A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).
Alternate Terms
Stack Overflow:
"Stack Overflow" is often used to mean the same thing as stack-based buffer overflow, however it is also used on occasion to mean stack exhaustion, usually a result from an excessively recursive function call. Due to the ambiguity of the term, use of stack overflow to describe either circumstance is discouraged.
Relationships
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
There are generally several security-critical data on an execution stack that can lead to arbitrary code execution. The most prominent is the stored return address, the memory address at which execution should continue once the current function is finished executing. The attacker can overwrite this value with some memory address to which the attacker also has write access, into which they place arbitrary code to be run with the full privileges of the vulnerable program. Alternately, the attacker can supply the address of an important call, for instance the POSIX system() call, leaving arguments to the call on the stack. This is often called a return into libc exploit, since the attacker generally forces the program to jump at return time into an interesting routine in the C standard library (libc). Other important data commonly on the stack include the stack pointer and frame pointer, two values that indicate offsets for computing memory addresses. Modifying those values can often be leveraged into a "write-what-where" condition.
Modes Of Introduction
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase
Note
Architecture and Design
Implementation
Applicable Platforms
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages
C (Undetermined Prevalence)
C++ (Undetermined Prevalence)
Common Consequences
This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are possible, including putting the program into an infinite loop.
Integrity Confidentiality Availability Access Control
This function allocates a buffer of 64 bytes to store the hostname, however there is no guarantee that the hostname will not be larger than 64 bytes. If an attacker specifies an address which resolves to a very large hostname, then the function may overwrite sensitive data or even relinquish control flow to the attacker.
Note that this example also contains an unchecked return value (CWE-252) that can lead to a NULL pointer dereference (CWE-476).
Potential Mitigations
Phase: Build and Compilation
Strategy: Compilation or Build Hardening
Run or compile the software using features or extensions that automatically provide a protection mechanism that mitigates or eliminates buffer overflows.
For example, certain compilers and extensions provide automatic buffer overflow detection mechanisms that are built into the compiled code. Examples include the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.
Effectiveness: Defense in Depth
Note: This is not necessarily a complete solution, since these mechanisms can only detect certain types of overflows. In addition, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Architecture and Design
Use an abstraction library to abstract away risky APIs. Not a complete solution.
Phase: Build and Compilation
Compiler-based canary mechanisms such as StackGuard, ProPolice and the Microsoft Visual Studio /GS flag. Unless this provides automatic bounds checking, it is not a complete solution.
Phase: Implementation
Implement and perform bounds checking on input.
Phase: Implementation
Do not use dangerous functions such as gets. Use safer, equivalent functions which check for boundary errors.
Phase: Operation
Use OS-level preventative functionality, such as ASLR. This is not a complete solution.
Weakness Ordinalities
Ordinality
Description
Primary
(where the weakness exists independent of other weaknesses)
Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
Stack-based buffer overflows can instantiate in return address overwrites, stack pointer overwrites or frame pointer overwrites. They can also be considered function pointer overwrites, array indexer overwrites or write-what-where condition, etc.
Taxonomy Mappings
Mapped Taxonomy Name
Node ID
Fit
Mapped Node Name
CLASP
Stack overflow
Software Fault Patterns
SFP8
Faulty Buffer Access
CERT C Secure Coding
ARR38-C
Imprecise
Guarantee that library functions do not form invalid pointers
CERT C Secure Coding
STR31-C
CWE More Specific
Guarantee that storage for strings has sufficient space for character data and the null terminator
[REF-44] Michael Howard, David LeBlanc
and John Viega. "24 Deadly Sins of Software Security". "Sin 5: Buffer Overruns." Page 89. McGraw-Hill. 2010.
[REF-62] Mark Dowd, John McDonald
and Justin Schuh. "The Art of Software Security Assessment". Chapter 3, "Nonexecutable Stack", Page 76. 1st Edition. Addison Wesley. 2006.
[REF-62] Mark Dowd, John McDonald
and Justin Schuh. "The Art of Software Security Assessment". Chapter 5, "Protection Mechanisms", Page 189. 1st Edition. Addison Wesley. 2006.