CWE-590: Free of Memory not on the Heap
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product calls free() on a pointer to memory that was not allocated using associated heap allocation functions such as malloc(), calloc(), or realloc().
When free() is called on an invalid pointer, the program's memory management data structures may become corrupted. This corruption can cause the program to crash or, in some circumstances, an attacker may be able to cause free() to operate on controllable memory locations to modify critical program variables or execute code.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
Example 1 In this example, an array of record_t structs, bar, is allocated automatically on the stack as a local variable and the programmer attempts to call free() on the array. The consequences will vary based on the implementation of free(), but it will not succeed in deallocating the memory. (bad code)
Example Language: C
void foo(){
record_t bar[MAX_SIZE];
/* do something interesting with bar */ ... free(bar); This example shows the array allocated globally, as part of the data segment of memory and the programmer attempts to call free() on the array. (bad code)
Example Language: C
record_t bar[MAX_SIZE]; //Global var
void foo(){ /* do something interesting with bar */ ... free(bar); Instead, if the programmer wanted to dynamically manage the memory, malloc() or calloc() should have been used. (good code)
void foo(){
record_t *bar = (record_t*)malloc(MAX_SIZE*sizeof(record_t));
/* do something interesting with bar */ ... free(bar); Additionally, you can pass global variables to free() when they are pointers to dynamically allocated memory. (good code)
record_t *bar; //Global var
void foo(){ bar = (record_t*)malloc(MAX_SIZE*sizeof(record_t));
/* do something interesting with bar */ ... free(bar);
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |