CWE-695: Use of Low-Level Functionality
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses low-level functionality that is explicitly prohibited by the framework or specification under which the product is supposed to operate.
The use of low-level functionality can violate the specification in unexpected ways that effectively disable built-in protection mechanisms, introduce exploitable inconsistencies, or otherwise expose the functionality to attack.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
Example 1 The following code defines a class named Echo. The class declares one native method (defined below), which uses C to echo commands entered on the console back to the user. The following C code defines the native method implemented in the Echo class: (bad code)
Example Language: Java
class Echo {
public native void runEcho(); static { System.loadLibrary("echo"); public static void main(String[] args) { new Echo().runEcho(); (bad code)
Example Language: C
#include <jni.h>
#include "Echo.h"//the java class above compiled with javah #include <stdio.h> JNIEXPORT void JNICALL Java_Echo_runEcho(JNIEnv *env, jobject obj) { char buf[64]; }gets(buf); printf(buf); Because the example is implemented in Java, it may appear that it is immune to memory issues like buffer overflow vulnerabilities. Although Java does do a good job of making memory operations safe, this protection does not extend to vulnerabilities occurring in source code written in other languages that are accessed using the Java Native Interface. Despite the memory protections offered in Java, the C code in this example is vulnerable to a buffer overflow because it makes use of gets(), which does not check the length of its input. The Sun Java(TM) Tutorial provides the following description of JNI [See Reference]: The JNI framework lets your native method utilize Java objects in the same way that Java code uses these objects. A native method can create Java objects, including arrays and strings, and then inspect and use these objects to perform its tasks. A native method can also inspect and use objects created by Java application code. A native method can even update Java objects that it created or that were passed to it, and these updated objects are available to the Java application. Thus, both the native language side and the Java side of an application can create, update, and access Java objects and then share these objects between them. The vulnerability in the example above could easily be detected through a source code audit of the native method implementation. This may not be practical or possible depending on the availability of the C source code and the way the project is built, but in many cases it may suffice. However, the ability to share objects between Java and native methods expands the potential risk to much more insidious cases where improper data handling in Java may lead to unexpected vulnerabilities in native code or unsafe operations in native code corrupt data structures in Java. Vulnerabilities in native code accessed through a Java application are typically exploited in the same manner as they are in applications written in the native language. The only challenge to such an attack is for the attacker to identify that the Java application uses native code to perform certain operations. This can be accomplished in a variety of ways, including identifying specific behaviors that are often implemented with native code or by exploiting a system information exposure in the Java application that reveals its use of JNI [See Reference]. Example 2 The following example opens a socket to connect to a remote server. (bad code)
Example Language: Java
public void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
// Perform servlet tasks. ... // Open a socket to a remote server (bad). Socket sock = null; try { sock = new Socket(remoteHostname, 3000);
// Do something with the socket. ... ... }A Socket object is created directly within the Java servlet, which is a dangerous way to manage remote connections.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |