CWE-788: Access of Memory Location After End of Buffer
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product reads or writes to a buffer using an index or pointer that references a memory location after the end of the buffer.
This typically occurs when a pointer or its index is incremented to a position after the buffer; or when pointer arithmetic results in a position after the buffer.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
Example 1 This example takes an IP address from a user, verifies that it is well formed and then looks up the hostname and copies it into a buffer. (bad code)
Example Language: C
void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr; char hostname[64]; in_addr_t inet_addr(const char *cp); /*routine that ensures user_supplied_addr is in the right format for conversion */ validate_addr_form(user_supplied_addr); addr = inet_addr(user_supplied_addr); hp = gethostbyaddr( addr, sizeof(struct in_addr), AF_INET); strcpy(hostname, hp->h_name); This function allocates a buffer of 64 bytes to store the hostname, however there is no guarantee that the hostname will not be larger than 64 bytes. If an attacker specifies an address which resolves to a very large hostname, then the function may overwrite sensitive data or even relinquish control flow to the attacker. Note that this example also contains an unchecked return value (CWE-252) that can lead to a NULL pointer dereference (CWE-476). Example 2 In the following example, it is possible to request that memcpy move a much larger segment of memory than assumed: (bad code)
Example Language: C
int returnChunkSize(void *) {
/* if chunk info is valid, return the size of usable memory, * else, return -1 to indicate an error */ ... int main() { ... }memcpy(destBuf, srcBuf, (returnChunkSize(destBuf)-1)); ... If returnChunkSize() happens to encounter an error it will return -1. Notice that the return value is not checked before the memcpy operation (CWE-252), so -1 can be passed as the size argument to memcpy() (CWE-805). Because memcpy() assumes that the value is unsigned, it will be interpreted as MAXINT-1 (CWE-195), and therefore will copy far more memory than is likely available to the destination buffer (CWE-787, CWE-788). Example 3 This example applies an encoding procedure to an input string and stores it into a buffer. (bad code)
Example Language: C
char * copy_input(char *user_supplied_string){
int i, dst_index;
char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE); if ( MAX_SIZE <= strlen(user_supplied_string) ){ die("user string too long, die evil hacker!"); }dst_index = 0; for ( i = 0; i < strlen(user_supplied_string); i++ ){ if( '&' == user_supplied_string[i] ){
dst_buf[dst_index++] = '&'; }dst_buf[dst_index++] = 'a'; dst_buf[dst_index++] = 'm'; dst_buf[dst_index++] = 'p'; dst_buf[dst_index++] = ';'; else if ('<' == user_supplied_string[i] ){ /* encode to < */ else dst_buf[dst_index++] = user_supplied_string[i]; return dst_buf; The programmer attempts to encode the ampersand character in the user-controlled string, however the length of the string is validated before the encoding procedure is applied. Furthermore, the programmer assumes encoding expansion will only expand a given character by a factor of 4, while the encoding of the ampersand expands by 5. As a result, when the encoding procedure expands the string it is possible to overflow the destination buffer if the attacker provides a string of many ampersands. Example 4 In the following C/C++ example the method processMessageFromSocket() will get a message from a socket, placed into a buffer, and will parse the contents of the buffer into a structure that contains the message length and the message body. A for loop is used to copy the message body into a local character string which will be passed to another method for processing. (bad code)
Example Language: C
int processMessageFromSocket(int socket) {
int success;
char buffer[BUFFER_SIZE]; char message[MESSAGE_SIZE]; // get message from socket and store into buffer //Ignoring possibliity that buffer > BUFFER_SIZE if (getMessage(socket, buffer, BUFFER_SIZE) > 0) { // place contents of the buffer into message structure ExMessage *msg = recastBuffer(buffer); // copy message body into string for processing int index; for (index = 0; index < msg->msgLength; index++) { message[index] = msg->msgBody[index]; }message[index] = '\0'; // process message success = processMessage(message); return success; However, the message length variable from the structure is used as the condition for ending the for loop without validating that the message length variable accurately reflects the length of the message body (CWE-606). This can result in a buffer over-read (CWE-125) by reading from memory beyond the bounds of the buffer if the message length variable indicates a length that is longer than the size of a message body (CWE-130).
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |