CWE-226: Sensitive Information in Resource Not Removed Before Reuse
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product releases a resource such as memory or a file so that it can be made available for reuse, but it does not clear or "zeroize" the information contained in the resource before the product performs a critical state transition or makes the resource available for reuse by other entities.
When resources are released, they can be made available for reuse. For example, after memory is de-allocated, an operating system may make the memory available to another process, or disk space may be reallocated when a file is deleted. As removing information requires time and additional resources, operating systems do not usually clear the previously written information. Even when the resource is reused by the same process, this weakness can arise when new data is not as large as the old data, which leaves portions of the old data still available. Equivalent errors can occur in other situations where the length of data is variable but the associated data structure is not. If memory is not cleared after use, the information may be read by less trustworthy parties when the memory is reallocated. This weakness can apply in hardware, such as when a device or system switches between power, sleep, or debug states during normal operation, or when execution changes to different users or privilege levels. ![]()
![]() ![]()
![]()
![]()
![]()
Example 1 This example shows how an attacker can take advantage of an incorrect state transition.
Suppose a device is transitioning from state A to state B. During state A, it can read certain private keys from the hidden fuses that are only accessible in state A but not in state B. The device reads the keys, performs operations using those keys, then transitions to state B, where those private keys should no longer be accessible. (bad code)
Example Language: Other
During the transition from A to B, the device does not scrub the memory. After the transition to state B, even though the private keys are no longer accessible directly from the fuses in state B, they can be accessed indirectly by reading the memory that contains the private keys. (good code)
Example Language: Other
For transition from state A to state B, remove information which should not be available once the transition is complete.
Example 2 The following code calls realloc() on a buffer containing sensitive data: (bad code)
Example Language: C
cleartext_buffer = get_secret();...
cleartext_buffer = realloc(cleartext_buffer, 1024); ... scrub_memory(cleartext_buffer, 1024); There is an attempt to scrub the sensitive data from memory, but realloc() is used, so it could return a pointer to a different part of memory. The memory that was originally allocated for cleartext_buffer could still contain an uncleared copy of the data. Example 3 The following example code is excerpted from the AES wrapper/interface, aes0_wrapper, module of one of the AES engines (AES0) in the Hack@DAC'21 buggy OpenPiton System-on-Chip (SoC). Note that this SoC contains three distinct AES engines. Within this wrapper module, four 32-bit registers are utilized to store the message intended for encryption, referred to as p_c[i]. Using the AXI Lite interface, these registers are filled with the 128-bit message to be encrypted. (bad code)
Example Language: Verilog
module aes0_wrapper #(...)(...); ... always @(posedge clk_i)
begin
if(~(rst_ni && ~rst_1)) //clear p_c[i] at reset
endmodule
begin
else if(en && we)
start <= 0;
endp_c[0] <= 0; p_c[1] <= 0; p_c[2] <= 0; p_c[3] <= 0; ...
case(address[8:3])
end // always @ (posedge wb_clk_i)
0:
endcase
start <= reglk_ctrl_i[1] ? start : wdata[0];
1:
p_c[3] <= reglk_ctrl_i[3] ? p_c[3] : wdata[31:0];
2:
p_c[2] <= reglk_ctrl_i[3] ? p_c[2] : wdata[31:0];
3:
p_c[1] <= reglk_ctrl_i[3] ? p_c[1] : wdata[31:0];
4:
p_c[0] <= reglk_ctrl_i[3] ? p_c[0] : wdata[31:0];
...The above code snippet [REF-1402] illustrates an instance of a vulnerable implementation of the AES wrapper module, where p_c[i] registers are cleared at reset. Otherwise, p_c[i]registers either maintain their old values (if reglk_ctrl_i[3]is true) or get filled through the AXI signal wdata. Note that p_c[i]registers can be read through the AXI Lite interface (not shown in snippet). However, p_c[i] registers are never cleared after their usage once the AES engine has completed the encryption process of the message. In a multi-user or multi-process environment, not clearing registers may result in the attacker process accessing data left by the victim, leading to data leakage or unintentional information disclosure. To fix this issue, it is essential to ensure that these internal registers are cleared in a timely manner after their usage, i.e., the encryption process is complete. This is illustrated below by monitoring the assertion of the cipher text valid signal, ct_valid [REF-1403]. (good code)
Example Language: Verilog
module aes0_wrapper #(...)(...); ... always @(posedge clk_i)
begin
if(~(rst_ni && ~rst_1)) //clear p_c[i] at reset
endmodule
...
else if(ct_valid) //encryption process complete, clear p_c[i]
begin
else if(en && we)
p_c[0] <= 0;
endp_c[1] <= 0; p_c[2] <= 0; p_c[3] <= 0;
case(address[8:3])
end // always @ (posedge wb_clk_i)... endcase Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
![]()
Relationship
There is a close association between CWE-226 and CWE-212. The difference is partially that of perspective. CWE-226 is geared towards the final stage of the resource lifecycle, in which the resource is deleted, eliminated, expired, or otherwise released for reuse. Technically, this involves a transfer to a different control sphere, in which the original contents of the resource are no longer relevant. CWE-212, however, is intended for sensitive data in resources that are intentionally shared with others, so they are still active. This distinction is useful from the perspective of the CWE research view (CWE-1000).
Research Gap
This is frequently found for network packets, but it can also exist in local memory allocation, files, etc.
Maintenance
This entry needs modification to clarify the differences with CWE-212. The description also combines two problems that are distinct from the CWE research perspective: the inadvertent transfer of information to another sphere, and improper initialization/shutdown. Some of the associated taxonomy mappings reflect these different uses.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |