CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.14)  
ID

CWE-657: Violation of Secure Design Principles

Weakness ID: 657
Vulnerability Mapping: DISCOURAGEDThis CWE ID should not be used to map to real-world vulnerabilities
Abstraction: ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product violates well-established principles for secure design.
+ Extended Description
This can introduce resultant weaknesses or make it easier for developers to introduce related weaknesses during implementation. Because code is centered around design, it can be resource-intensive to fix design problems.
+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfPillarPillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.710Improper Adherence to Coding Standards
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.250Execution with Unnecessary Privileges
ParentOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.636Not Failing Securely ('Failing Open')
ParentOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.637Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism')
ParentOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.638Not Using Complete Mediation
ParentOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.653Improper Isolation or Compartmentalization
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.654Reliance on a Single Factor in a Security Decision
ParentOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.655Insufficient Psychological Acceptability
ParentOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.656Reliance on Security Through Obscurity
ParentOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.671Lack of Administrator Control over Security
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.1192Improper Identifier for IP Block used in System-On-Chip (SOC)
ParentOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.1395Dependency on Vulnerable Third-Party Component
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
Architecture and Design
Implementation
Operation
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Other

Technical Impact: Other

+ Demonstrative Examples

Example 1

Switches may revert their functionality to that of hubs when the table used to map ARP information to the switch interface overflows, such as when under a spoofing attack. This results in traffic being broadcast to an eavesdropper, instead of being sent only on the relevant switch interface. To mitigate this type of problem, the developer could limit the number of ARP entries that can be recorded for a given switch interface, while other interfaces may keep functioning normally. Configuration options can be provided on the appropriate actions to be taken in case of a detected failure, but safe defaults should be used.

Example 2

The IPSEC specification is complex, which resulted in bugs, partial implementations, and incompatibilities between vendors.

Example 3

When executable library files are used on web servers, which is common in PHP applications, the developer might perform an access check in any user-facing executable, and omit the access check from the library file itself. By directly requesting the library file (CWE-425), an attacker can bypass this access check.

Example 4

Single sign-on technology is intended to make it easier for users to access multiple resources or domains without having to authenticate each time. While this is highly convenient for the user and attempts to address problems with psychological acceptability, it also means that a compromise of a user's credentials can provide immediate access to all other resources or domains.

Example 5

The design of TCP relies on the secrecy of Initial Sequence Numbers (ISNs), as originally covered in CVE-1999-0077 [REF-542]. If ISNs can be guessed (due to predictability, CWE-330) or sniffed (due to lack of encryption during transmission, CWE-312), then an attacker can hijack or spoof connections. Many TCP implementations have had variations of this problem over the years, including CVE-2004-0641, CVE-2002-1463, CVE-2001-0751, CVE-2001-0328, CVE-2001-0288, CVE-2001-0163, CVE-2001-0162, CVE-2000-0916, and CVE-2000-0328.

Example 5 References:
[REF-542] Jon Postel, Editor. "RFC: 793, TRANSMISSION CONTROL PROTOCOL". Information Sciences Institute. 1981-09. <https://www.ietf.org/rfc/rfc0793.txt>. URL validated: 2023-04-07.

Example 6

The "SweynTooth" vulnerabilities in Bluetooth Low Energy (BLE) software development kits (SDK) were found to affect multiple Bluetooth System-on-Chip (SoC) manufacturers. These SoCs were used by many products such as medical devices, Smart Home devices, wearables, and other IoT devices. [REF-1314] [REF-1315]

+ Observed Examples
ReferenceDescription
Baseboard Management Controller (BMC) device implements Advanced High-performance Bus (AHB) bridges that do not require authentication for arbitrary read and write access to the BMC's physical address space from the host, and possibly the network [REF-1138].
The failure of connection attempts in a web browser resets DNS pin restrictions. An attacker can then bypass the same origin policy by rebinding a domain name to a different IP address. This was an attempt to "fail functional."
Hard-coded cryptographic key stored in executable program.
Server does not properly validate client certificates when reusing cached connections.
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.975SFP Secondary Cluster: Architecture
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1348OWASP Top Ten 2021 Category A04:2021 - Insecure Design
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1418Comprehensive Categorization: Violation of Secure Design Principles
+ Vulnerability Mapping Notes

Usage: DISCOURAGED

(this CWE ID should not be used to map to real-world vulnerabilities)

Reason: Abstraction

Rationale:

This CWE entry is a level-1 Class (i.e., a child of a Pillar). It might have lower-level children that would be more appropriate

Comments:

Examine children of this entry to see if there is a better fit
+ Notes

Maintenance

The Taxonomy_Mappings to ISA/IEC 62443 were added in CWE 4.10, but they are still under review and might change in future CWE versions. These draft mappings were performed by members of the "Mapping CWE to 62443" subgroup of the CWE-CAPEC ICS/OT Special Interest Group (SIG), and their work is incomplete as of CWE 4.10. The mappings are included to facilitate discussion and review by the broader ICS/OT community, and they are likely to change in future CWE versions.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
ISA/IEC 62443Part 4-1Req SD-3
ISA/IEC 62443Part 4-1Req SD-4
ISA/IEC 62443Part 4-1Req SI-1
+ References
[REF-196] Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer Systems". Proceedings of the IEEE 63. 1975-09. <http://web.mit.edu/Saltzer/www/publications/protection/>.
[REF-546] Sean Barnum and Michael Gegick. "Design Principles". 2005-09-19. <https://web.archive.org/web/20220126060046/https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/design-principles>. URL validated: 2023-04-07.
[REF-542] Jon Postel, Editor. "RFC: 793, TRANSMISSION CONTROL PROTOCOL". Information Sciences Institute. 1981-09. <https://www.ietf.org/rfc/rfc0793.txt>. URL validated: 2023-04-07.
[REF-1138] Stewart Smith. "CVE-2019-6260: Gaining control of BMC from the host processor". 2019. <https://www.flamingspork.com/blog/2019/01/23/cve-2019-6260:-gaining-control-of-bmc-from-the-host-processor/>.
[REF-1314] ICS-CERT. "ICS Alert (ICS-ALERT-20-063-01): SweynTooth Vulnerabilities". 2020-03-04. <https://www.cisa.gov/news-events/ics-alerts/ics-alert-20-063-01>. URL validated: 2023-04-07.
[REF-1315] Matheus E. Garbelini, Sudipta Chattopadhyay, Chundong Wang, Singapore University of Technology and Design. "Unleashing Mayhem over Bluetooth Low Energy". 2020-03-04. <https://asset-group.github.io/disclosures/sweyntooth/>. URL validated: 2023-01-25.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2008-01-30
(CWE Draft 8, 2008-01-30)
CWE Community
Submitted by members of the CWE community to extend early CWE versions
+ Contributions
Contribution DateContributorOrganization
2023-01-24
(CWE 4.10, 2023-01-31)
"Mapping CWE to 62443" Sub-Working GroupCWE-CAPEC ICS/OT SIG
Suggested mappings to ISA/IEC 62443.
+ Modifications
Modification DateModifierOrganization
2008-07-01Eric DalciCigital
updated Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Description, Relationships
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated Relationships
2014-07-30CWE Content TeamMITRE
updated Relationships
2017-01-19CWE Content TeamMITRE
updated Relationships
2020-02-24CWE Content TeamMITRE
updated Relationships
2021-10-28CWE Content TeamMITRE
updated Relationships
2022-10-13CWE Content TeamMITRE
updated References
2023-01-31CWE Content TeamMITRE
updated Maintenance_Notes, Relationships, Taxonomy_Mappings
2023-04-27CWE Content TeamMITRE
updated References, Relationships
2023-06-29CWE Content TeamMITRE
updated Mapping_Notes
2023-10-26CWE Content TeamMITRE
updated Demonstrative_Examples, Observed_Examples, References
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content TeamMITRE
updated Mapping_Notes
Page Last Updated: February 29, 2024