolute path for make and does not clean its environment prior to executing the call to Runtime.exec(). If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |