CWE

Common Weakness Enumeration

A Community-Developed List of Software & Hardware Weakness Types

2021 CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.8)  
ID

CWE-1300: Improper Protection of Physical Side Channels

Weakness ID: 1300
Abstraction: Base
Structure: Simple
Presentation Filter:
+ Description
The device does not contain sufficient protection mechanisms to prevent physical side channels from exposing sensitive information due to patterns in physically observable phenomena such as variations in power consumption, electromagnetic emissions (EME), or acoustic emissions.
+ Extended Description

An adversary could monitor and measure physical phenomena to detect patterns and make inferences, even if it is not possible to extract the information in the digital domain.

Physical side channels have been well-studied for decades in the context of breaking implementations of cryptographic algorithms or other attacks against security features. These side channels may be easily observed by an adversary with physical access to the device, or using a tool that is in close proximity. If the adversary can monitor hardware operation and correlate its data processing with power, EME, and acoustic measurements, the adversary might be able to recover of secret keys and data.

+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.203Observable Discrepancy
ParentOfVariantVariant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.1255Comparison Logic is Vulnerable to Power Side-Channel Attacks
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Hardware Design" (CWE-1194)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1208Cross-Cutting Problems
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1388Physical Access Issues and Concerns
ChildOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.203Observable Discrepancy
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Language-Independent (Undetermined Prevalence)

Operating Systems

Class: OS-Independent (Undetermined Prevalence)

Architectures

Class: Architecture-Independent (Undetermined Prevalence)

Technologies

Class: Technology-Independent (Undetermined Prevalence)

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Confidentiality

Technical Impact: Read Memory; Read Application Data

+ Demonstrative Examples

Example 1

Consider a device that checks a passcode to unlock the screen.

(bad code)
 
As each character of the PIN number is entered, a correct character exhibits one current pulse shape while an incorrect character exhibits a different current pulse shape.

PIN numbers used to unlock a cell phone should not exhibit any characteristics about themselves. This creates a side channel. An attacker could monitor the pulses using an oscilloscope or other method. Once the first character is correctly guessed (based on the oscilloscope readings), they can then move to the next character, which is much more efficient than the brute force method of guessing every possible sequence of characters.

(good code)
 
Rather than comparing each character to the correct PIN value as it is entered, the device could accumulate the PIN in a register, and do the comparison all at once at the end. Alternatively, the components for the comparison could be modified so that the current pulse shape is the same regardless of the correctness of the entered character.

Example 2

Consider the device vulnerability CVE-2021-3011, which affects certain microcontrollers [REF-1221]. The Google Titan Security Key is used for two-factor authentication using cryptographic algorithms. The device uses an internal secret key for this purpose and exchanges information based on this key for the authentication. If this internal secret key and the encryption algorithm were known to an adversary, the key function could be duplicated, allowing the adversary to masquerade as the legitimate user.

(bad code)
 
The local method of extracting the secret key consists of plugging the key into a USB port and using electromagnetic (EM) sniffing tools and computers.
(good code)
 
Several solutions could have been considered by the manufacturer. For example, the manufacturer could shield the circuitry in the key or add randomized delays, indirect calculations with random values involved, or randomly ordered calculations to make extraction much more difficult or a combination of these techniques.
+ Observed Examples
ReferenceDescription
electromagnetic-wave side-channel in security-related microcontrollers allows extraction of private key
message encryption software uses certain instruction sequences that allows RSA key extraction using a chosen-ciphertext attack and acoustic cryptanalysis
virtualization product allows recovery of AES keys from the guest OS using a side channel attack against a power/energy monitoring interface.
power consumption varies based on number of pixels being illuminated in a display, allowing reading of secrets such as the PIN by using the USB interface to measure power consumption
+ Potential Mitigations

Phase: Architecture and Design

Apply blinding or masking techniques to implementations of cryptographic algorithms.

Phase: Implementation

Add shielding or tamper-resistant protections to the device to increase the difficulty of obtaining measurements of the side-channel.
+ Weakness Ordinalities
OrdinalityDescription
Primary
(where the weakness exists independent of other weaknesses)
Resultant
(where the weakness is typically related to the presence of some other weaknesses)
+ Detection Methods

Manual Analysis

Perform a set of leakage detection tests such as the procedure outlined in the Test Vector Leakage Assessment (TVLA) test requirements for AES [REF-1230]. TVLA is the basis for the ISO standard 17825 [REF-1229]. A separate methodology is provided by [REF-1228]. Note that sole reliance on this method might not yield expected results [REF-1239] [REF-1240].

Effectiveness: Moderate

Manual Analysis

Post-silicon, perform full side-channel attacks (penetration testing) covering as many known leakage models as possible against test code.

Effectiveness: Moderate

Manual Analysis

Pre-silicon - while the aforementioned TVLA methods can be performed post-silicon, models of device power consumption or other physical emanations can be built from information present at various stages of the hardware design process before fabrication. TVLA or known side-channel attacks can be applied to these simulated traces and countermeasures applied before tape-out. Academic research in this field includes [REF-1231] [REF-1232] [REF-1233].

Effectiveness: Moderate

+ Functional Areas
  • Power
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries).1343Weaknesses in the 2021 CWE Most Important Hardware Weaknesses List
+ References
[REF-1117] Paul Kocher, Joshua Jaffe and Benjamin Jun. "Introduction to differential power analysis and related attacks". 1998. <https://www.rambus.com/wp-content/uploads/2015/08/DPATechInfo.pdf>.
[REF-1118] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao and Pankaj Rohatgi. "The EM Side-Channel(s)". 2007-08-24. <https://link.springer.com/content/pdf/10.1007%2F3-540-36400-5_4.pdf>.
[REF-1119] Daniel Genkin, Adi Shamir and Eran Tromer. "RSA key extraction via low-bandwidth acoustic cryptanalysis". 2014-06-13. <https://www.iacr.org/archive/crypto2014/86160149/86160149.pdf>.
[REF-1120] Colin O’Flynn. "Power Analysis for Cheapskates". 2013-01-24. <https://media.blackhat.com/eu-13/briefings/OFlynn/bh-eu-13-for-cheapstakes-oflynn-wp.pdf>.
[REF-1055] Peter Gutmann. "Data Remanence in Semiconductor Devices". 10th USENIX Security Symposium. 2001-08. <https://www.usenix.org/legacy/events/sec01/full_papers/gutmann/gutmann.pdf>.
[REF-1218] Graham Cluley. "This Black Box Can Brute Force Crack iPhone PIN Passcodes". The Mac Security Blog. 2015-03-16. <https://www.intego.com/mac-security-blog/iphone-pin-pass-code/>.
[REF-1221] Victor Lomne and Thomas Roche. "A Side Journey to Titan". 2021-01-07. <https://ninjalab.io/wp-content/uploads/2021/01/a_side_journey_to_titan.pdf>.
[REF-1228] Gilbert Goodwill, Benjamin Jun, Josh Jaffe and Pankaj Rohatgi. "A testing methodology for side-channel resistance validation". 2011. <https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf>.
[REF-1229] ISO/IEC. "ISO/IEC 17825:2016: Testing methods for the mitigation of non-invasive attack classes against cryptographic modules". 2016. <https://www.iso.org/standard/60612.html>.
[REF-1230] Cryptography Research Inc.. "Test Vector Leakage Assessment (TVLA) Derived Test Requirements (DTR) with AES". 2015-08. <https://www.rambus.com/wp-content/uploads/2015/08/TVLA-DTR-with-AES.pdf>.
[REF-1231] Danilo Šijaˇci´c, Josep Balasch, Bohan Yang, Santosh Ghosh and Ingrid Verbauwhede. "Towards efficient and automated side-channel evaluations at design time". pp. 305-319. Journal of Cryptographic Engineering, 10(4). 2020. <https://www.esat.kuleuven.be/cosic/publications/article-3204.pdf>.
[REF-1232] Amit Kumar, Cody Scarborough, Ali Yilmaz and Michael Orshansky. "Efficient simulation of EM side-channel attack resilience". pp. 123-130. IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 2017. <https://dl.acm.org/doi/pdf/10.5555/3199700.3199717>.
[REF-1233] Yuan Yao, Tuna Tufan, Tarun Kathuria, Baris Ege, Ulkuhan Guler and Patrick Schaumont. "Pre-silicon Architecture Correlation Analysis (PACA): Identifying and Mitigating the Source of Side-channel Leakage at Gate-level". IACR Cryptology ePrint Archive. 2021-04-21. <https://eprint.iacr.org/2021/530.pdf>.
[REF-1234] Elisabeth Oswald, Thomas Popp and Stefan Mangard. "Power Analysis Attacks - Revealing the Secrets of Smart Cards". 2007. <https://www.springer.com/gp/book/9780387308579>.
[REF-1235] David Oswald, Bastian Richter and Christof Paar. "Side-Channel Attacks on the Yubikey 2 One-Time Password Generator". 2013-06-14. <https://www.emsec.ruhr-uni-bochum.de/media/crypto/veroeffentlichungen/2014/02/04/paper_yubikey_sca.pdf>.
[REF-1239] François-Xavier Standaert. "How (not) to Use Welch's T-test in Side-Channel Security Evaluations". IACR Cryptology ePrint Archive. 2017-02-15. <https://eprint.iacr.org/2017/138.pdf>.
[REF-1240] Carolyn Whitnall and Elisabeth Oswald. "A Critical Analysis of ISO 17825 ('Testing methods for the mitigation of non-invasive attack classes against cryptographic modules')". IACR Cryptology ePrint Archive. 2019-09-10. <https://eprint.iacr.org/2019/1013.pdf>.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2020-05-29Nicole FernTortuga Logic
+ Contributions
Contribution DateContributorOrganization
2021-10-11Anders Nordstrom, Alric AlthoffTortuga Logic
Provided detection methods, observed examples, and references
2021-10-13Nicole FernRiscure
Provided detection methods, observed examples, and references
+ Modifications
Modification DateModifierOrganization
2021-03-15CWE Content TeamMITRE
updated Functional_Areas, Maintenance_Notes
2021-07-20CWE Content TeamMITRE
updated Related_Attack_Patterns
2021-10-28CWE Content TeamMITRE
updated Demonstrative_Examples, Description, Detection_Factors, Maintenance_Notes, Name, Observed_Examples, References, Relationships, Weakness_Ordinalities
2022-06-28CWE Content TeamMITRE
updated Relationships
+ Previous Entry Names
Change DatePrevious Entry Name
2021-10-28Improper Protection Against Physical Side Channels
More information is available — Please select a different filter.
Page Last Updated: June 28, 2022