Home > CWE List > VIEW SLICE: CWE-1343: Weaknesses in the 2021 CWE Most Important Hardware Weaknesses List (4.15) |
|
CWE VIEW: Weaknesses in the 2021 CWE Most Important Hardware Weaknesses List
CWE entries in this view are listed in the 2021 CWE Most Important Hardware Weaknesses List, as determined by the Hardware CWE Special Interest Group (HW CWE SIG).
View ComponentsA | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
CWE-1277: Firmware Not Updateable
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not provide its users with the ability to update or patch its firmware to address any vulnerabilities or weaknesses that may be present. Without the ability to patch or update firmware, consumers will be left vulnerable to exploitation of any known vulnerabilities, or any vulnerabilities that are discovered in the future. This can expose consumers to permanent risk throughout the entire lifetime of the device, which could be years or decades. Some external protective measures and mitigations might be employed to aid in preventing or reducing the risk of malicious attack, but the root weakness cannot be corrected. This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore. Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance. Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Example 1 A refrigerator has an Internet interface for the official purpose of alerting the manufacturer when that refrigerator detects a fault. Because the device is attached to the Internet, the refrigerator is a target for hackers who may wish to use the device other potentially more nefarious purposes. (bad code) Example Language: Other The refrigerator has no means of patching and is hacked becoming a spewer of email spam. (good code) Example Language: Other The device automatically patches itself and provides considerable more protection against being hacked.
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Terminology The "firmware" term does not have a single commonly-shared definition, so there may be variations in how this CWE entry is interpreted during mapping.
CWE-1274: Improper Access Control for Volatile Memory Containing Boot Code
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product conducts a secure-boot process that transfers bootloader code from Non-Volatile Memory (NVM) into Volatile Memory (VM), but it does not have sufficient access control or other protections for the Volatile Memory. Adversaries could bypass the secure-boot process and execute their own untrusted, malicious boot code. As a part of a secure-boot process, the read-only-memory (ROM) code for a System-on-Chip (SoC) or other system fetches bootloader code from Non-Volatile Memory (NVM) and stores the code in Volatile Memory (VM), such as dynamic, random-access memory (DRAM) or static, random-access memory (SRAM). The NVM is usually external to the SoC, while the VM is internal to the SoC. As the code is transferred from NVM to VM, it is authenticated by the SoC's ROM code. If the volatile-memory-region protections or access controls are insufficient to prevent modifications from an adversary or untrusted agent, the secure boot may be bypassed or replaced with the execution of an adversary's code. This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore. Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance. Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Example 1 A typical SoC secure boot's flow includes fetching the next piece of code (i.e., the boot loader) from NVM (e.g., serial, peripheral interface (SPI) flash), and transferring it to DRAM/SRAM volatile, internal memory, which is more efficient. (bad code) The volatile-memory protections or access controls are insufficient. The memory from where the boot loader executes can be modified by an adversary. (good code) A good architecture should define appropriate protections or access controls to prevent modification by an adversary or untrusted agent, once the bootloader is authenticated.
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
CWE-1260: Improper Handling of Overlap Between Protected Memory Ranges
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product allows address regions to overlap, which can result in the bypassing of intended memory protection. Isolated memory regions and access control (read/write) policies are used by hardware to protect privileged software. Software components are often allowed to change or remap memory region definitions in order to enable flexible and dynamically changeable memory management by system software. If a software component running at lower privilege can program a memory address region to overlap with other memory regions used by software running at higher privilege, privilege escalation may be available to attackers. The memory protection unit (MPU) logic can incorrectly handle such an address overlap and allow the lower-privilege software to read or write into the protected memory region, resulting in privilege escalation attack. An address overlap weakness can also be used to launch a denial of service attack on the higher-privilege software memory regions. This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore. Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance. Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Memory Hardware (Undetermined Prevalence) Processor Hardware (Undetermined Prevalence) Example 1
For example, consider a design with a 16-bit address that has two software privilege levels: Privileged_SW and Non_privileged_SW. To isolate the system memory regions accessible by these two privilege levels, the design supports three memory regions: Region_0, Region_1, and Region_2. Each region is defined by two 32 bit registers: its range and its access policy.
Certain bits of the access policy are defined symbolically as follows:
For any requests from software, an address-protection filter checks the address range and access policies for each of the three regions, and only allows software access if all three filters allow access. Consider the following goals for access control as intended by the designer:
The intention is that Non_privileged_SW cannot modify memory region and policies defined by Privileged_SW in Region_0 and Region_1. Thus, it cannot read or write the memory regions that Privileged_SW is using. (bad code) Non_privileged_SW can program the Address_range register for Region_2 so that its address overlaps with the ranges defined by Region_0 or Region_1. Using this capability, it is possible for Non_privileged_SW to block any memory region from being accessed by Privileged_SW, i.e., Region_0 and Region_1. This design could be improved in several ways. (good code) Ensure that software accesses to memory regions are only permitted if all three filters permit access. Additionally, the scheme could define a memory region priority to ensure that Region_2 (the memory region defined by Non_privileged_SW) cannot overlap Region_0 or Region_1 (which are used by Privileged_SW). Example 2 The example code below is taken from the IOMMU controller module of the HACK@DAC'19 buggy CVA6 SoC [REF-1338]. The static memory map is composed of a set of Memory-Mapped Input/Output (MMIO) regions covering different IP agents within the SoC. Each region is defined by two 64-bit variables representing the base address and size of the memory region (XXXBase and XXXLength). In this example, we have 12 IP agents, and only 4 of them are called out for illustration purposes in the code snippets. Access to the AES IP MMIO region is considered privileged as it provides access to AES secret key, internal states, or decrypted data. (bad code) Example Language: Verilog ...
localparam logic[63:0] PLICLength = 64'h03FF_FFFF;
localparam logic[63:0] UARTLength = 64'h0011_1000; localparam logic[63:0] AESLength = 64'h0000_1000; localparam logic[63:0] SPILength = 64'h0080_0000; ...
typedef enum logic [63:0] {
...
PLICBase = 64'h0C00_0000, UARTBase = 64'h1000_0000, AESBase = 64'h1010_0000, SPIBase = 64'h2000_0000, ... The vulnerable code allows the overlap between the protected MMIO region of the AES peripheral and the unprotected UART MMIO region. As a result, unprivileged users can access the protected region of the AES IP. In the given vulnerable example UART MMIO region starts at address 64'h1000_0000 and ends at address 64'h1011_1000 (UARTBase is 64'h1000_0000, and the size of the region is provided by the UARTLength of 64'h0011_1000). On the other hand, the AES MMIO region starts at address 64'h1010_0000 and ends at address 64'h1010_1000, which implies an overlap between the two peripherals' memory regions. Thus, any user with access to the UART can read or write the AES MMIO region, e.g., the AES secret key. To mitigate this issue, remove the overlapping address regions by decreasing the size of the UART memory region or adjusting memory bases for all the remaining peripherals. [REF-1339] (good code) Example Language: Verilog ...
localparam logic[63:0] PLICLength = 64'h03FF_FFFF;
localparam logic[63:0] UARTLength = 64'h0000_1000; localparam logic[63:0] AESLength = 64'h0000_1000; localparam logic[63:0] SPILength = 64'h0080_0000; ...
typedef enum logic [63:0] {
...
PLICBase = 64'h0C00_0000, UARTBase = 64'h1000_0000, AESBase = 64'h1010_0000, SPIBase = 64'h2000_0000, ...
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
CWE-1189: Improper Isolation of Shared Resources on System-on-a-Chip (SoC)
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe System-On-a-Chip (SoC) does not properly isolate shared resources between trusted and untrusted agents. A System-On-a-Chip (SoC) has a lot of functionality, but it may have a limited number of pins or pads. A pin can only perform one function at a time. However, it can be configured to perform multiple different functions. This technique is called pin multiplexing. Similarly, several resources on the chip may be shared to multiplex and support different features or functions. When such resources are shared between trusted and untrusted agents, untrusted agents may be able to access the assets intended to be accessed only by the trusted agents. This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore. Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance. Languages Class: Not Language-Specific (Undetermined Prevalence) Technologies Class: System on Chip (Undetermined Prevalence) Example 1 Consider the following SoC design. The Hardware Root of Trust (HRoT) local SRAM is memory mapped in the core{0-N} address space. The HRoT allows or disallows access to private memory ranges, thus allowing the sram to function as a mailbox for communication between untrusted and trusted HRoT partitions. We assume that the threat is from malicious software in the untrusted domain. We assume this software has access to the core{0-N} memory map and can be running at any privilege level on the untrusted cores. The capability of this threat in this example is communication to and from the mailbox region of SRAM modulated by the hrot_iface. To address this threat, information must not enter or exit the shared region of SRAM through hrot_iface when in secure or privileged mode.
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
CWE-1231: Improper Prevention of Lock Bit Modification
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a trusted lock bit for restricting access to registers, address regions, or other resources, but the product does not prevent the value of the lock bit from being modified after it has been set. In integrated circuits and hardware intellectual property (IP) cores, device configuration controls are commonly programmed after a device power reset by a trusted firmware or software module (e.g., BIOS/bootloader) and then locked from any further modification. This behavior is commonly implemented using a trusted lock bit. When set, the lock bit disables writes to a protected set of registers or address regions. Design or coding errors in the implementation of the lock bit protection feature may allow the lock bit to be modified or cleared by software after it has been set. Attackers might be able to unlock the system and features that the bit is intended to protect. This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore. Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance. Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Example 1 Consider the example design below for a digital thermal sensor that detects overheating of the silicon and triggers system shutdown. The system critical temperature limit (CRITICAL_TEMP_LIMIT) and thermal sensor calibration (TEMP_SENSOR_CALIB) data have to be programmed by firmware, and then the register needs to be locked (TEMP_SENSOR_LOCK). (bad code) Example Language: Other
In this example, note that if the system heats to critical temperature, the response of the system is controlled by the TEMP_HW_SHUTDOWN bit [1], which is not lockable. Thus, the intended security property of the critical temperature sensor cannot be fully protected, since software can misconfigure the TEMP_HW_SHUTDOWN register even after the lock bit is set to disable the shutdown response. (good code) To fix this weakness, one could change the TEMP_HW_SHUTDOWN field to be locked by TEMP_SENSOR_LOCK.
Example 2 The following example code is a snippet from the register locks inside the buggy OpenPiton SoC of HACK@DAC'21 [REF-1350]. Register locks help prevent SoC peripherals' registers from malicious use of resources. The registers that can potentially leak secret data are locked by register locks. In the vulnerable code, the reglk_mem is used for locking information. If one of its bits toggle to 1, the corresponding peripheral's registers will be locked. In the context of the HACK@DAC System-on-Chip (SoC), it is pertinent to note the existence of two distinct categories of reset signals. First, there is a global reset signal denoted as "rst_ni," which possesses the capability to simultaneously reset all peripherals to their respective initial states. Second, we have peripheral-specific reset signals, such as "rst_9," which exclusively reset individual peripherals back to their initial states. The administration of these reset signals is the responsibility of the reset controller module. (bad code) Example Language: Verilog always @(posedge clk_i)
begin
endif(~(rst_ni && ~jtag_unlock && ~rst_9))
begin
for (j=0; j < 6; j=j+1) begin
endreglk_mem[j] <= 'h0;
... In the buggy SoC architecture during HACK@DAC'21, a critical issue arises within the reset controller module. Specifically, the reset controller can inadvertently transmit a peripheral reset signal to the register lock within the user privilege domain. This unintentional action can result in the reset of the register locks, potentially exposing private data from all other peripherals, rendering them accessible and readable. To mitigate the issue, remove the extra reset signal rst_9 from the register lock if condition. [REF-1351] (good code) Example Language: Verilog always @(posedge clk_i)
begin
endif(~(rst_ni && ~jtag_unlock))
begin
for (j=0; j < 6; j=j+1) begin
endreglk_mem[j] <= 'h0;
...
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
CWE-1300: Improper Protection of Physical Side Channels
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe device does not contain sufficient protection mechanisms to prevent physical side channels from exposing sensitive information due to patterns in physically observable phenomena such as variations in power consumption, electromagnetic emissions (EME), or acoustic emissions. An adversary could monitor and measure physical phenomena to detect patterns and make inferences, even if it is not possible to extract the information in the digital domain. Physical side channels have been well-studied for decades in the context of breaking implementations of cryptographic algorithms or other attacks against security features. These side channels may be easily observed by an adversary with physical access to the device, or using a tool that is in close proximity. If the adversary can monitor hardware operation and correlate its data processing with power, EME, and acoustic measurements, the adversary might be able to recover of secret keys and data. This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore. Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance. Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Example 1 Consider a device that checks a passcode to unlock the screen. (bad code) As each character of
the PIN number is entered, a correct character
exhibits one current pulse shape while an
incorrect character exhibits a different current
pulse shape. PIN numbers used to unlock a cell phone should not exhibit any characteristics about themselves. This creates a side channel. An attacker could monitor the pulses using an oscilloscope or other method. Once the first character is correctly guessed (based on the oscilloscope readings), they can then move to the next character, which is much more efficient than the brute force method of guessing every possible sequence of characters. (good code) Rather than comparing
each character to the correct PIN value as it is
entered, the device could accumulate the PIN in a
register, and do the comparison all at once at the
end. Alternatively, the components for the
comparison could be modified so that the current
pulse shape is the same regardless of the
correctness of the entered
character. Example 2 Consider the device vulnerability CVE-2021-3011, which affects certain microcontrollers [REF-1221]. The Google Titan Security Key is used for two-factor authentication using cryptographic algorithms. The device uses an internal secret key for this purpose and exchanges information based on this key for the authentication. If this internal secret key and the encryption algorithm were known to an adversary, the key function could be duplicated, allowing the adversary to masquerade as the legitimate user. (bad code) The local method of extracting the secret key consists of plugging the key into a USB port and using electromagnetic (EM) sniffing tools and computers. (good code) Several solutions could have been considered by the manufacturer. For example, the manufacturer could shield the circuitry in the key or add randomized delays, indirect calculations with random values involved, or randomly ordered calculations to make extraction much more difficult or a combination of these techniques. Example 3 The code snippet provided here is part of the modular exponentiation module found in the HACK@DAC'21 Openpiton System-on-Chip (SoC), specifically within the RSA peripheral [REF-1368]. Modular exponentiation, denoted as "a^b mod n," is a crucial operation in the RSA public/private key encryption. In RSA encryption, where 'c' represents ciphertext, 'm' stands for a message, and 'd' corresponds to the private key, the decryption process is carried out using this modular exponentiation as follows: m = c^d mod n, where 'n' is the result of multiplying two large prime numbers. (bad code) Example Language: Verilog
... module mod_exp
...
endmodule`UPDATE: begin
if (exponent_reg != 'd0) begin
...
if (exponent_reg[0])
result_reg <= result_next;
base_reg <= base_next;exponent_reg <= exponent_next; state <= `UPDATE; The vulnerable code shows a buggy implementation of binary exponentiation where it updates the result register (result_reg) only when the corresponding exponent bit (exponent_reg[0]) is set to 1. However, when this exponent bit is 0, the output register is not updated. It's important to note that this implementation introduces a physical power side-channel vulnerability within the RSA core. This vulnerability could expose the private exponent to a determined physical attacker. Such exposure of the private exponent could lead to a complete compromise of the private key. To address mitigation requirements, the developer can develop the module by minimizing dependency on conditions, particularly those reliant on secret keys. In situations where branching is unavoidable, developers can implement masking mechanisms to obfuscate the power consumption patterns exhibited by the module (see good code example). Additionally, certain algorithms, such as the Karatsuba algorithm, can be implemented as illustrative examples of side-channel resistant algorithms, as they necessitate only a limited number of branch conditions [REF-1369]. (good code) Example Language: Verilog
... module mod_exp
...
endmodule`UPDATE: begin
if (exponent_reg != 'd0) begin
...
if (exponent_reg[0]) begin
result_reg <= result_next;
end else begin
mask_reg <= result_next;
endbase_reg <= base_next; exponent_reg <= exponent_next; state <= `UPDATE;
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
CWE-1256: Improper Restriction of Software Interfaces to Hardware Features
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product provides software-controllable device functionality for capabilities such as power and clock management, but it does not properly limit functionality that can lead to modification of hardware memory or register bits, or the ability to observe physical side channels. It is frequently assumed that physical attacks such as fault injection and side-channel analysis require an attacker to have physical access to the target device. This assumption may be false if the device has improperly secured power management features, or similar features. For mobile devices, minimizing power consumption is critical, but these devices run a wide variety of applications with different performance requirements. Software-controllable mechanisms to dynamically scale device voltage and frequency and monitor power consumption are common features in today's chipsets, but they also enable attackers to mount fault injection and side-channel attacks without having physical access to the device. Fault injection attacks involve strategic manipulation of bits in a device to achieve a desired effect such as skipping an authentication step, elevating privileges, or altering the output of a cryptographic operation. Manipulation of the device clock and voltage supply is a well-known technique to inject faults and is cheap to implement with physical device access. Poorly protected power management features allow these attacks to be performed from software. Other features, such as the ability to write repeatedly to DRAM at a rapid rate from unprivileged software, can result in bit flips in other memory locations (Rowhammer, [REF-1083]). Side channel analysis requires gathering measurement traces of physical quantities such as power consumption. Modern processors often include power metering capabilities in the hardware itself (e.g., Intel RAPL) which if not adequately protected enable attackers to gather measurements necessary for performing side-channel attacks from software. This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore. Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance. Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Memory Hardware (Undetermined Prevalence) Power Management Hardware (Undetermined Prevalence) Clock/Counter Hardware (Undetermined Prevalence) Example 1 This example considers the Rowhammer problem [REF-1083]. The Rowhammer issue was caused by a program in a tight loop writing repeatedly to a location to which the program was allowed to write but causing an adjacent memory location value to change. (bad code) Example Language: Other
Continuously writing the same value to the same address causes the value of an adjacent location to change value.
Preventing the loop required to defeat the Rowhammer exploit is not always possible: (good code) Example Language: Other
Redesign the RAM devices to reduce inter capacitive coupling making the Rowhammer exploit impossible.
While the redesign may be possible for new devices, a redesign is not possible in existing devices. There is also the possibility that reducing capacitance with a relayout would impact the density of the device resulting in a less capable, more costly device. Example 2 Suppose a hardware design implements a set of software-accessible registers for scaling clock frequency and voltage but does not control access to these registers. Attackers may cause register and memory changes and race conditions by changing the clock or voltage of the device under their control. Example 3 Consider the following SoC design. Security-critical settings for scaling clock frequency and voltage are available in a range of registers bounded by [PRIV_END_ADDR : PRIV_START_ADDR] in the tmcu.csr module in the HW Root of Trust. These values are writable based on the lock_bit register in the same module. The lock_bit is only writable by privileged software running on the tmcu. We assume that untrusted software running on any of the Core{0-N} processors has access to the input and output ports of the hrot_iface. If untrusted software can clear the lock_bit or write the clock frequency and voltage registers due to inadequate protection, a fault injection attack could be performed.
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
CWE-1244: Internal Asset Exposed to Unsafe Debug Access Level or State
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses physical debug or test interfaces with support for multiple access levels, but it assigns the wrong debug access level to an internal asset, providing unintended access to the asset from untrusted debug agents. Debug authorization can have multiple levels of access, defined such that different system internal assets are accessible based on the current authorized debug level. Other than debugger authentication (e.g., using passwords or challenges), the authorization can also be based on the system state or boot stage. For example, full system debug access might only be allowed early in boot after a system reset to ensure that previous session data is not accessible to the authenticated debugger. If this protection mechanism does not ensure that internal assets have the correct debug access level during each boot stage or change in system state, an attacker could obtain sensitive information from the internal asset using a debugger. This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore. Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance. Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: System on Chip (Undetermined Prevalence) Example 1 The JTAG interface is used to perform debugging and provide CPU core access for developers. JTAG-access protection is implemented as part of the JTAG_SHIELD bit in the hw_digctl_ctrl register. This register has no default value at power up and is set only after the system boots from ROM and control is transferred to the user software. (bad code) Example Language: Other
This means that since the end user has access to JTAG at system reset and during ROM code execution before control is transferred to user software, a JTAG user can modify the boot flow and subsequently disclose all CPU information, including data-encryption keys. (informative) The default value of this register bit should be set to 1 to prevent the JTAG from being enabled at system reset.
Example 2 The example code below is taken from the CVA6 processor core of the HACK@DAC'21 buggy OpenPiton SoC. Debug access allows users to access internal hardware registers that are otherwise not exposed for user access or restricted access through access control protocols. Hence, requests to enter debug mode are checked and authorized only if the processor has sufficient privileges. In addition, debug accesses are also locked behind password checkers. Thus, the processor enters debug mode only when the privilege level requirement is met, and the correct debug password is provided. The following code [REF-1377] illustrates an instance of a vulnerable implementation of debug mode. The core correctly checks if the debug requests have sufficient privileges and enables the debug_mode_d and debug_mode_q signals. It also correctly checks for debug password and enables umode_i signal. (bad code) Example Language: Verilog
module csr_regfile #( ...
// check that we actually want to enter debug depending on the privilege level we are currently in
...unique case (priv_lvl_o)
riscv::PRIV_LVL_M: begin
debug_mode_d = dcsr_q.ebreakm;
riscv::PRIV_LVL_U: begin
debug_mode_d = dcsr_q.ebreaku;
assign priv_lvl_o = (debug_mode_q || umode_i) ? riscv::PRIV_LVL_M : priv_lvl_q;
...
debug_mode_q <= debug_mode_d;
...However, it grants debug access and changes the privilege level, priv_lvl_o, even when one of the two checks is satisfied and the other is not. Because of this, debug access can be granted by simply requesting with sufficient privileges (i.e., debug_mode_q is enabled) and failing the password check (i.e., umode_i is disabled). This allows an attacker to bypass the debug password checking and gain debug access to the core, compromising the security of the processor. A fix to this issue is to only change the privilege level of the processor when both checks are satisfied, i.e., the request has enough privileges (i.e., debug_mode_q is enabled) and the password checking is successful (i.e., umode_i is enabled) [REF-1378]. (good code) Example Language: Verilog
module csr_regfile #( ...
// check that we actually want to enter debug depending on the privilege level we are currently in
...unique case (priv_lvl_o)
riscv::PRIV_LVL_M: begin
debug_mode_d = dcsr_q.ebreakm;
riscv::PRIV_LVL_U: begin
debug_mode_d = dcsr_q.ebreaku;
assign priv_lvl_o = (debug_mode_q && umode_i) ? riscv::PRIV_LVL_M : priv_lvl_q;
...
debug_mode_q <= debug_mode_d;
...
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Relationship CWE-1191 and CWE-1244 both involve physical debug access, but the weaknesses are different. CWE-1191 is effectively about missing authorization for a debug interface, i.e. JTAG. CWE-1244 is about providing internal assets with the wrong debug access level, exposing the asset to untrusted debug agents.
CWE-1191: On-Chip Debug and Test Interface With Improper Access Control
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe chip does not implement or does not correctly perform access control to check whether users are authorized to access internal registers and test modes through the physical debug/test interface. A device's internal information may be accessed through a scan chain of interconnected internal registers, usually through a JTAG interface. The JTAG interface provides access to these registers in a serial fashion in the form of a scan chain for the purposes of debugging programs running on a device. Since almost all information contained within a device may be accessed over this interface, device manufacturers typically insert some form of authentication and authorization to prevent unintended use of this sensitive information. This mechanism is implemented in addition to on-chip protections that are already present. If authorization, authentication, or some other form of access control is not implemented or not implemented correctly, a user may be able to bypass on-chip protection mechanisms through the debug interface. Sometimes, designers choose not to expose the debug pins on the motherboard. Instead, they choose to hide these pins in the intermediate layers of the board. This is primarily done to work around the lack of debug authorization inside the chip. In such a scenario (without debug authorization), when the debug interface is exposed, chip internals are accessible to an attacker. This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore. Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance. Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Example 1 A home, WiFi-router device implements a login prompt which prevents an unauthorized user from issuing any commands on the device until appropriate credentials are provided. The credentials are protected on the device and are checked for strength against attack. (bad code) Example Language: Other If the JTAG interface on this device is not hidden by the manufacturer, the interface may be identified using tools such as JTAGulator. If it is hidden but not disabled, it can be exposed by physically wiring to the board. By issuing a "halt" command before the OS starts, the unauthorized user pauses the watchdog timer and prevents the router from restarting (once the watchdog timer would have expired). Having paused the router, an unauthorized user is able to execute code and inspect and modify data in the device, even extracting all of the router's firmware. This allows the user to examine the router and potentially exploit it. JTAG is useful to chip and device manufacturers during design, testing, and production and is included in nearly every product. Without proper authentication and authorization, the interface may allow tampering with a product. (good code) Example Language: Other In order to prevent exposing the debugging interface, manufacturers might try to obfuscate the JTAG interface or blow device internal fuses to disable the JTAG interface. Adding authentication and authorization to this interface makes use by unauthorized individuals much more difficult. Example 2 The following example code is a snippet from the JTAG wrapper module in the RISC-V debug module of the HACK@DAC'21 Openpiton SoC [REF-1355]. To make sure that the JTAG is accessed securely, the developers have included a primary authentication mechanism based on a password. The developers employed a Finite State Machine (FSM) to implement this authentication. When a user intends to read from or write to the JTAG module, they must input a password. In the subsequent state of the FSM module, the entered password undergoes Hash-based Message Authentication Code (HMAC) calculation using an internal HMAC submodule. Once the HMAC for the entered password is computed by the HMAC submodule, the FSM transitions to the next state, where it compares the computed HMAC with the expected HMAC for the password. If the computed HMAC matches the expected HMAC, the FSM grants the user permission to perform read or write operations on the JTAG module. [REF-1352] (bad code) Example Language: Verilog ...
PassChkValid: begin
...if(hashValid) begin
endif(exp_hash == pass_hash) begin
end else begin
pass_check = 1'b1;
end else begin
pass_check = 1'b0;
endstate_d = Idle; state_d = PassChkValid;
endHowever, in the given vulnerable part of the code, the JTAG module has not defined a limitation for several continuous wrong password attempts. This omission poses a significant security risk, allowing attackers to carry out brute-force attacks without restrictions. Without a limitation on wrong password attempts, an attacker can repeatedly guess different passwords until they gain unauthorized access to the JTAG module. This leads to various malicious activities, such as unauthorized read from or write to debug module interface. To mitigate the mentioned vulnerability, developers need to implement a restriction on the number of consecutive incorrect password attempts allowed by the JTAG module, which can achieve by incorporating a mechanism that temporarily locks the module after a certain number of failed attempts.[REF-1353][REF-1354] (good code) Example Language: Verilog ...
case (state_q) Idle: begin
... else if ( (dm::dtm_op_e'(dmi.op) == dm::DTM_PASS) && (miss_pass_check_cnt_q != 2'b11) )
...begin state_d = Write;
endpass_mode = 1'b1; end ... PassChkValid: begin
...if(hashValid) begin
endif(exp_hash == pass_hash) begin
end else begin
pass_check = 1'b1;
end else begin
pass_check = 1'b0;
endmiss_pass_check_cnt_d = miss_pass_check_cnt_q + 1 state_d = Idle; state_d = PassChkValid;
endExample 3 The example code below is taken from the JTAG access control mechanism of the HACK@DAC'21 buggy OpenPiton SoC [REF-1364]. Access to JTAG allows users to access sensitive information in the system. Hence, access to JTAG is controlled using cryptographic authentication of the users. In this example (see the vulnerable code source), the password checker uses HMAC-SHA256 for authentication. It takes a 512-bit secret message from the user, hashes it using HMAC, and compares its output with the expected output to determine the authenticity of the user. (bad code) Example Language: Verilog
... logic [31-1:0] data_d, data_q; ... logic [512-1:0] pass_data; ...
Write: begin
...
...
end
if (pass_mode) begin
pass_data = { {60{8'h00}}, data_d};
...state_d = PassChk; pass_mode = 1'b0; The vulnerable code shows an incorrect implementation of the HMAC authentication where it only uses the least significant 32 bits of the secret message for the authentication (the remaining 480 bits are hard coded as zeros). As a result, the system is susceptible to brute-force attacks on the access control mechanism of JTAG, where the attacker only needs to determine 32 bits of the secret message instead of 512 bits. To mitigate this issue, remove the zero padding and use all 512 bits of the secret message for HMAC authentication [REF-1365]. (good code) Example Language: Verilog
... logic [512-1:0] data_d, data_q; ... logic [512-1:0] pass_data; ...
Write: begin
...
...
end
if (pass_mode) begin
pass_data = data_d;
...state_d = PassChk; pass_mode = 1'b0;
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Relationship CWE-1191 and CWE-1244 both involve physical debug access, but the weaknesses are different. CWE-1191 is effectively about missing authorization for a debug interface, i.e. JTAG. CWE-1244 is about providing internal assets with the wrong debug access level, exposing the asset to untrusted debug agents.
CWE-1233: Security-Sensitive Hardware Controls with Missing Lock Bit Protection
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a register lock bit protection mechanism, but it does not ensure that the lock bit prevents modification of system registers or controls that perform changes to important hardware system configuration. Integrated circuits and hardware intellectual properties (IPs) might provide device configuration controls that need to be programmed after device power reset by a trusted firmware or software module, commonly set by BIOS/bootloader. After reset, there can be an expectation that the controls cannot be used to perform any further modification. This behavior is commonly implemented using a trusted lock bit, which can be set to disable writes to a protected set of registers or address regions. The lock protection is intended to prevent modification of certain system configuration (e.g., memory/memory protection unit configuration). However, if the lock bit does not effectively write-protect all system registers or controls that could modify the protected system configuration, then an adversary may be able to use software to access the registers/controls and modify the protected hardware configuration. This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore. Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance. Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Example 1 Consider the example design below for a digital thermal sensor that detects overheating of the silicon and triggers system shutdown. The system critical temperature limit (CRITICAL_TEMP_LIMIT) and thermal sensor calibration (TEMP_SENSOR_CALIB) data have to be programmed by the firmware. (bad code) Example Language: Other
In this example note that only the CRITICAL_TEMP_LIMIT register is protected by the TEMP_SENSOR_LOCK bit, while the security design intent is to protect any modification of the critical temperature detection and response. The response of the system, if the system heats to a critical temperature, is controlled by TEMP_HW_SHUTDOWN bit [1], which is not lockable. Also, the TEMP_SENSOR_CALIB register is not protected by the lock bit. By modifying the temperature sensor calibration, the conversion of the sensor data to a degree centigrade can be changed, such that the current temperature will never be detected to exceed critical temperature value programmed by the protected lock. Similarly, by modifying the TEMP_HW_SHUTDOWN.Enable bit, the system response detection of the current temperature exceeding critical temperature can be disabled. (good code) Change TEMP_HW_SHUTDOWN and TEMP_SENSOR_CALIB controls to be locked by TEMP_SENSOR_LOCK.
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
CWE-1272: Sensitive Information Uncleared Before Debug/Power State Transition
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product performs a power or debug state transition, but it does not clear sensitive information that should no longer be accessible due to changes to information access restrictions. A device or system frequently employs many power and sleep states during its normal operation (e.g., normal power, additional power, low power, hibernate, deep sleep, etc.). A device also may be operating within a debug condition. State transitions can happen from one power or debug state to another. If there is information available in the previous state which should not be available in the next state and is not properly removed before the transition into the next state, sensitive information may leak from the system. This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore. Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance. Languages VHDL (Undetermined Prevalence) Verilog (Undetermined Prevalence) Class: Hardware Description Language (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Example 1 This example shows how an attacker can take advantage of an incorrect state transition.
Suppose a device is transitioning from state A to state B. During state A, it can read certain private keys from the hidden fuses that are only accessible in state A but not in state B. The device reads the keys, performs operations using those keys, then transitions to state B, where those private keys should no longer be accessible. (bad code) During the transition from A to B, the device does not scrub the memory. After the transition to state B, even though the private keys are no longer accessible directly from the fuses in state B, they can be accessed indirectly by reading the memory that contains the private keys. (good code) For transition from state A to state B, remove information which should not be available once the transition is complete.
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
CWE-1240: Use of a Cryptographic Primitive with a Risky Implementation
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterTo fulfill the need for a cryptographic primitive, the product implements a cryptographic algorithm using a non-standard, unproven, or disallowed/non-compliant cryptographic implementation. Cryptographic protocols and systems depend on cryptographic primitives (and associated algorithms) as their basic building blocks. Some common examples of primitives are digital signatures, one-way hash functions, ciphers, and public key cryptography; however, the notion of "primitive" can vary depending on point of view. See "Terminology Notes" for further explanation of some concepts. Cryptographic primitives are defined to accomplish one very specific task in a precisely defined and mathematically reliable fashion. For example, suppose that for a specific cryptographic primitive (such as an encryption routine), the consensus is that the primitive can only be broken after trying out N different inputs (where the larger the value of N, the stronger the cryptography). For an encryption scheme like AES-256, one would expect N to be so large as to be infeasible to execute in a reasonable amount of time. If a vulnerability is ever found that shows that one can break a cryptographic primitive in significantly less than the expected number of attempts, then that primitive is considered weakened (or sometimes in extreme cases, colloquially it is "broken"). As a result, anything using this cryptographic primitive would now be considered insecure or risky. Thus, even breaking or weakening a seemingly small cryptographic primitive has the potential to render the whole system vulnerable, due to its reliance on the primitive. A historical example can be found in TLS when using DES. One would colloquially call DES the cryptographic primitive for transport encryption in this version of TLS. In the past, DES was considered strong, because no weaknesses were found in it; importantly, DES has a key length of 56 bits. Trying N=2^56 keys was considered impractical for most actors. Unfortunately, attacking a system with 56-bit keys is now practical via brute force, which makes defeating DES encryption practical. It is now practical for an adversary to read any information sent under this version of TLS and use this information to attack the system. As a result, it can be claimed that this use of TLS is weak, and that any system depending on TLS with DES could potentially render the entire system vulnerable to attack. Cryptographic primitives and associated algorithms are only considered safe after extensive research and review from experienced cryptographers from academia, industry, and government entities looking for any possible flaws. Furthermore, cryptographic primitives and associated algorithms are frequently reevaluated for safety when new mathematical and attack techniques are discovered. As a result and over time, even well-known cryptographic primitives can lose their compliance status with the discovery of novel attacks that might either defeat the algorithm or reduce its robustness significantly. If ad-hoc cryptographic primitives are implemented, it is almost certain that the implementation will be vulnerable to attacks that are well understood by cryptographers, resulting in the exposure of sensitive information and other consequences. This weakness is even more difficult to manage for hardware-implemented deployment of cryptographic algorithms. First, because hardware is not patchable as easily as software, any flaw discovered after release and production typically cannot be fixed without a recall of the product. Secondly, the hardware product is often expected to work for years, during which time computation power available to the attacker only increases. Therefore, for hardware implementations of cryptographic primitives, it is absolutely essential that only strong, proven cryptographic primitives are used. This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore. Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance. Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: System on Chip (Undetermined Prevalence) Example 1 Re-using random values may compromise security. (bad code) Suppose an Encryption algorithm needs a random value for a key. Instead of using a DRNG (Deterministic Random Number Generator), the designer uses a linear-feedback shift register (LFSR) to generate the value. While an LFSR may provide pseudo-random number generation service, the entropy (measure of randomness) of the resulting output may be less than that of an accepted DRNG (like that used in dev/urandom). Thus, using an LFSR weakens the strength of the cryptographic system, because it may be possible for an attacker to guess the LFSR output and subsequently the encryption key. (good code) If a cryptographic algorithm expects a random number as its input, provide one. Do not provide a pseudo-random value.
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Terminology Terminology for cryptography varies widely, from informal and colloquial to mathematically-defined, with different precision and formalism depending on whether the stakeholder is a developer, cryptologist, etc. Yet there is a need for CWE to be self-consistent while remaining understandable and acceptable to multiple audiences. As of CWE 4.6, CWE terminology around "primitives" and "algorithms" is emerging as shown by the following example, subject to future consultation and agreement within the CWE and cryptography communities. Suppose one wishes to send encrypted data using a CLI tool such as OpenSSL. One might choose to use AES with a 256-bit key and require tamper protection (GCM mode, for instance). For compatibility's sake, one might also choose the ciphertext to be formatted to the PKCS#5 standard. In this case, the "cryptographic system" would be AES-256-GCM with PKCS#5 formatting. The "cryptographic function" would be AES-256 in the GCM mode of operation, and the "algorithm" would be AES. Colloquially, one would say that AES (and sometimes AES-256) is the "cryptographic primitive," because it is the algorithm that realizes the concept of symmetric encryption (without modes of operation or other protocol related modifications). In practice, developers and architects typically refer to base cryptographic algorithms (AES, SHA, etc.) as cryptographic primitives. Maintenance
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |