CWE

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors Common Weakness Scoring System
Common Weakness Risk Analysis Framework
Home > CWE List > CWE- Individual Dictionary Definition (2.6)  

Presentation Filter:

CWE-770: Allocation of Resources Without Limits or Throttling

 
Allocation of Resources Without Limits or Throttling
Weakness ID: 770 (Weakness Base)Status: Incomplete
+ Description

Description Summary

The software allocates a reusable resource or group of resources on behalf of an actor without imposing any restrictions on how many resources can be allocated, in violation of the intended security policy for that actor.
+ Time of Introduction
  • Architecture and Design
  • Implementation
  • Operation
  • System Configuration
+ Applicable Platforms

Languages

Language-Independent

+ Common Consequences
ScopeEffect
Availability

Technical Impact: DoS: resource consumption (CPU); DoS: resource consumption (memory); DoS: resource consumption (other)

When allocating resources without limits, an attacker could prevent other systems, applications, or processes from accessing the same type of resource.

+ Likelihood of Exploit

Medium to High

+ Detection Methods

Manual Static Analysis

Manual static analysis can be useful for finding this weakness, but it might not achieve desired code coverage within limited time constraints. If denial-of-service is not considered a significant risk, or if there is strong emphasis on consequences such as code execution, then manual analysis may not focus on this weakness at all.

Fuzzing

While fuzzing is typically geared toward finding low-level implementation bugs, it can inadvertently find uncontrolled resource allocation problems. This can occur when the fuzzer generates a large number of test cases but does not restart the targeted software in between test cases. If an individual test case produces a crash, but it does not do so reliably, then an inability to limit resource allocation may be the cause.

When the allocation is directly affected by numeric inputs, then fuzzing may produce indications of this weakness.

Effectiveness: Opportunistic

Automated Dynamic Analysis

Certain automated dynamic analysis techniques may be effective in producing side effects of uncontrolled resource allocation problems, especially with resources such as processes, memory, and connections. The technique may involve generating a large number of requests to the software within a short time frame. Manual analysis is likely required to interpret the results.

Automated Static Analysis

Specialized configuration or tuning may be required to train automated tools to recognize this weakness.

Automated static analysis typically has limited utility in recognizing unlimited allocation problems, except for the missing release of program-independent system resources such as files, sockets, and processes, or unchecked arguments to memory. For system resources, automated static analysis may be able to detect circumstances in which resources are not released after they have expired, or if too much of a resource is requested at once, as can occur with memory. Automated analysis of configuration files may be able to detect settings that do not specify a maximum value.

Automated static analysis tools will not be appropriate for detecting exhaustion of custom resources, such as an intended security policy in which a bulletin board user is only allowed to make a limited number of posts per day.

+ Demonstrative Examples

Example 1

This code allocates a socket and forks each time it receives a new connection.

(Bad Code)
Example Languages: C and C++ 
sock=socket(AF_INET, SOCK_STREAM, 0);
while (1) {
newsock=accept(sock, ...);
printf("A connection has been accepted\n");
pid = fork();
}

The program does not track how many connections have been made, and it does not limit the number of connections. Because forking is a relatively expensive operation, an attacker would be able to cause the system to run out of CPU, processes, or memory by making a large number of connections. Alternatively, an attacker could consume all available connections, preventing others from accessing the system remotely.

Example 2

In the following example a server socket connection is used to accept a request to store data on the local file system using a specified filename. The method openSocketConnection establishes a server socket to accept requests from a client. When a client establishes a connection to this service the getNextMessage method is first used to retrieve from the socket the name of the file to store the data, the openFileToWrite method will validate the filename and open a file to write to on the local file system. The getNextMessage is then used within a while loop to continuously read data from the socket and output the data to the file until there is no longer any data from the socket.

(Bad Code)
Example Languages: C and C++ 
int writeDataFromSocketToFile(char *host, int port)
{

char filename[FILENAME_SIZE];
char buffer[BUFFER_SIZE];
int socket = openSocketConnection(host, port);

if (socket < 0) {
printf("Unable to open socket connection");
return(FAIL);
}
if (getNextMessage(socket, filename, FILENAME_SIZE) > 0) {
if (openFileToWrite(filename) > 0) {
while (getNextMessage(socket, buffer, BUFFER_SIZE) > 0){
if (!(writeToFile(buffer) > 0))
break;
}
}
closeFile();
}
closeSocket(socket);
}

This example creates a situation where data can be dumped to a file on the local file system without any limits on the size of the file. This could potentially exhaust file or disk resources and/or limit other clients' ability to access the service.

Example 3

In the following example, the processMessage method receives a two dimensional character array containing the message to be processed. The two-dimensional character array contains the length of the message in the first character array and the message body in the second character array. The getMessageLength method retrieves the integer value of the length from the first character array. After validating that the message length is greater than zero, the body character array pointer points to the start of the second character array of the two-dimensional character array and memory is allocated for the new body character array.

(Bad Code)
Example Languages: C and C++ 
/* process message accepts a two-dimensional character array of the form [length][body] containing the message to be processed */
int processMessage(char **message)
{
char *body;

int length = getMessageLength(message[0]);

if (length > 0) {
body = &message[1][0];
processMessageBody(body);
return(SUCCESS);
}
else {
printf("Unable to process message; invalid message length");
return(FAIL);
}
}

This example creates a situation where the length of the body character array can be very large and will consume excessive memory, exhausting system resources. This can be avoided by restricting the length of the second character array with a maximum length check

Also, consider changing the type from 'int' to 'unsigned int', so that you are always guaranteed that the number is positive. This might not be possible if the protocol specifically requires allowing negative values, or if you cannot control the return value from getMessageLength(), but it could simplify the check to ensure the input is positive, and eliminate other errors such as signed-to-unsigned conversion errors (CWE-195) that may occur elsewhere in the code.

(Good Code)
Example Languages: C and C++ 
unsigned int length = getMessageLength(message[0]);
if ((length > 0) && (length < MAX_LENGTH)) {...}

Example 4

In the following example, a server object creates a server socket and accepts client connections to the socket. For every client connection to the socket a separate thread object is generated using the ClientSocketThread class that handles request made by the client through the socket.

(Bad Code)
Example Language: Java 
public void acceptConnections() {

try {
ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0;
boolean hasConnections = true;
while (hasConnections) {
Socket client = serverSocket.accept();
Thread t = new Thread(new ClientSocketThread(client));
t.setName(client.getInetAddress().getHostName() + ":" + counter++);
t.start();
}
serverSocket.close();

} catch (IOException ex) {...}
}

In this example there is no limit to the number of client connections and client threads that are created. Allowing an unlimited number of client connections and threads could potentially overwhelm the system and system resources.

The server should limit the number of client connections and the client threads that are created. This can be easily done by creating a thread pool object that limits the number of threads that are generated.

(Good Code)
Example Language: Java 
public static final int SERVER_PORT = 4444;
public static final int MAX_CONNECTIONS = 10;
...

public void acceptConnections() {

try {
ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0;
boolean hasConnections = true;
while (hasConnections) {
hasConnections = checkForMoreConnections();
Socket client = serverSocket.accept();
Thread t = new Thread(new ClientSocketThread(client));
t.setName(client.getInetAddress().getHostName() + ":" + counter++);
ExecutorService pool = Executors.newFixedThreadPool(MAX_CONNECTIONS);
pool.execute(t);
}
serverSocket.close();

} catch (IOException ex) {...}
}

Example 5

An unnamed web site allowed a user to purchase tickets for an event. A menu option allowed the user to purchase up to 10 tickets, but the back end did not restrict the actual number of tickets that could be purchased.

Example 5 References:

Rafal Los. "Real-Life Example of a 'Business Logic Defect' (Screen Shots!)". 2011. <http://h30501.www3.hp.com/t5/Following-the-White-Rabbit-A/Real-Life-Example-of-a-Business-Logic-Defect-Screen-Shots/ba-p/22581>.
+ Observed Examples
ReferenceDescription
CVE-2009-4017Language interpreter does not restrict the number of temporary files being created when handling a MIME request with a large number of parts..
CVE-2009-2726Driver does not use a maximum width when invoking sscanf style functions, causing stack consumption.
CVE-2009-2540Large integer value for a length property in an object causes a large amount of memory allocation.
CVE-2009-2054Product allows exhaustion of file descriptors when processing a large number of TCP packets.
CVE-2008-5180Communication product allows memory consumption with a large number of SIP requests, which cause many sessions to be created.
CVE-2008-1700Product allows attackers to cause a denial of service via a large number of directives, each of which opens a separate window.
CVE-2005-4650CMS does not restrict the number of searches that can occur simultaneously, leading to resource exhaustion.
+ Potential Mitigations

Phase: Requirements

Clearly specify the minimum and maximum expectations for capabilities, and dictate which behaviors are acceptable when resource allocation reaches limits.

Phase: Architecture and Design

Limit the amount of resources that are accessible to unprivileged users. Set per-user limits for resources. Allow the system administrator to define these limits. Be careful to avoid CWE-410.

Phase: Architecture and Design

Design throttling mechanisms into the system architecture. The best protection is to limit the amount of resources that an unauthorized user can cause to be expended. A strong authentication and access control model will help prevent such attacks from occurring in the first place, and it will help the administrator to identify who is committing the abuse. The login application should be protected against DoS attacks as much as possible. Limiting the database access, perhaps by caching result sets, can help minimize the resources expended. To further limit the potential for a DoS attack, consider tracking the rate of requests received from users and blocking requests that exceed a defined rate threshold.

Phase: Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, blacklists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

This will only be applicable to cases where user input can influence the size or frequency of resource allocations.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.

Phase: Architecture and Design

Mitigation of resource exhaustion attacks requires that the target system either:

  • recognizes the attack and denies that user further access for a given amount of time, typically by using increasing time delays

  • uniformly throttles all requests in order to make it more difficult to consume resources more quickly than they can again be freed.

The first of these solutions is an issue in itself though, since it may allow attackers to prevent the use of the system by a particular valid user. If the attacker impersonates the valid user, he may be able to prevent the user from accessing the server in question.

The second solution can be difficult to effectively institute -- and even when properly done, it does not provide a full solution. It simply requires more resources on the part of the attacker.

Phase: Architecture and Design

Ensure that protocols have specific limits of scale placed on them.

Phases: Architecture and Design; Implementation

If the program must fail, ensure that it fails gracefully (fails closed). There may be a temptation to simply let the program fail poorly in cases such as low memory conditions, but an attacker may be able to assert control before the software has fully exited. Alternately, an uncontrolled failure could cause cascading problems with other downstream components; for example, the program could send a signal to a downstream process so the process immediately knows that a problem has occurred and has a better chance of recovery.

Ensure that all failures in resource allocation place the system into a safe posture.

Phases: Operation; Architecture and Design

Strategy: Limit Resource Consumption

Use resource-limiting settings provided by the operating system or environment. For example, when managing system resources in POSIX, setrlimit() can be used to set limits for certain types of resources, and getrlimit() can determine how many resources are available. However, these functions are not available on all operating systems.

When the current levels get close to the maximum that is defined for the application (see CWE-770), then limit the allocation of further resources to privileged users; alternately, begin releasing resources for less-privileged users. While this mitigation may protect the system from attack, it will not necessarily stop attackers from adversely impacting other users.

Ensure that the application performs the appropriate error checks and error handling in case resources become unavailable (CWE-703).

+ Relationships
NatureTypeIDNameView(s) this relationship pertains toView(s)
ChildOfWeakness BaseWeakness Base400Uncontrolled Resource Consumption ('Resource Exhaustion')
Development Concepts (primary)699
Research Concepts1000
ChildOfWeakness BaseWeakness Base665Improper Initialization
Research Concepts (primary)1000
ChildOfCategoryCategory8022010 Top 25 - Risky Resource Management
Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors (primary)800
ChildOfCategoryCategory840Business Logic Errors
Development Concepts699
ChildOfCategoryCategory857CERT Java Secure Coding Section 12 - Input Output (FIO)
Weaknesses Addressed by the CERT Java Secure Coding Standard844
ChildOfCategoryCategory858CERT Java Secure Coding Section 13 - Serialization (SER)
Weaknesses Addressed by the CERT Java Secure Coding Standard844
ChildOfCategoryCategory861CERT Java Secure Coding Section 49 - Miscellaneous (MSC)
Weaknesses Addressed by the CERT Java Secure Coding Standard (primary)844
ChildOfCategoryCategory8672011 Top 25 - Weaknesses On the Cusp
Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors (primary)900
ChildOfCategoryCategory876CERT C++ Secure Coding Section 08 - Memory Management (MEM)
Weaknesses Addressed by the CERT C++ Secure Coding Standard (primary)868
ChildOfCategoryCategory877CERT C++ Secure Coding Section 09 - Input Output (FIO)
Weaknesses Addressed by the CERT C++ Secure Coding Standard868
ChildOfCategoryCategory892SFP Cluster: Resource Management
Software Fault Pattern (SFP) Clusters (primary)888
ParentOfWeakness VariantWeakness Variant774Allocation of File Descriptors or Handles Without Limits or Throttling
Research Concepts (primary)1000
ParentOfWeakness VariantWeakness Variant789Uncontrolled Memory Allocation
Development Concepts (primary)699
Research Concepts (primary)1000
MemberOfViewView884CWE Cross-section
CWE Cross-section (primary)884
+ Theoretical Notes

Vulnerability theory is largely about how behaviors and resources interact. "Resource exhaustion" can be regarded as either a consequence or an attack, depending on the perspective. This entry is an attempt to reflect one of the underlying weaknesses that enable these attacks (or consequences) to take place.

+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
CERT Java Secure CodingFIO04-JClose resources when they are no longer needed
CERT Java Secure CodingSER12-JAvoid memory and resource leaks during serialization
CERT Java Secure CodingMSC05-JDo not exhaust heap space
CERT C++ Secure CodingMEM12-CPPDo not assume infinite heap space
CERT C++ Secure CodingFIO42-CPPEnsure files are properly closed when they are no longer needed
+ References
Joao Antunes, Nuno Ferreira Neves and Paulo Verissimo. "Detection and Prediction of Resource-Exhaustion Vulnerabilities". Proceedings of the IEEE International Symposium on Software Reliability Engineering (ISSRE). November 2008. <http://homepages.di.fc.ul.pt/~nuno/PAPERS/ISSRE08.pdf>.
D.J. Bernstein. "Resource exhaustion". <http://cr.yp.to/docs/resources.html>.
Pascal Meunier. "Resource exhaustion". Secure Programming Educational Material. 2004. <http://homes.cerias.purdue.edu/~pmeunier/secprog/sanitized/class1/6.resource%20exhaustion.ppt>.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 17, "Protecting Against Denial of Service Attacks" Page 517. 2nd Edition. Microsoft. 2002.
Frank Kim. "Top 25 Series - Rank 22 - Allocation of Resources Without Limits or Throttling". SANS Software Security Institute. 2010-03-23. <http://blogs.sans.org/appsecstreetfighter/2010/03/23/top-25-series-rank-22-allocation-of-resources-without-limits-or-throttling/>.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 10, "Resource Limits", Page 574.. 1st Edition. Addison Wesley. 2006.
+ Maintenance Notes

"Resource exhaustion" (CWE-400) is currently treated as a weakness, although it is more like a category of weaknesses that all have the same type of consequence. While this entry treats CWE-400 as a parent in view 1000, the relationship is probably more appropriately described as a chain.

+ Content History
Submissions
Submission DateSubmitterOrganizationSource
2009-05-13Internal CWE Team
Modifications
Modification DateModifierOrganizationSource
2009-07-27CWE Content TeamMITREInternal
updated Related_Attack_Patterns
2009-10-29CWE Content TeamMITREInternal
updated Relationships
2009-12-28CWE Content TeamMITREInternal
updated Applicable_Platforms, Demonstrative_Examples, Detection_Factors, Observed_Examples, References, Time_of_Introduction
2010-02-16CWE Content TeamMITREInternal
updated Common_Consequences, Detection_Factors, Potential_Mitigations, References, Related_Attack_Patterns, Relationships
2010-04-05CWE Content TeamMITREInternal
updated Common_Consequences, Demonstrative_Examples, Related_Attack_Patterns
2010-06-21CWE Content TeamMITREInternal
updated Common_Consequences, Potential_Mitigations, References
2010-09-27CWE Content TeamMITREInternal
updated Demonstrative_Examples, Potential_Mitigations
2011-03-29CWE Content TeamMITREInternal
updated Demonstrative_Examples, Detection_Factors, Relationships
2011-06-01CWE Content TeamMITREInternal
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-06-27CWE Content TeamMITREInternal
updated Relationships
2011-09-13CWE Content TeamMITREInternal
updated Relationships, Taxonomy_Mappings
2012-05-11CWE Content TeamMITREInternal
updated Demonstrative_Examples, References, Related_Attack_Patterns, Relationships, Taxonomy_Mappings
2012-10-30CWE Content TeamMITREInternal
updated Potential_Mitigations
2014-02-18CWE Content TeamMITREInternal
updated Related_Attack_Patterns
Page Last Updated: February 18, 2014