CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-311: Missing Encryption of Sensitive Data (4.16)  
ID

CWE-311: Missing Encryption of Sensitive Data

Weakness ID: 311
Vulnerability Mapping: DISCOURAGED This CWE ID should not be used to map to real-world vulnerabilities
Abstraction: Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product does not encrypt sensitive or critical information before storage or transmission.
+ Extended Description
The lack of proper data encryption passes up the guarantees of confidentiality, integrity, and accountability that properly implemented encryption conveys.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Confidentiality

Technical Impact: Read Application Data

If the application does not use a secure channel, such as SSL, to exchange sensitive information, it is possible for an attacker with access to the network traffic to sniff packets from the connection and uncover the data. This attack is not technically difficult, but does require physical access to some portion of the network over which the sensitive data travels. This access is usually somewhere near where the user is connected to the network (such as a colleague on the company network) but can be anywhere along the path from the user to the end server.
Confidentiality
Integrity

Technical Impact: Modify Application Data

Omitting the use of encryption in any program which transfers data over a network of any kind should be considered on par with delivering the data sent to each user on the local networks of both the sender and receiver. Worse, this omission allows for the injection of data into a stream of communication between two parties -- with no means for the victims to separate valid data from invalid. In this day of widespread network attacks and password collection sniffers, it is an unnecessary risk to omit encryption from the design of any system which might benefit from it.
+ Potential Mitigations

Phase: Requirements

Clearly specify which data or resources are valuable enough that they should be protected by encryption. Require that any transmission or storage of this data/resource should use well-vetted encryption algorithms.

Phase: Architecture and Design

Ensure that encryption is properly integrated into the system design, including but not necessarily limited to:

  • Encryption that is needed to store or transmit private data of the users of the system
  • Encryption that is needed to protect the system itself from unauthorized disclosure or tampering

Identify the separate needs and contexts for encryption:

  • One-way (i.e., only the user or recipient needs to have the key). This can be achieved using public key cryptography, or other techniques in which the encrypting party (i.e., the product) does not need to have access to a private key.
  • Two-way (i.e., the encryption can be automatically performed on behalf of a user, but the key must be available so that the plaintext can be automatically recoverable by that user). This requires storage of the private key in a format that is recoverable only by the user (or perhaps by the operating system) in a way that cannot be recovered by others.

Using threat modeling or other techniques, assume that data can be compromised through a separate vulnerability or weakness, and determine where encryption will be most effective. Ensure that data that should be private is not being inadvertently exposed using weaknesses such as insecure permissions (CWE-732). [REF-7]

Phase: Architecture and Design

Strategy: Libraries or Frameworks

When there is a need to store or transmit sensitive data, use strong, up-to-date cryptographic algorithms to encrypt that data. Select a well-vetted algorithm that is currently considered to be strong by experts in the field, and use well-tested implementations. As with all cryptographic mechanisms, the source code should be available for analysis.

For example, US government systems require FIPS 140-2 certification.

Do not develop custom or private cryptographic algorithms. They will likely be exposed to attacks that are well-understood by cryptographers. Reverse engineering techniques are mature. If the algorithm can be compromised if attackers find out how it works, then it is especially weak.

Periodically ensure that the cryptography has not become obsolete. Some older algorithms, once thought to require a billion years of computing time, can now be broken in days or hours. This includes MD4, MD5, SHA1, DES, and other algorithms that were once regarded as strong. [REF-267]

Phase: Architecture and Design

Strategy: Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.

Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

Phases: Implementation; Architecture and Design

When using industry-approved techniques, use them correctly. Don't cut corners by skipping resource-intensive steps (CWE-325). These steps are often essential for preventing common attacks.

Phase: Implementation

Strategy: Attack Surface Reduction

Use naming conventions and strong types to make it easier to spot when sensitive data is being used. When creating structures, objects, or other complex entities, separate the sensitive and non-sensitive data as much as possible.

Effectiveness: Defense in Depth

Note: This makes it easier to spot places in the code where data is being used that is unencrypted.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 693 Protection Mechanism Failure
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 312 Cleartext Storage of Sensitive Information
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 319 Cleartext Transmission of Sensitive Information
PeerOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 327 Use of a Broken or Risky Cryptographic Algorithm
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Nature Type ID Name
MemberOf View View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1003 Weaknesses for Simplified Mapping of Published Vulnerabilities
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 312 Cleartext Storage of Sensitive Information
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 319 Cleartext Transmission of Sensitive Information
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Architectural Concepts" (CWE-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1013 Encrypt Data
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design OMISSION: This weakness is caused by missing a security tactic during the architecture and design phase.
Operation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

This code writes a user's login information to a cookie so the user does not have to login again later.

(bad code)
Example Language: PHP 
function persistLogin($username, $password){
$data = array("username" => $username, "password"=> $password);
setcookie ("userdata", $data);
}

The code stores the user's username and password in plaintext in a cookie on the user's machine. This exposes the user's login information if their computer is compromised by an attacker. Even if the user's machine is not compromised, this weakness combined with cross-site scripting (CWE-79) could allow an attacker to remotely copy the cookie.

Also note this example code also exhibits Plaintext Storage in a Cookie (CWE-315).


Example 2

The following code attempts to establish a connection, read in a password, then store it to a buffer.

(bad code)
Example Language:
server.sin_family = AF_INET; hp = gethostbyname(argv[1]);
if (hp==NULL) error("Unknown host");
memcpy( (char *)&server.sin_addr,(char *)hp->h_addr,hp->h_length);
if (argc < 3) port = 80;
else port = (unsigned short)atoi(argv[3]);
server.sin_port = htons(port);
if (connect(sock, (struct sockaddr *)&server, sizeof server) < 0) error("Connecting");
...
while ((n=read(sock,buffer,BUFSIZE-1))!=-1) {

write(dfd,password_buffer,n);
...

While successful, the program does not encrypt the data before writing it to a buffer, possibly exposing it to unauthorized actors.


Example 3

The following code attempts to establish a connection to a site to communicate sensitive information.

(bad code)
Example Language: Java 
try {
URL u = new URL("http://www.secret.example.org/");
HttpURLConnection hu = (HttpURLConnection) u.openConnection();
hu.setRequestMethod("PUT");
hu.connect();
OutputStream os = hu.getOutputStream();
hu.disconnect();
}
catch (IOException e) {

//...
}

Though a connection is successfully made, the connection is unencrypted and it is possible that all sensitive data sent to or received from the server will be read by unintended actors.


+ Observed Examples
Reference Description
password and username stored in cleartext in a cookie
password stored in cleartext in a file with insecure permissions
chat program disables SSL in some circumstances even when the user says to use SSL.
Chain: product uses an incorrect public exponent when generating an RSA key, which effectively disables the encryption
storage of unencrypted passwords in a database
storage of unencrypted passwords in a database
product stores a password in cleartext in memory
storage of a secret key in cleartext in a temporary file
SCADA product uses HTTP Basic Authentication, which is not encrypted
login credentials stored unencrypted in a registry key
Passwords transmitted in cleartext.
Chain: Use of HTTPS cookie without "secure" flag causes it to be transmitted across unencrypted HTTP.
Product sends password hash in cleartext in violation of intended policy.
Remote management feature sends sensitive information including passwords in cleartext.
Backup routine sends password in cleartext in email.
Product transmits Blowfish encryption key in cleartext.
Printer sends configuration information, including administrative password, in cleartext.
Chain: cleartext transmission of the MD5 hash of password enables attacks against a server that is susceptible to replay (CWE-294).
Product sends passwords in cleartext to a log server.
Product sends file with cleartext passwords in e-mail message intended for diagnostic purposes.
+ Detection Methods

Manual Analysis

The characterizaton of sensitive data often requires domain-specific understanding, so manual methods are useful. However, manual efforts might not achieve desired code coverage within limited time constraints. Black box methods may produce artifacts (e.g. stored data or unencrypted network transfer) that require manual evaluation.

Effectiveness: High

Automated Analysis

Automated measurement of the entropy of an input/output source may indicate the use or lack of encryption, but human analysis is still required to distinguish intentionally-unencrypted data (e.g. metadata) from sensitive data.

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Binary / Bytecode disassembler - then use manual analysis for vulnerabilities & anomalies

Effectiveness: SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Web Application Scanner
  • Web Services Scanner
  • Database Scanners

Effectiveness: SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Network Sniffer
Cost effective for partial coverage:
  • Fuzz Tester
  • Framework-based Fuzzer
  • Automated Monitored Execution
  • Man-in-the-middle attack tool

Effectiveness: High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Focused Manual Spotcheck - Focused manual analysis of source
  • Manual Source Code Review (not inspections)

Effectiveness: High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Context-configured Source Code Weakness Analyzer

Effectiveness: SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)
  • Formal Methods / Correct-By-Construction
Cost effective for partial coverage:
  • Attack Modeling

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 719 OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 720 OWASP Top Ten 2007 Category A9 - Insecure Communications
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 729 OWASP Top Ten 2004 Category A8 - Insecure Storage
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 803 2010 Top 25 - Porous Defenses
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 816 OWASP Top Ten 2010 Category A7 - Insecure Cryptographic Storage
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 818 OWASP Top Ten 2010 Category A9 - Insufficient Transport Layer Protection
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 861 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 18 - Miscellaneous (MSC)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 866 2011 Top 25 - Porous Defenses
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 930 OWASP Top Ten 2013 Category A2 - Broken Authentication and Session Management
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 934 OWASP Top Ten 2013 Category A6 - Sensitive Data Exposure
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 963 SFP Secondary Cluster: Exposed Data
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1029 OWASP Top Ten 2017 Category A3 - Sensitive Data Exposure
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1152 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous (MSC)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1340 CISQ Data Protection Measures
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure Design
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1366 ICS Communications: Frail Security in Protocols
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1402 Comprehensive Categorization: Encryption
+ Vulnerability Mapping Notes

Usage: DISCOURAGED

(this CWE ID should not be used to map to real-world vulnerabilities)

Reason: Abstraction

Rationale:

CWE-311 is high-level with more precise children available. It is a level-1 Class (i.e., a child of a Pillar).

Comments:

Consider children CWE-312: Cleartext Storage of Sensitive Information or CWE-319: Cleartext Transmission of Sensitive Information.
+ Notes

Relationship

There is an overlapping relationship between insecure storage of sensitive information (CWE-922) and missing encryption of sensitive information (CWE-311). Encryption is often used to prevent an attacker from reading the sensitive data. However, encryption does not prevent the attacker from erasing or overwriting the data.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Failure to encrypt data
OWASP Top Ten 2007 A8 CWE More Specific Insecure Cryptographic Storage
OWASP Top Ten 2007 A9 CWE More Specific Insecure Communications
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage
WASC 4 Insufficient Transport Layer Protection
The CERT Oracle Secure Coding Standard for Java (2011) MSC00-J Use SSLSocket rather than Socket for secure data exchange
Software Fault Patterns SFP23 Exposed Data
ISA/IEC 62443 Part 3-3 Req SR 4.1
ISA/IEC 62443 Part 3-3 Req SR 4.3
ISA/IEC 62443 Part 4-2 Req CR 4.1
ISA/IEC 62443 Part 4-2 Req CR 7.3
ISA/IEC 62443 Part 4-2 Req CR 1.5
+ References
[REF-18] Secure Software, Inc.. "The CLASP Application Security Process". 2005. <https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf>. URL validated: 2024-11-17.
[REF-7] Michael Howard and David LeBlanc. "Writing Secure Code". Chapter 9, "Protecting Secret Data" Page 299. 2nd Edition. Microsoft Press. 2002-12-04. <https://www.microsoftpressstore.com/store/writing-secure-code-9780735617223>.
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 17: Failure to Protect Stored Data." Page 253. McGraw-Hill. 2010.
[REF-265] Frank Kim. "Top 25 Series - Rank 10 - Missing Encryption of Sensitive Data". SANS Software Security Institute. 2010-02-26. <https://www.sans.org/blog/top-25-series-rank-10-missing-encryption-of-sensitive-data/>. URL validated: 2023-04-07.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 2, "Common Vulnerabilities of Encryption", Page 43. 1st Edition. Addison Wesley. 2006.
[REF-267] Information Technology Laboratory, National Institute of Standards and Technology. "SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001-05-25. <https://csrc.nist.gov/csrc/media/publications/fips/140/2/final/documents/fips1402.pdf>. URL validated: 2023-04-07.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
CLASP
+ Contributions
Contribution Date Contributor Organization
2023-11-14
(CWE 4.14, 2024-02-29)
participants in the CWE ICS/OT SIG 62443 Mapping Fall Workshop
Contributed or reviewed taxonomy mappings for ISA/IEC 62443
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-08-15 Veracode
Suggested OWASP Top Ten 2004 mapping
2008-09-08 CWE Content Team MITRE
updated Common_Consequences, Relationships, Other_Notes, Taxonomy_Mappings
2009-10-29 CWE Content Team MITRE
updated Common_Consequences, Other_Notes
2010-02-16 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Demonstrative_Examples, Description, Detection_Factors, Likelihood_of_Exploit, Name, Observed_Examples, Potential_Mitigations, References, Related_Attack_Patterns, Relationships, Taxonomy_Mappings, Time_of_Introduction
2010-04-05 CWE Content Team MITRE
updated Related_Attack_Patterns
2010-06-21 CWE Content Team MITRE
updated Common_Consequences, Potential_Mitigations, References
2010-09-27 CWE Content Team MITRE
updated Potential_Mitigations
2010-12-13 CWE Content Team MITRE
updated Demonstrative_Examples, Observed_Examples, Related_Attack_Patterns
2011-03-29 CWE Content Team MITRE
updated Demonstrative_Examples
2011-06-01 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Relationships
2011-09-13 CWE Content Team MITRE
updated Potential_Mitigations, Relationships
2012-05-11 CWE Content Team MITRE
updated Demonstrative_Examples, References, Relationships, Taxonomy_Mappings
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations, References
2013-07-17 CWE Content Team MITRE
updated Relationship_Notes
2014-02-18 CWE Content Team MITRE
updated Related_Attack_Patterns
2014-06-23 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Detection_Factors, Relationships, Taxonomy_Mappings
2015-12-07 CWE Content Team MITRE
updated Related_Attack_Patterns
2017-01-19 CWE Content Team MITRE
updated Related_Attack_Patterns
2017-05-03 CWE Content Team MITRE
updated Related_Attack_Patterns
2017-11-08 CWE Content Team MITRE
updated Likelihood_of_Exploit, Modes_of_Introduction, Potential_Mitigations, References, Relationships
2018-03-27 CWE Content Team MITRE
updated References, Relationships
2019-01-03 CWE Content Team MITRE
updated Related_Attack_Patterns, Relationships, Taxonomy_Mappings
2019-06-20 CWE Content Team MITRE
updated Related_Attack_Patterns, Relationships, Type
2020-02-24 CWE Content Team MITRE
updated References, Relationships
2020-12-10 CWE Content Team MITRE
updated Potential_Mitigations, Relationships
2021-10-28 CWE Content Team MITRE
updated Relationships
2022-06-28 CWE Content Team MITRE
updated Relationships
2023-01-31 CWE Content Team MITRE
updated Description, Potential_Mitigations
2023-04-27 CWE Content Team MITRE
updated References, Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes, Relationships
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Taxonomy_Mappings
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Failure to Encrypt Data
2010-02-16 Failure to Encrypt Sensitive Data
Page Last Updated: November 19, 2024