CWE-570: Expression is Always False
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThis table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Example 1 In the following Java example the updateUserAccountOrder() method used within an e-business product ordering/inventory application will validate the product number that was ordered and the user account number. If they are valid, the method will update the product inventory, the user account, and the user order appropriately. (bad code)
Example Language: Java
public void updateUserAccountOrder(String productNumber, String accountNumber) { boolean isValidProduct = false;
boolean isValidAccount = false; if (validProductNumber(productNumber)) { isValidProduct = true; }updateInventory(productNumber); else { return; }if (validAccountNumber(accountNumber)) { isValidProduct = true; }updateAccount(accountNumber, productNumber); if (isValidProduct && isValidAccount) { updateAccountOrder(accountNumber, productNumber); }However, the method never sets the isValidAccount variable after initializing it to false so the isValidProduct is mistakenly used twice. The result is that the expression "isValidProduct && isValidAccount" will always evaluate to false, so the updateAccountOrder() method will never be invoked. This will create serious problems with the product ordering application since the user account and inventory databases will be updated but the order will not be updated. This can be easily corrected by updating the appropriate variable. (good code)
...
if (validAccountNumber(accountNumber)) { isValidAccount = true; }updateAccount(accountNumber, productNumber); ... Example 2 In the following example, the hasReadWriteAccess method uses bit masks and bit operators to determine if a user has read and write privileges for a particular process. The variable mask is defined as a bit mask from the BIT_READ and BIT_WRITE constants that have been defined. The variable mask is used within the predicate of the hasReadWriteAccess method to determine if the userMask input parameter has the read and write bits set. (bad code)
Example Language: C
#define BIT_READ 0x0001 // 00000001
#define BIT_WRITE 0x0010 // 00010000 unsigned int mask = BIT_READ & BIT_WRITE; /* intended to use "|" */ // using "&", mask = 00000000 // using "|", mask = 00010001 // determine if user has read and write access int hasReadWriteAccess(unsigned int userMask) { // if the userMask has read and write bits set
// then return 1 (true) if (userMask & mask) { return 1; }// otherwise return 0 (false) return 0; However the bit operator used to initialize the mask variable is the AND operator rather than the intended OR operator (CWE-480), this resulted in the variable mask being set to 0. As a result, the if statement will always evaluate to false and never get executed. The use of bit masks, bit operators and bitwise operations on variables can be difficult. If possible, try to use frameworks or libraries that provide appropriate functionality and abstract the implementation. Example 3 In the following example, the updateInventory method used within an e-business inventory application will update the inventory for a particular product. This method includes an if statement with an expression that will always evaluate to false. This is a common practice in C/C++ to introduce debugging statements quickly by simply changing the expression to evaluate to true and then removing those debugging statements by changing expression to evaluate to false. This is also a common practice for disabling features no longer needed. (bad code)
Example Language: C
int updateInventory(char* productNumber, int numberOfItems) {
int initCount = getProductCount(productNumber);
int updatedCount = initCount + numberOfItems; int updated = updateProductCount(updatedCount); // if statement for debugging purposes only if (1 == 0) { char productName[128]; productName = getProductName(productNumber); printf("product %s initially has %d items in inventory \n", productName, initCount); printf("adding %d items to inventory for %s \n", numberOfItems, productName); if (updated == 0) { printf("Inventory updated for product %s to %d items \n", productName, updatedCount); }else { printf("Inventory not updated for product: %s \n", productName); }return updated; Using this practice for introducing debugging statements or disabling features creates dead code that can cause problems during code maintenance and potentially introduce vulnerabilities. To avoid using expressions that evaluate to false for debugging purposes a logging API or debugging API should be used for the output of debugging messages.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |