CWE-497: Exposure of Sensitive System Information to an Unauthorized Control Sphere
Weakness ID: 497
Vulnerability Mapping:
ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities Abstraction: BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.For users who wish to see all available information for the CWE/CAPEC entry.For users who want to customize what details are displayed.
×
Edit Custom Filter
Description
The product does not properly prevent sensitive system-level information from being accessed by unauthorized actors who do not have the same level of access to the underlying system as the product does.
Extended Description
Network-based products, such as web applications, often run on top of an operating system or similar environment. When the product communicates with outside parties, details about the underlying system are expected to remain hidden, such as path names for data files, other OS users, installed packages, the application environment, etc. This system information may be provided by the product itself, or buried within diagnostic or debugging messages. Debugging information helps an adversary learn about the system and form an attack plan.
An information exposure occurs when system data or debugging information leaves the program through an output stream or logging function that makes it accessible to unauthorized parties. Using other weaknesses, an attacker could cause errors to occur; the response to these errors can reveal detailed system information, along with other impacts. An attacker can use messages that reveal technologies, operating systems, and product versions to tune the attack against known vulnerabilities in these technologies. A product may use diagnostic methods that provide significant implementation details such as stack traces as part of its error handling mechanism.
Common Consequences
This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Confidentiality
Technical Impact: Read Application Data
Potential Mitigations
Phases: Architecture and Design; Implementation
Production applications should never use methods that generate internal details such as stack traces and error messages unless that information is directly committed to a log that is not viewable by the end user. All error message text should be HTML entity encoded before being written to the log file to protect against potential cross-site scripting attacks against the viewer of the logs
Relationships
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
Variant - a weakness
that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Software Development" (CWE-699)
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase
Note
Implementation
Applicable Platforms
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages
Class: Not Language-Specific (Undetermined Prevalence)
Demonstrative Examples
Example 1
The following code prints the path environment variable to the standard error stream:
This code prints all of the running processes belonging to the current user.
(bad code)
Example Language: PHP
//assume getCurrentUser() returns a username that is guaranteed to be alphanumeric (avoiding CWE-78) $userName = getCurrentUser(); $command = 'ps aux | grep ' . $userName; system($command);
If invoked by an unauthorized web user, it is providing a web page of potentially sensitive information on the underlying system, such as command-line arguments (CWE-497). This program is also potentially vulnerable to a PATH based attack (CWE-426), as an attacker may be able to create malicious versions of the ps or grep commands. While the program does not explicitly raise privileges to run the system commands, the PHP interpreter may by default be running with higher privileges than users.
Example 3
The following code prints an exception to the standard error stream:
(bad code)
Example Language: Java
try {
...
} catch (Exception e) {
e.printStackTrace();
}
(bad code)
try {
...
} catch (Exception e) {
Console.Writeline(e);
}
Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a remote user. In some cases the error message tells the attacker precisely what sort of an attack the system will be vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In the example above, the search path could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
Example 4
The following code constructs a database connection string, uses it to create a new connection to the database, and prints it to the console.
Depending on the system configuration, this information can be dumped to a console, written to a log file, or exposed to a remote user. In some cases the error message tells the attacker precisely what sort of an attack the system is vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In the example above, the search path could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
Code analysis product passes access tokens as a command-line parameter or through an environment variable, making them visible to other processes via the ps command.
Detection Methods
Automated Static Analysis
Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)
Effectiveness: High
Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
(this CWE ID could be used to map to real-world vulnerabilities)
Reason: Acceptable-Use
Rationale:
This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Comments:
Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
Taxonomy Mappings
Mapped Taxonomy Name
Node ID
Fit
Mapped Node Name
7 Pernicious Kingdoms
System Information Leak
The CERT Oracle Secure Coding Standard for Java (2011)
ERR01-J
Do not allow exceptions to expose sensitive information