CWE-1244: Internal Asset Exposed to Unsafe Debug Access Level or State
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses physical debug or test
interfaces with support for multiple access levels, but it
assigns the wrong debug access level to an internal asset,
providing unintended access to the asset from untrusted debug
agents.
Debug authorization can have multiple levels of access, defined such that different system internal assets are accessible based on the current authorized debug level. Other than debugger authentication (e.g., using passwords or challenges), the authorization can also be based on the system state or boot stage. For example, full system debug access might only be allowed early in boot after a system reset to ensure that previous session data is not accessible to the authenticated debugger. If this protection mechanism does not ensure that internal assets have the correct debug access level during each boot stage or change in system state, an attacker could obtain sensitive information from the internal asset using a debugger. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: System on Chip (Undetermined Prevalence) Example 1 The JTAG interface is used to perform debugging and provide CPU core access for developers. JTAG-access protection is implemented as part of the JTAG_SHIELD bit in the hw_digctl_ctrl register. This register has no default value at power up and is set only after the system boots from ROM and control is transferred to the user software. (bad code)
Example Language: Other
This means that since the end user has access to JTAG at system reset and during ROM code execution before control is transferred to user software, a JTAG user can modify the boot flow and subsequently disclose all CPU information, including data-encryption keys. (informative)
The default value of this register bit should be set to 1 to prevent the JTAG from being enabled at system reset.
Example 2 The example code below is taken from the CVA6 processor core of the HACK@DAC'21 buggy OpenPiton SoC. Debug access allows users to access internal hardware registers that are otherwise not exposed for user access or restricted access through access control protocols. Hence, requests to enter debug mode are checked and authorized only if the processor has sufficient privileges. In addition, debug accesses are also locked behind password checkers. Thus, the processor enters debug mode only when the privilege level requirement is met, and the correct debug password is provided. The following code [REF-1377] illustrates an instance of a vulnerable implementation of debug mode. The core correctly checks if the debug requests have sufficient privileges and enables the debug_mode_d and debug_mode_q signals. It also correctly checks for debug password and enables umode_i signal. (bad code)
Example Language: Verilog
module csr_regfile #(
...
// check that we actually want to enter debug depending on the privilege level we are currently in
...unique case (priv_lvl_o)
riscv::PRIV_LVL_M: begin
debug_mode_d = dcsr_q.ebreakm;
riscv::PRIV_LVL_U: begin
debug_mode_d = dcsr_q.ebreaku;
assign priv_lvl_o = (debug_mode_q || umode_i) ? riscv::PRIV_LVL_M : priv_lvl_q;
...
debug_mode_q <= debug_mode_d;
...However, it grants debug access and changes the privilege level, priv_lvl_o, even when one of the two checks is satisfied and the other is not. Because of this, debug access can be granted by simply requesting with sufficient privileges (i.e., debug_mode_q is enabled) and failing the password check (i.e., umode_i is disabled). This allows an attacker to bypass the debug password checking and gain debug access to the core, compromising the security of the processor. A fix to this issue is to only change the privilege level of the processor when both checks are satisfied, i.e., the request has enough privileges (i.e., debug_mode_q is enabled) and the password checking is successful (i.e., umode_i is enabled) [REF-1378]. (good code)
Example Language: Verilog
module csr_regfile #(
...
// check that we actually want to enter debug depending on the privilege level we are currently in
...unique case (priv_lvl_o)
riscv::PRIV_LVL_M: begin
debug_mode_d = dcsr_q.ebreakm;
riscv::PRIV_LVL_U: begin
debug_mode_d = dcsr_q.ebreaku;
assign priv_lvl_o = (debug_mode_q && umode_i) ? riscv::PRIV_LVL_M : priv_lvl_q;
...
debug_mode_q <= debug_mode_d;
...
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
CWE-1191 and CWE-1244 both involve physical debug access,
but the weaknesses are different. CWE-1191 is effectively
about missing authorization for a debug interface,
i.e. JTAG. CWE-1244 is about providing internal assets with
the wrong debug access level, exposing the asset to
untrusted debug agents.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |