CWE-364: Signal Handler Race Condition
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterRace conditions frequently occur in signal handlers, since signal handlers support asynchronous actions. These race conditions have a variety of root causes and symptoms. Attackers may be able to exploit a signal handler race condition to cause the product state to be corrupted, possibly leading to a denial of service or even code execution. These issues occur when non-reentrant functions, or state-sensitive actions occur in the signal handler, where they may be called at any time. These behaviors can violate assumptions being made by the "regular" code that is interrupted, or by other signal handlers that may also be invoked. If these functions are called at an inopportune moment - such as while a non-reentrant function is already running - memory corruption could occur that may be exploitable for code execution. Another signal race condition commonly found occurs when free is called within a signal handler, resulting in a double free and therefore a write-what-where condition. Even if a given pointer is set to NULL after it has been freed, a race condition still exists between the time the memory was freed and the pointer was set to NULL. This is especially problematic if the same signal handler has been set for more than one signal -- since it means that the signal handler itself may be reentered. There are several known behaviors related to signal handlers that have received the label of "signal handler race condition":
Signal handler vulnerabilities are often classified based on the absence of a specific protection mechanism, although this style of classification is discouraged in CWE because programmers often have a choice of several different mechanisms for addressing the weakness. Such protection mechanisms may preserve exclusivity of access to the shared resource, and behavioral atomicity for the relevant code:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Sometimes Prevalent) C++ (Sometimes Prevalent) Example 1 This code registers the same signal handler function with two different signals (CWE-831). If those signals are sent to the process, the handler creates a log message (specified in the first argument to the program) and exits. (bad code)
Example Language: C
char *logMessage;
void handler (int sigNum) { syslog(LOG_NOTICE, "%s\n", logMessage);
free(logMessage); /* artificially increase the size of the timing window to make demonstration of this weakness easier. */ sleep(10); exit(0); int main (int argc, char* argv[]) { logMessage = strdup(argv[1]);
/* Register signal handlers. */ signal(SIGHUP, handler); signal(SIGTERM, handler); /* artificially increase the size of the timing window to make demonstration of this weakness easier. */ sleep(10); The handler function uses global state (globalVar and logMessage), and it can be called by both the SIGHUP and SIGTERM signals. An attack scenario might follow these lines:
At this point, the state of the heap is uncertain, because malloc is still modifying the metadata for the heap; the metadata might be in an inconsistent state. The SIGTERM-handler call to free() is assuming that the metadata is inconsistent, possibly causing it to write data to the wrong location while managing the heap. The result is memory corruption, which could lead to a crash or even code execution, depending on the circumstances under which the code is running. Note that this is an adaptation of a classic example as originally presented by Michal Zalewski [REF-360]; the original example was shown to be exploitable for code execution. Also note that the strdup(argv[1]) call contains a potential buffer over-read (CWE-126) if the program is called without any arguments, because argc would be 0, and argv[1] would point outside the bounds of the array. Example 2 The following code registers a signal handler with multiple signals in order to log when a specific event occurs and to free associated memory before exiting. (bad code)
Example Language: C
#include <signal.h>
#include <syslog.h> #include <string.h> #include <stdlib.h> void *global1, *global2; char *what; void sh (int dummy) { syslog(LOG_NOTICE,"%s\n",what);
free(global2); free(global1); /* Sleep statements added to expand timing window for race condition */ sleep(10); exit(0); int main (int argc,char* argv[]) { what=argv[1];
global1=strdup(argv[2]); global2=malloc(340); signal(SIGHUP,sh); signal(SIGTERM,sh); /* Sleep statements added to expand timing window for race condition */ sleep(10); exit(0); However, the following sequence of events may result in a double-free (CWE-415):
This is just one possible exploitation of the above code. As another example, the syslog call may use malloc calls which are not async-signal safe. This could cause corruption of the heap management structures. For more details, consult the example within "Delivering Signals for Fun and Profit" [REF-360].
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |