Referencing memory after it has been freed can cause a program to crash, use unexpected values, or execute code.
Extended Description
The use of previously-freed memory can have any number of adverse consequences, ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation and timing of the flaw. The simplest way data corruption may occur involves the system's reuse of the freed memory. Use-after-free errors have two common and sometimes overlapping causes:
Error conditions and other exceptional circumstances.
Confusion over which part of the program is responsible for freeing the memory.
In this scenario, the memory in question is allocated to another pointer validly at some point after it has been freed. The original pointer to the freed memory is used again and points to somewhere within the new allocation. As the data is changed, it corrupts the validly used memory; this induces undefined behavior in the process.
If the newly allocated data chances to hold a class, in C++ for example, various function pointers may be scattered within the heap data. If one of these function pointers is overwritten with an address to valid shellcode, execution of arbitrary code can be achieved.
Alternate Terms
Dangling pointer
Use-After-Free
Relationships
The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Base - a weakness that is described in an abstract fashion, but with sufficient details to infer specific methods for detection and prevention. More general than a Variant weakness, but more specific than a Class weakness.
Variant - a weakness that is described at a very low level of detail, typically limited to a specific language or technology. More specific than a Base weakness.
Base - a weakness that is described in an abstract fashion, but with sufficient details to infer specific methods for detection and prevention. More general than a Variant weakness, but more specific than a Class weakness.
Base - a weakness that is described in an abstract fashion, but with sufficient details to infer specific methods for detection and prevention. More general than a Variant weakness, but more specific than a Class weakness.
Base - a weakness that is described in an abstract fashion, but with sufficient details to infer specific methods for detection and prevention. More general than a Variant weakness, but more specific than a Class weakness.
Variant - a weakness that is described at a very low level of detail, typically limited to a specific language or technology. More specific than a Base weakness.
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase
Note
Architecture and Design
Implementation
Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages
C (Undetermined Prevalence)
C++ (Undetermined Prevalence)
Common Consequences
The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Integrity
Technical Impact: Modify Memory
The use of previously freed memory may corrupt valid data, if the memory area in question has been allocated and used properly elsewhere.
Availability
Technical Impact: DoS: Crash, Exit, or Restart
If chunk consolidation occurs after the use of previously freed data, the process may crash when invalid data is used as chunk information.
Integrity Confidentiality Availability
Technical Impact: Execute Unauthorized Code or Commands
If malicious data is entered before chunk consolidation can take place, it may be possible to take advantage of a write-what-where primitive to execute arbitrary code.
Chain: race condition (CWE-362) from improper handling of a page transition in web client while an applet is loading (CWE-368) leads to use after free (CWE-416)
Choose a language that provides automatic memory management.
Phase: Implementation
When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy.
Affected Resources
Memory
Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
More information is available — Please select a different filter.
Page Last Updated:
March 29, 2018
Use of the Common Weakness Enumeration and the associated references from this website are subject to the
Terms of Use. For more information, please email
cwe@mitre.org.