CWE-1191: On-Chip Debug and Test Interface With Improper Access Control
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe chip does not implement or does not correctly perform access control to check whether users are authorized to access internal registers and test modes through the physical debug/test interface.
A device's internal information may be accessed through a scan chain of interconnected internal registers, usually through a JTAG interface. The JTAG interface provides access to these registers in a serial fashion in the form of a scan chain for the purposes of debugging programs running on a device. Since almost all information contained within a device may be accessed over this interface, device manufacturers typically insert some form of authentication and authorization to prevent unintended use of this sensitive information. This mechanism is implemented in addition to on-chip protections that are already present. If authorization, authentication, or some other form of access control is not implemented or not implemented correctly, a user may be able to bypass on-chip protection mechanisms through the debug interface. Sometimes, designers choose not to expose the debug pins on the motherboard. Instead, they choose to hide these pins in the intermediate layers of the board. This is primarily done to work around the lack of debug authorization inside the chip. In such a scenario (without debug authorization), when the debug interface is exposed, chip internals are accessible to an attacker. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Example 1 A home, WiFi-router device implements a login prompt which prevents an unauthorized user from issuing any commands on the device until appropriate credentials are provided. The credentials are protected on the device and are checked for strength against attack. (bad code)
Example Language: Other
If the JTAG interface on this device is not hidden by the manufacturer, the interface may be identified using tools such as JTAGulator. If it is hidden but not disabled, it can be exposed by physically wiring to the board. By issuing a "halt" command before the OS starts, the unauthorized user pauses the watchdog timer and prevents the router from restarting (once the watchdog timer would have expired). Having paused the router, an unauthorized user is able to execute code and inspect and modify data in the device, even extracting all of the router's firmware. This allows the user to examine the router and potentially exploit it. JTAG is useful to chip and device manufacturers during design, testing, and production and is included in nearly every product. Without proper authentication and authorization, the interface may allow tampering with a product. (good code)
Example Language: Other
In order to prevent exposing the debugging interface, manufacturers might try to obfuscate the JTAG interface or blow device internal fuses to disable the JTAG interface. Adding authentication and authorization to this interface makes use by unauthorized individuals much more difficult.
Example 2 The following example code is a snippet from the JTAG wrapper module in the RISC-V debug module of the HACK@DAC'21 Openpiton SoC [REF-1355]. To make sure that the JTAG is accessed securely, the developers have included a primary authentication mechanism based on a password. The developers employed a Finite State Machine (FSM) to implement this authentication. When a user intends to read from or write to the JTAG module, they must input a password. In the subsequent state of the FSM module, the entered password undergoes Hash-based Message Authentication Code (HMAC) calculation using an internal HMAC submodule. Once the HMAC for the entered password is computed by the HMAC submodule, the FSM transitions to the next state, where it compares the computed HMAC with the expected HMAC for the password. If the computed HMAC matches the expected HMAC, the FSM grants the user permission to perform read or write operations on the JTAG module. [REF-1352] (bad code)
Example Language: Verilog
...
PassChkValid: begin
...if(hashValid) begin
endif(exp_hash == pass_hash) begin
end else begin
pass_check = 1'b1;
end else begin
pass_check = 1'b0;
endstate_d = Idle; state_d = PassChkValid;
endHowever, in the given vulnerable part of the code, the JTAG module has not defined a limitation for several continuous wrong password attempts. This omission poses a significant security risk, allowing attackers to carry out brute-force attacks without restrictions. Without a limitation on wrong password attempts, an attacker can repeatedly guess different passwords until they gain unauthorized access to the JTAG module. This leads to various malicious activities, such as unauthorized read from or write to debug module interface. To mitigate the mentioned vulnerability, developers need to implement a restriction on the number of consecutive incorrect password attempts allowed by the JTAG module, which can achieve by incorporating a mechanism that temporarily locks the module after a certain number of failed attempts.[REF-1353][REF-1354] (good code)
Example Language: Verilog
...
case (state_q) Idle: begin
... else if ( (dm::dtm_op_e'(dmi.op) == dm::DTM_PASS) && (miss_pass_check_cnt_q != 2'b11) )
...begin state_d = Write;
endpass_mode = 1'b1; end ... PassChkValid: begin
...if(hashValid) begin
endif(exp_hash == pass_hash) begin
end else begin
pass_check = 1'b1;
end else begin
pass_check = 1'b0;
endmiss_pass_check_cnt_d = miss_pass_check_cnt_q + 1 state_d = Idle; state_d = PassChkValid;
endExample 3 The example code below is taken from the JTAG access control mechanism of the HACK@DAC'21 buggy OpenPiton SoC [REF-1364]. Access to JTAG allows users to access sensitive information in the system. Hence, access to JTAG is controlled using cryptographic authentication of the users. In this example (see the vulnerable code source), the password checker uses HMAC-SHA256 for authentication. It takes a 512-bit secret message from the user, hashes it using HMAC, and compares its output with the expected output to determine the authenticity of the user. (bad code)
Example Language: Verilog
...
logic [31-1:0] data_d, data_q; ... logic [512-1:0] pass_data; ...
Write: begin
...
...
end
if (pass_mode) begin
pass_data = { {60{8'h00}}, data_d};
...state_d = PassChk; pass_mode = 1'b0; The vulnerable code shows an incorrect implementation of the HMAC authentication where it only uses the least significant 32 bits of the secret message for the authentication (the remaining 480 bits are hard coded as zeros). As a result, the system is susceptible to brute-force attacks on the access control mechanism of JTAG, where the attacker only needs to determine 32 bits of the secret message instead of 512 bits. To mitigate this issue, remove the zero padding and use all 512 bits of the secret message for HMAC authentication [REF-1365]. (good code)
Example Language: Verilog
...
logic [512-1:0] data_d, data_q; ... logic [512-1:0] pass_data; ...
Write: begin
...
...
end
if (pass_mode) begin
pass_data = data_d;
...state_d = PassChk; pass_mode = 1'b0;
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
CWE-1191 and CWE-1244 both involve physical debug access,
but the weaknesses are different. CWE-1191 is effectively
about missing authorization for a debug interface,
i.e. JTAG. CWE-1244 is about providing internal assets with
the wrong debug access level, exposing the asset to
untrusted debug agents.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |