Common Weakness Enumeration

A Community-Developed List of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (2.10)  

CWE-352: Cross-Site Request Forgery (CSRF)

Compound Element ID: 352
Abstraction: Variant
Structure: Composite
Status: Draft
Presentation Filter:
+ Description

Description Summary

The web application does not, or can not, sufficiently verify whether a well-formed, valid, consistent request was intentionally provided by the user who submitted the request.

Extended Description

When a web server is designed to receive a request from a client without any mechanism for verifying that it was intentionally sent, then it might be possible for an attacker to trick a client into making an unintentional request to the web server which will be treated as an authentic request. This can be done via a URL, image load, XMLHttpRequest, etc. and can result in exposure of data or unintended code execution.

+ Alternate Terms
Session Riding
Cross Site Reference Forgery
+ Time of Introduction
  • Architecture and Design
+ Applicable Platforms



Technology Classes


+ Common Consequences
Access Control

Technical Impact: Gain privileges / assume identity; Bypass protection mechanism; Read application data; Modify application data; DoS: crash / exit / restart

The consequences will vary depending on the nature of the functionality that is vulnerable to CSRF. An attacker could effectively perform any operations as the victim. If the victim is an administrator or privileged user, the consequences may include obtaining complete control over the web application - deleting or stealing data, uninstalling the product, or using it to launch other attacks against all of the product's users. Because the attacker has the identity of the victim, the scope of CSRF is limited only by the victim's privileges.

+ Likelihood of Exploit

Medium to High

+ Detection Methods

Manual Analysis

This weakness can be detected using tools and techniques that require manual (human) analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester to record and modify an active session.

Specifically, manual analysis can be useful for finding this weakness, and for minimizing false positives assuming an understanding of business logic. However, it might not achieve desired code coverage within limited time constraints. For black-box analysis, if credentials are not known for privileged accounts, then the most security-critical portions of the application may not receive sufficient attention.

Consider using OWASP CSRFTester to identify potential issues and aid in manual analysis.

Effectiveness: High

These may be more effective than strictly automated techniques. This is especially the case with weaknesses that are related to design and business rules.

Automated Static Analysis

CSRF is currently difficult to detect reliably using automated techniques. This is because each application has its own implicit security policy that dictates which requests can be influenced by an outsider and automatically performed on behalf of a user, versus which requests require strong confidence that the user intends to make the request. For example, a keyword search of the public portion of a web site is typically expected to be encoded within a link that can be launched automatically when the user clicks on the link.

Effectiveness: Limited

Automated Static Analysis - Binary / Bytecode

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:

  • Bytecode Weakness Analysis - including disassembler + source code weakness analysis

  • Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness: SOAR Partial

Manual Static Analysis - Binary / Bytecode

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:

  • Binary / Bytecode disassembler - then use manual analysis for vulnerabilities & anomalies

Effectiveness: SOAR Partial

Dynamic Analysis with automated results interpretation

According to SOAR, the following detection techniques may be useful:

Highly cost effective:

  • Web Application Scanner

Effectiveness: SOAR High

Dynamic Analysis with manual results interpretation

According to SOAR, the following detection techniques may be useful:

Highly cost effective:

  • Fuzz Tester

  • Framework-based Fuzzer

Effectiveness: SOAR High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:

  • Focused Manual Spotcheck - Focused manual analysis of source

  • Manual Source Code Review (not inspections)

Effectiveness: SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:

  • Source code Weakness Analyzer

  • Context-configured Source Code Weakness Analyzer

Effectiveness: SOAR Partial

Architecture / Design Review

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:

  • Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)

  • Formal Methods / Correct-By-Construction

Effectiveness: SOAR Partial

+ Demonstrative Examples

Example 1

This example PHP code attempts to secure the form submission process by validating that the user submitting the form has a valid session. A CSRF attack would not be prevented by this countermeasure because the attacker forges a request through the user's web browser in which a valid session already exists.

The following HTML is intended to allow a user to update a profile.

(Bad Code)
Example Language: HTML 
<form action="/url/profile.php" method="post">
<input type="text" name="firstname"/>
<input type="text" name="lastname"/>
<input type="text" name="email"/>
<input type="submit" name="submit" value="Update"/>

profile.php contains the following code.

(Bad Code)
Example Language: PHP 
// initiate the session in order to validate sessions


//if the session is registered to a valid user then allow update

if (! session_is_registered("username")) {

echo "invalid session detected!";

// Redirect user to login page


// The user session is valid, so process the request
// and update the information


function update_profile {
// read in the data from $POST and send an update
// to the database
SendUpdateToDatabase($_SESSION['username'], $_POST['email']);
echo "Your profile has been successfully updated.";

This code may look protected since it checks for a valid session. However, CSRF attacks can be staged from virtually any tag or HTML construct, including image tags, links, embed or object tags, or other attributes that load background images.

The attacker can then host code that will silently change the username and email address of any user that visits the page while remaining logged in to the target web application. The code might be an innocent-looking web page such as:

Example Language: HTML 
function SendAttack () { = "";
// send to profile.php

<BODY onload="javascript:SendAttack();">

<form action="" id="form" method="post">
<input type="hidden" name="firstname" value="Funny">
<input type="hidden" name="lastname" value="Joke">
<input type="hidden" name="email">

Notice how the form contains hidden fields, so when it is loaded into the browser, the user will not notice it. Because SendAttack() is defined in the body's onload attribute, it will be automatically called when the victim loads the web page.

Assuming that the user is already logged in to, profile.php will see that a valid user session has been established, then update the email address to the attacker's own address. At this stage, the user's identity has been compromised, and messages sent through this profile could be sent to the attacker's address.

+ Observed Examples
Add user accounts via a URL in an img tag
Add user accounts via a URL in an img tag
Arbitrary code execution by specifying the code in a crafted img tag or URL
Gain administrative privileges via a URL in an img tag
Delete a victim's information via a URL or an img tag
Change another user's settings via a URL or an img tag
Perform actions as administrator via a URL or an img tag
modify password for the administrator
CMS allows modification of configuration via CSRF attack against the administrator
web interface allows password changes or stopping a virtual machine via CSRF
+ Potential Mitigations

Phase: Architecture and Design

Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

For example, use anti-CSRF packages such as the OWASP CSRFGuard. [R.352.3]

Another example is the ESAPI Session Management control, which includes a component for CSRF. [R.352.9]

Phase: Implementation

Ensure that the application is free of cross-site scripting issues (CWE-79), because most CSRF defenses can be bypassed using attacker-controlled script.

Phase: Architecture and Design

Generate a unique nonce for each form, place the nonce into the form, and verify the nonce upon receipt of the form. Be sure that the nonce is not predictable (CWE-330). [R.352.5]

Note that this can be bypassed using XSS (CWE-79).

Phase: Architecture and Design

Identify especially dangerous operations. When the user performs a dangerous operation, send a separate confirmation request to ensure that the user intended to perform that operation.

Note that this can be bypassed using XSS (CWE-79).

Phase: Architecture and Design

Use the "double-submitted cookie" method as described by Felten and Zeller:

When a user visits a site, the site should generate a pseudorandom value and set it as a cookie on the user's machine. The site should require every form submission to include this value as a form value and also as a cookie value. When a POST request is sent to the site, the request should only be considered valid if the form value and the cookie value are the same.

Because of the same-origin policy, an attacker cannot read or modify the value stored in the cookie. To successfully submit a form on behalf of the user, the attacker would have to correctly guess the pseudorandom value. If the pseudorandom value is cryptographically strong, this will be prohibitively difficult.

This technique requires Javascript, so it may not work for browsers that have Javascript disabled. [R.352.4]

Note that this can probably be bypassed using XSS (CWE-79), or when using web technologies that enable the attacker to read raw headers from HTTP requests.

Phase: Architecture and Design

Do not use the GET method for any request that triggers a state change.

Phase: Implementation

Check the HTTP Referer header to see if the request originated from an expected page. This could break legitimate functionality, because users or proxies may have disabled sending the Referer for privacy reasons.

Note that this can be bypassed using XSS (CWE-79). An attacker could use XSS to generate a spoofed Referer, or to generate a malicious request from a page whose Referer would be allowed.

+ Relationships
NatureTypeIDNameView(s) this relationship pertains toView(s)
RequiresWeakness BaseWeakness Base346Origin Validation Error
Research Concepts1000
RequiresWeakness ClassWeakness Class441Unintended Proxy or Intermediary ('Confused Deputy')
Research Concepts1000
RequiresWeakness BaseWeakness Base613Insufficient Session Expiration
Research Concepts1000
RequiresWeakness ClassWeakness Class642External Control of Critical State Data
Research Concepts1000
ChildOfWeakness ClassWeakness Class345Insufficient Verification of Data Authenticity
Development Concepts (primary)699
Research Concepts (primary)1000
Weaknesses for Simplified Mapping of Published Vulnerabilities (primary)1003
ChildOfCategoryCategory442Web Problems
Development Concepts699
ChildOfCategoryCategory716OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF)
Weaknesses in OWASP Top Ten (2007) (primary)629
ChildOfCategoryCategory7512009 Top 25 - Insecure Interaction Between Components
Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors (primary)750
ChildOfCategoryCategory8012010 Top 25 - Insecure Interaction Between Components
Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors (primary)800
ChildOfCategoryCategory814OWASP Top Ten 2010 Category A5 - Cross-Site Request Forgery(CSRF)
Weaknesses in OWASP Top Ten (2010) (primary)809
ChildOfCategoryCategory8642011 Top 25 - Insecure Interaction Between Components
Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors (primary)900
ChildOfCategoryCategory936OWASP Top Ten 2013 Category A8 - Cross-Site Request Forgery (CSRF)
Weaknesses in OWASP Top Ten (2013) (primary)928
MemberOfViewView635Weaknesses Used by NVD
Weaknesses Used by NVD (primary)635
MemberOfViewView884CWE Cross-section
CWE Cross-section (primary)884
PeerOfWeakness BaseWeakness Base79Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
Research Concepts1000
+ Relationship Notes

This can be resultant from XSS, although XSS is not necessarily required.

+ Research Gaps

This issue was under-reported in CVE until around 2008, when it began to gain prominence. It is likely to be present in most web applications.

+ Theoretical Notes

The CSRF topology is multi-channel:

1. Attacker (as outsider) to intermediary (as user). The interaction point is either an external or internal channel.

2. Intermediary (as user) to server (as victim). The activation point is an internal channel.

+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
PLOVERCross-Site Request Forgery (CSRF)
OWASP Top Ten 2007A5ExactCross Site Request Forgery (CSRF)
WASC9Cross-site Request Forgery
+ References
[R.352.1] [REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 2: Web-Server Related Vulnerabilities (XSS, XSRF, and Response Splitting)." Page 37. McGraw-Hill. 2010.
[R.352.2] Peter W. "Cross-Site Request Forgeries (Re: The Dangers of Allowing Users to Post Images)". Bugtraq. <>.
[R.352.3] OWASP. "Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet". <>.
[R.352.4] Edward W. Felten and William Zeller. "Cross-Site Request Forgeries: Exploitation and Prevention". 2008-10-18. <>.
[R.352.5] Robert Auger. "CSRF - The Cross-Site Request Forgery (CSRF/XSRF) FAQ". <>.
[R.352.6] "Cross-site request forgery". Wikipedia. 2008-12-22. <>.
[R.352.7] Jason Lam. "Top 25 Series - Rank 4 - Cross Site Request Forgery". SANS Software Security Institute. 2010-03-03. <>.
[R.352.8] Jeff Atwood. "Preventing CSRF and XSRF Attacks". 2008-10-14. <>.
[R.352.9] [REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". <>.
+ Content History
Submission DateSubmitterOrganizationSource
PLOVERExternally Mined
Modification DateModifierOrganizationSource
2008-07-01Eric DalciCigitalExternal
updated Time_of_Introduction
2008-09-08CWE Content TeamMITREInternal
updated Alternate_Terms, Description, Relationships, Other_Notes, Relationship_Notes, Taxonomy_Mappings
2009-01-12CWE Content TeamMITREInternal
updated Applicable_Platforms, Description, Likelihood_of_Exploit, Observed_Examples, Other_Notes, Potential_Mitigations, References, Relationship_Notes, Relationships, Research_Gaps, Theoretical_Notes
2009-03-10CWE Content TeamMITREInternal
updated Potential_Mitigations
2009-05-20Tom StracenerExternal
Added demonstrative example for profile.
2009-05-27CWE Content TeamMITREInternal
updated Demonstrative_Examples, Related_Attack_Patterns
2009-12-28CWE Content TeamMITREInternal
updated Common_Consequences, Demonstrative_Examples, Detection_Factors, Likelihood_of_Exploit, Observed_Examples, Potential_Mitigations, Time_of_Introduction
2010-02-16CWE Content TeamMITREInternal
updated Applicable_Platforms, Detection_Factors, References, Relationships, Taxonomy_Mappings
2010-06-21CWE Content TeamMITREInternal
updated Common_Consequences, Detection_Factors, Potential_Mitigations, References, Relationships
2010-09-27CWE Content TeamMITREInternal
updated Potential_Mitigations
2011-03-29CWE Content TeamMITREInternal
updated Description
2011-06-01CWE Content TeamMITREInternal
updated Common_Consequences
2011-06-27CWE Content TeamMITREInternal
updated Relationships
2011-09-13CWE Content TeamMITREInternal
updated Potential_Mitigations, References
2012-05-11CWE Content TeamMITREInternal
updated Related_Attack_Patterns, Relationships
2012-10-30CWE Content TeamMITREInternal
updated Potential_Mitigations
2013-02-21CWE Content TeamMITREInternal
updated Relationships
2013-07-17CWE Content TeamMITREInternal
updated References, Relationships
2014-07-30CWE Content TeamMITREInternal
updated Detection_Factors
2015-12-07CWE Content TeamMITREInternal
updated Relationships

More information is available — Please select a different filter.
Page Last Updated: January 18, 2017