CWE VIEW: Weaknesses in Software Written in C++
This view (slice) covers issues that are found in C++ programs that are not common to all languages.
View ComponentsA | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
CWE-843: Access of Resource Using Incompatible Type ('Type Confusion')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product allocates or initializes a resource such as a pointer, object, or variable using one type, but it later accesses that resource using a type that is incompatible with the original type.
When the product accesses the resource using an incompatible type, this could trigger logical errors because the resource does not have expected properties. In languages without memory safety, such as C and C++, type confusion can lead to out-of-bounds memory access. While this weakness is frequently associated with unions when parsing data with many different embedded object types in C, it can be present in any application that can interpret the same variable or memory location in multiple ways. This weakness is not unique to C and C++. For example, errors in PHP applications can be triggered by providing array parameters when scalars are expected, or vice versa. Languages such as Perl, which perform automatic conversion of a variable of one type when it is accessed as if it were another type, can also contain these issues. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The following code uses a union to support the representation of different types of messages. It formats messages differently, depending on their type. (bad code)
Example Language: C
#define NAME_TYPE 1
#define ID_TYPE 2 struct MessageBuffer { int msgType; };union { char *name; };int nameID; int main (int argc, char **argv) { struct MessageBuffer buf;
char *defaultMessage = "Hello World"; buf.msgType = NAME_TYPE; buf.name = defaultMessage; printf("Pointer of buf.name is %p\n", buf.name); /* This particular value for nameID is used to make the code architecture-independent. If coming from untrusted input, it could be any value. */ buf.nameID = (int)(defaultMessage + 1); printf("Pointer of buf.name is now %p\n", buf.name); if (buf.msgType == NAME_TYPE) { printf("Message: %s\n", buf.name); }else { printf("Message: Use ID %d\n", buf.nameID); }The code intends to process the message as a NAME_TYPE, and sets the default message to "Hello World." However, since both buf.name and buf.nameID are part of the same union, they can act as aliases for the same memory location, depending on memory layout after compilation. As a result, modification of buf.nameID - an int - can effectively modify the pointer that is stored in buf.name - a string. Execution of the program might generate output such as:
Pointer of name is 10830
Pointer of name is now 10831
Message: ello World
Notice how the pointer for buf.name was changed, even though buf.name was not explicitly modified. In this case, the first "H" character of the message is omitted. However, if an attacker is able to fully control the value of buf.nameID, then buf.name could contain an arbitrary pointer, leading to out-of-bounds reads or writes. Example 2 The following PHP code accepts a value, adds 5, and prints the sum. (bad code)
Example Language: PHP
$value = $_GET['value'];
$sum = $value + 5; echo "value parameter is '$value'<p>"; echo "SUM is $sum"; When called with the following query string:
value=123
the program calculates the sum and prints out:
SUM is 128
However, the attacker could supply a query string such as:
value[]=123
The "[]" array syntax causes $value to be treated as an array type, which then generates a fatal error when calculating $sum:
Fatal error: Unsupported operand types in program.php on line 2
Example 3 The following Perl code is intended to look up the privileges for user ID's between 0 and 3, by performing an access of the $UserPrivilegeArray reference. It is expected that only userID 3 is an admin (since this is listed in the third element of the array). (bad code)
Example Language: Perl
my $UserPrivilegeArray = ["user", "user", "admin", "user"];
my $userID = get_current_user_ID(); if ($UserPrivilegeArray eq "user") { print "Regular user!\n"; }else { print "Admin!\n"; }print "\$UserPrivilegeArray = $UserPrivilegeArray\n"; In this case, the programmer intended to use "$UserPrivilegeArray->{$userID}" to access the proper position in the array. But because the subscript was omitted, the "user" string was compared to the scalar representation of the $UserPrivilegeArray reference, which might be of the form "ARRAY(0x229e8)" or similar. Since the logic also "fails open" (CWE-636), the result of this bug is that all users are assigned administrator privileges. While this is a forced example, it demonstrates how type confusion can have security consequences, even in memory-safe languages.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Applicable Platform This weakness is possible in any type-unsafe programming language. Research Gap Type confusion weaknesses have received some attention by applied researchers and major software vendors for C and C++ code. Some publicly-reported vulnerabilities probably have type confusion as a root-cause weakness, but these may be described as "memory corruption" instead. For other languages, there are very few public reports of type confusion weaknesses. These are probably under-studied. Since many programs rely directly or indirectly on loose typing, a potential "type confusion" behavior might be intentional, possibly requiring more manual analysis.
CWE-767: Access to Critical Private Variable via Public Method
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
If an attacker modifies the variable to contain unexpected values, this could violate assumptions from other parts of the code. Additionally, if an attacker can read the private variable, it may expose sensitive information or make it easier to launch further attacks.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C++ (Undetermined Prevalence) C# (Undetermined Prevalence) Java (Undetermined Prevalence) Example 1 The following example declares a critical variable to be private, and then allows the variable to be modified by public methods. (bad code)
Example Language: C++
private: float price;
public: void changePrice(float newPrice) { price = newPrice; }Example 2 The following example could be used to implement a user forum where a single user (UID) can switch between multiple profiles (PID). (bad code)
Example Language: Java
public class Client {
private int UID; }public int PID; private String userName; public Client(String userName){ PID = getDefaultProfileID(); }UID = mapUserNametoUID( userName ); this.userName = userName; public void setPID(int ID) { UID = ID; }The programmer implemented setPID with the intention of modifying the PID variable, but due to a typo. accidentally specified the critical variable UID instead. If the program allows profile IDs to be between 1 and 10, but a UID of 1 means the user is treated as an admin, then a user could gain administrative privileges as a result of this typo.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
This entry is closely associated with access control for public methods. If the public methods are restricted with proper access controls, then the information in the private variable will not be exposed to unexpected parties. There may be chaining or composite relationships between improper access controls and this weakness.
CWE-464: Addition of Data Structure Sentinel
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe accidental addition of a data-structure sentinel can cause serious programming logic problems.
Data-structure sentinels are often used to mark the structure of data. A common example of this is the null character at the end of strings or a special sentinel to mark the end of a linked list. It is dangerous to allow this type of control data to be easily accessible. Therefore, it is important to protect from the addition or modification of sentinels.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The following example assigns some character values to a list of characters and prints them each individually, and then as a string. The third character value is intended to be an integer taken from user input and converted to an int. (bad code)
Example Language: C
char *foo;
foo=malloc(sizeof(char)*5); foo[0]='a'; foo[1]='a'; foo[2]=atoi(getc(stdin)); foo[3]='c'; foo[4]='\0' printf("%c %c %c %c %c \n",foo[0],foo[1],foo[2],foo[3],foo[4]); printf("%s\n",foo); The first print statement will print each character separated by a space. However, if a non-integer is read from stdin by getc, then atoi will not make a conversion and return 0. When foo is printed as a string, the 0 at character foo[2] will act as a NULL terminator and foo[3] will never be printed.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-481: Assigning instead of Comparing
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe code uses an operator for assignment when the intention was to perform a comparison.
In many languages the compare statement is very close in appearance to the assignment statement and are often confused. This bug is generally the result of a typo and usually causes obvious problems with program execution. If the comparison is in an if statement, the if statement will usually evaluate the value of the right-hand side of the predicate.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Example 1 The following C/C++ and C# examples attempt to validate an int input parameter against the integer value 100. (bad code)
Example Language: C
int isValid(int value) {
if (value=100) { }printf("Value is valid\n"); }return(1); printf("Value is not valid\n"); return(0); (bad code)
Example Language: C#
bool isValid(int value) {
if (value=100) { }Console.WriteLine("Value is valid."); }return true; Console.WriteLine("Value is not valid."); return false; However, the expression to be evaluated in the if statement uses the assignment operator "=" rather than the comparison operator "==". The result of using the assignment operator instead of the comparison operator causes the int variable to be reassigned locally and the expression in the if statement will always evaluate to the value on the right hand side of the expression. This will result in the input value not being properly validated, which can cause unexpected results. Example 2 In this example, we show how assigning instead of comparing can impact code when values are being passed by reference instead of by value. Consider a scenario in which a string is being processed from user input. Assume the string has already been formatted such that different user inputs are concatenated with the colon character. When the processString function is called, the test for the colon character will result in an insertion of the colon character instead, adding new input separators. Since the string was passed by reference, the data sentinels will be inserted in the original string (CWE-464), and further processing of the inputs will be altered, possibly malformed.. (bad code)
Example Language: C
void processString (char *str) {
int i;
for(i=0; i<strlen(str); i++) { if (isalnum(str[i])){ }processChar(str[i]); }else if (str[i] = ':') { movingToNewInput();} }Example 3 The following Java example attempts to perform some processing based on the boolean value of the input parameter. However, the expression to be evaluated in the if statement uses the assignment operator "=" rather than the comparison operator "==". As with the previous examples, the variable will be reassigned locally and the expression in the if statement will evaluate to true and unintended processing may occur. (bad code)
Example Language: Java
public void checkValid(boolean isValid) {
if (isValid = true) { }System.out.println("Performing processing"); }doSomethingImportant(); else { System.out.println("Not Valid, do not perform processing"); }return; While most Java compilers will catch the use of an assignment operator when a comparison operator is required, for boolean variables in Java the use of the assignment operator within an expression is allowed. If possible, try to avoid using comparison operators on boolean variables in java. Instead, let the values of the variables stand for themselves, as in the following code. (good code)
Example Language: Java
public void checkValid(boolean isValid) {
if (isValid) { }System.out.println("Performing processing"); }doSomethingImportant(); else { System.out.println("Not Valid, do not perform processing"); }return; Alternatively, to test for false, just use the boolean NOT operator. (good code)
Example Language: Java
public void checkValid(boolean isValid) {
if (!isValid) { }System.out.println("Not Valid, do not perform processing"); }return; System.out.println("Performing processing"); doSomethingImportant(); Example 4 The following example demonstrates the weakness. (bad code)
Example Language: C
void called(int foo){
if (foo=1) printf("foo\n"); }int main() { called(2); return 0;
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-587: Assignment of a Fixed Address to a Pointer
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
Using a fixed address is not portable, because that address will probably not be valid in all environments or platforms.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) C# (Undetermined Prevalence) Class: Assembly (Undetermined Prevalence) Example 1 This code assumes a particular function will always be found at a particular address. It assigns a pointer to that address and calls the function. (bad code)
Example Language: C
int (*pt2Function) (float, char, char)=0x08040000;
int result2 = (*pt2Function) (12, 'a', 'b'); // Here we can inject code to execute. The same function may not always be found at the same memory address. This could lead to a crash, or an attacker may alter the memory at the expected address, leading to arbitrary code execution.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-806: Buffer Access Using Size of Source Buffer
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses the size of a source buffer when reading from or writing to a destination buffer, which may cause it to access memory that is outside of the bounds of the buffer.
When the size of the destination is smaller than the size of the source, a buffer overflow could occur.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Sometimes Prevalent) C++ (Sometimes Prevalent) Example 1 In the following example, the source character string is copied to the dest character string using the method strncpy. (bad code)
Example Language: C
...
char source[21] = "the character string"; char dest[12]; strncpy(dest, source, sizeof(source)-1); ... However, in the call to strncpy the source character string is used within the sizeof call to determine the number of characters to copy. This will create a buffer overflow as the size of the source character string is greater than the dest character string. The dest character string should be used within the sizeof call to ensure that the correct number of characters are copied, as shown below. (good code)
Example Language: C
...
char source[21] = "the character string"; char dest[12]; strncpy(dest, source, sizeof(dest)-1); ... Example 2 In this example, the method outputFilenameToLog outputs a filename to a log file. The method arguments include a pointer to a character string containing the file name and an integer for the number of characters in the string. The filename is copied to a buffer where the buffer size is set to a maximum size for inputs to the log file. The method then calls another method to save the contents of the buffer to the log file. (bad code)
Example Language: C
#define LOG_INPUT_SIZE 40
// saves the file name to a log file int outputFilenameToLog(char *filename, int length) { int success;
// buffer with size set to maximum size for input to log file char buf[LOG_INPUT_SIZE]; // copy filename to buffer strncpy(buf, filename, length); // save to log file success = saveToLogFile(buf); return success; However, in this case the string copy method, strncpy, mistakenly uses the length method argument to determine the number of characters to copy rather than using the size of the local character string, buf. This can lead to a buffer overflow if the number of characters contained in character string pointed to by filename is larger then the number of characters allowed for the local character string. The string copy method should use the buf character string within a sizeof call to ensure that only characters up to the size of the buf array are copied to avoid a buffer overflow, as shown below. (good code)
Example Language: C
...
// copy filename to buffer strncpy(buf, filename, sizeof(buf)-1); ...
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-805: Buffer Access with Incorrect Length Value
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a sequential operation to read or write a buffer, but it uses an incorrect length value that causes it to access memory that is outside of the bounds of the buffer.
When the length value exceeds the size of the destination, a buffer overflow could occur.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Often Prevalent) C++ (Often Prevalent) Class: Assembly (Undetermined Prevalence) Example 1 This example takes an IP address from a user, verifies that it is well formed and then looks up the hostname and copies it into a buffer. (bad code)
Example Language: C
void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr; char hostname[64]; in_addr_t inet_addr(const char *cp); /*routine that ensures user_supplied_addr is in the right format for conversion */ validate_addr_form(user_supplied_addr); addr = inet_addr(user_supplied_addr); hp = gethostbyaddr( addr, sizeof(struct in_addr), AF_INET); strcpy(hostname, hp->h_name); This function allocates a buffer of 64 bytes to store the hostname under the assumption that the maximum length value of hostname is 64 bytes, however there is no guarantee that the hostname will not be larger than 64 bytes. If an attacker specifies an address which resolves to a very large hostname, then the function may overwrite sensitive data or even relinquish control flow to the attacker. Note that this example also contains an unchecked return value (CWE-252) that can lead to a NULL pointer dereference (CWE-476). Example 2 In the following example, it is possible to request that memcpy move a much larger segment of memory than assumed: (bad code)
Example Language: C
int returnChunkSize(void *) {
/* if chunk info is valid, return the size of usable memory, * else, return -1 to indicate an error */ ... int main() { ... }memcpy(destBuf, srcBuf, (returnChunkSize(destBuf)-1)); ... If returnChunkSize() happens to encounter an error it will return -1. Notice that the return value is not checked before the memcpy operation (CWE-252), so -1 can be passed as the size argument to memcpy() (CWE-805). Because memcpy() assumes that the value is unsigned, it will be interpreted as MAXINT-1 (CWE-195), and therefore will copy far more memory than is likely available to the destination buffer (CWE-787, CWE-788). Example 3 In the following example, the source character string is copied to the dest character string using the method strncpy. (bad code)
Example Language: C
...
char source[21] = "the character string"; char dest[12]; strncpy(dest, source, sizeof(source)-1); ... However, in the call to strncpy the source character string is used within the sizeof call to determine the number of characters to copy. This will create a buffer overflow as the size of the source character string is greater than the dest character string. The dest character string should be used within the sizeof call to ensure that the correct number of characters are copied, as shown below. (good code)
Example Language: C
...
char source[21] = "the character string"; char dest[12]; strncpy(dest, source, sizeof(dest)-1); ... Example 4 In this example, the method outputFilenameToLog outputs a filename to a log file. The method arguments include a pointer to a character string containing the file name and an integer for the number of characters in the string. The filename is copied to a buffer where the buffer size is set to a maximum size for inputs to the log file. The method then calls another method to save the contents of the buffer to the log file. (bad code)
Example Language: C
#define LOG_INPUT_SIZE 40
// saves the file name to a log file int outputFilenameToLog(char *filename, int length) { int success;
// buffer with size set to maximum size for input to log file char buf[LOG_INPUT_SIZE]; // copy filename to buffer strncpy(buf, filename, length); // save to log file success = saveToLogFile(buf); return success; However, in this case the string copy method, strncpy, mistakenly uses the length method argument to determine the number of characters to copy rather than using the size of the local character string, buf. This can lead to a buffer overflow if the number of characters contained in character string pointed to by filename is larger then the number of characters allowed for the local character string. The string copy method should use the buf character string within a sizeof call to ensure that only characters up to the size of the buf array are copied to avoid a buffer overflow, as shown below. (good code)
Example Language: C
...
// copy filename to buffer strncpy(buf, filename, sizeof(buf)-1); ... Example 5 Windows provides the MultiByteToWideChar(), WideCharToMultiByte(), UnicodeToBytes(), and BytesToUnicode() functions to convert between arbitrary multibyte (usually ANSI) character strings and Unicode (wide character) strings. The size arguments to these functions are specified in different units, (one in bytes, the other in characters) making their use prone to error. In a multibyte character string, each character occupies a varying number of bytes, and therefore the size of such strings is most easily specified as a total number of bytes. In Unicode, however, characters are always a fixed size, and string lengths are typically given by the number of characters they contain. Mistakenly specifying the wrong units in a size argument can lead to a buffer overflow. The following function takes a username specified as a multibyte string and a pointer to a structure for user information and populates the structure with information about the specified user. Since Windows authentication uses Unicode for usernames, the username argument is first converted from a multibyte string to a Unicode string. (bad code)
Example Language: C
void getUserInfo(char *username, struct _USER_INFO_2 info){
WCHAR unicodeUser[UNLEN+1]; }MultiByteToWideChar(CP_ACP, 0, username, -1, unicodeUser, sizeof(unicodeUser)); NetUserGetInfo(NULL, unicodeUser, 2, (LPBYTE *)&info); This function incorrectly passes the size of unicodeUser in bytes instead of characters. The call to MultiByteToWideChar() can therefore write up to (UNLEN+1)*sizeof(WCHAR) wide characters, or (UNLEN+1)*sizeof(WCHAR)*sizeof(WCHAR) bytes, to the unicodeUser array, which has only (UNLEN+1)*sizeof(WCHAR) bytes allocated. If the username string contains more than UNLEN characters, the call to MultiByteToWideChar() will overflow the buffer unicodeUser.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product copies an input buffer to an output buffer without verifying that the size of the input buffer is less than the size of the output buffer, leading to a buffer overflow.
A buffer overflow condition exists when a product attempts to put more data in a buffer than it can hold, or when it attempts to put data in a memory area outside of the boundaries of a buffer. The simplest type of error, and the most common cause of buffer overflows, is the "classic" case in which the product copies the buffer without restricting how much is copied. Other variants exist, but the existence of a classic overflow strongly suggests that the programmer is not considering even the most basic of security protections.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Class: Assembly (Undetermined Prevalence) Example 1 The following code asks the user to enter their last name and then attempts to store the value entered in the last_name array. (bad code)
Example Language: C
char last_name[20];
printf ("Enter your last name: "); scanf ("%s", last_name); The problem with the code above is that it does not restrict or limit the size of the name entered by the user. If the user enters "Very_very_long_last_name" which is 24 characters long, then a buffer overflow will occur since the array can only hold 20 characters total. Example 2 The following code attempts to create a local copy of a buffer to perform some manipulations to the data. (bad code)
Example Language: C
void manipulate_string(char * string){
char buf[24]; }strcpy(buf, string); ... However, the programmer does not ensure that the size of the data pointed to by string will fit in the local buffer and copies the data with the potentially dangerous strcpy() function. This may result in a buffer overflow condition if an attacker can influence the contents of the string parameter. Example 3 The code below calls the gets() function to read in data from the command line. (bad code)
Example Language: C
char buf[24]; }printf("Please enter your name and press <Enter>\n"); gets(buf); ... However, gets() is inherently unsafe, because it copies all input from STDIN to the buffer without checking size. This allows the user to provide a string that is larger than the buffer size, resulting in an overflow condition. Example 4 In the following example, a server accepts connections from a client and processes the client request. After accepting a client connection, the program will obtain client information using the gethostbyaddr method, copy the hostname of the client that connected to a local variable and output the hostname of the client to a log file. (bad code)
Example Language: C
...
struct hostent *clienthp;
char hostname[MAX_LEN]; // create server socket, bind to server address and listen on socket ... // accept client connections and process requests int count = 0; for (count = 0; count < MAX_CONNECTIONS; count++) { int clientlen = sizeof(struct sockaddr_in); int clientsocket = accept(serversocket, (struct sockaddr *)&clientaddr, &clientlen); if (clientsocket >= 0) { clienthp = gethostbyaddr((char*) &clientaddr.sin_addr.s_addr, sizeof(clientaddr.sin_addr.s_addr), AF_INET);
strcpy(hostname, clienthp->h_name); logOutput("Accepted client connection from host ", hostname); // process client request ... close(clientsocket); close(serversocket); ... However, the hostname of the client that connected may be longer than the allocated size for the local hostname variable. This will result in a buffer overflow when copying the client hostname to the local variable using the strcpy method.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
At the code level, stack-based and heap-based overflows do not differ significantly, so there usually is not a need to distinguish them. From the attacker perspective, they can be quite different, since different techniques are required to exploit them.
Terminology
Many issues that are now called "buffer overflows" are substantively different than the "classic" overflow, including entirely different bug types that rely on overflow exploit techniques, such as integer signedness errors, integer overflows, and format string bugs. This imprecise terminology can make it difficult to determine which variant is being reported.
CWE-126: Buffer Over-read
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product reads from a buffer using buffer access mechanisms such as indexes or pointers that reference memory locations after the targeted buffer.
This typically occurs when the pointer or its index is incremented to a position beyond the bounds of the buffer or when pointer arithmetic results in a position outside of the valid memory location to name a few. This may result in exposure of sensitive information or possibly a crash.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 In the following C/C++ example the method processMessageFromSocket() will get a message from a socket, placed into a buffer, and will parse the contents of the buffer into a structure that contains the message length and the message body. A for loop is used to copy the message body into a local character string which will be passed to another method for processing. (bad code)
Example Language: C
int processMessageFromSocket(int socket) {
int success;
char buffer[BUFFER_SIZE]; char message[MESSAGE_SIZE]; // get message from socket and store into buffer //Ignoring possibliity that buffer > BUFFER_SIZE if (getMessage(socket, buffer, BUFFER_SIZE) > 0) { // place contents of the buffer into message structure ExMessage *msg = recastBuffer(buffer); // copy message body into string for processing int index; for (index = 0; index < msg->msgLength; index++) { message[index] = msg->msgBody[index]; }message[index] = '\0'; // process message success = processMessage(message); return success; However, the message length variable from the structure is used as the condition for ending the for loop without validating that the message length variable accurately reflects the length of the message body (CWE-606). This can result in a buffer over-read (CWE-125) by reading from memory beyond the bounds of the buffer if the message length variable indicates a length that is longer than the size of a message body (CWE-130). Example 2 The following C/C++ example demonstrates a buffer over-read due to a missing NULL terminator. The main method of a pattern matching utility that looks for a specific pattern within a specific file uses the string strncopy() method to copy the command line user input file name and pattern to the Filename and Pattern character arrays respectively. (bad code)
Example Language: C
int main(int argc, char **argv)
{ char Filename[256]; }char Pattern[32]; /* Validate number of parameters and ensure valid content */ ... /* copy filename parameter to variable, may cause off-by-one overflow */ strncpy(Filename, argv[1], sizeof(Filename)); /* copy pattern parameter to variable, may cause off-by-one overflow */ strncpy(Pattern, argv[2], sizeof(Pattern)); printf("Searching file: %s for the pattern: %s\n", Filename, Pattern); Scan_File(Filename, Pattern); However, the code do not take into account that strncpy() will not add a NULL terminator when the source buffer is equal in length of longer than that provide size attribute. Therefore if a user enters a filename or pattern that are the same size as (or larger than) their respective character arrays, a NULL terminator will not be added (CWE-170) which leads to the printf() read beyond the expected end of the Filename and Pattern buffers. To fix this problem, be sure to subtract 1 from the sizeof() call to allow room for the null byte to be added. (good code)
Example Language: C
/* copy filename parameter to variable, no off-by-one overflow */
Pattern[31]='\0';strncpy(Filename, argv[2], sizeof(Filename)-1); Filename[255]='\0'; /* copy pattern parameter to variable, no off-by-one overflow */ strncpy(Pattern, argv[3], sizeof(Pattern)-1);
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
These problems may be resultant from missing sentinel values (CWE-463) or trusting a user-influenced input length variable.
CWE-127: Buffer Under-read
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product reads from a buffer using buffer access mechanisms such as indexes or pointers that reference memory locations prior to the targeted buffer.
This typically occurs when the pointer or its index is decremented to a position before the buffer, when pointer arithmetic results in a position before the beginning of the valid memory location, or when a negative index is used. This may result in exposure of sensitive information or possibly a crash.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence)
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-124: Buffer Underwrite ('Buffer Underflow')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product writes to a buffer using an index or pointer that references a memory location prior to the beginning of the buffer.
This typically occurs when a pointer or its index is decremented to a position before the buffer, when pointer arithmetic results in a position before the beginning of the valid memory location, or when a negative index is used.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 In the following C/C++ example, a utility function is used to trim trailing whitespace from a character string. The function copies the input string to a local character string and uses a while statement to remove the trailing whitespace by moving backward through the string and overwriting whitespace with a NUL character. (bad code)
Example Language: C
char* trimTrailingWhitespace(char *strMessage, int length) {
char *retMessage;
char *message = malloc(sizeof(char)*(length+1)); // copy input string to a temporary string char message[length+1]; int index; for (index = 0; index < length; index++) { message[index] = strMessage[index]; }message[index] = '\0'; // trim trailing whitespace int len = index-1; while (isspace(message[len])) { message[len] = '\0'; }len--; // return string without trailing whitespace retMessage = message; return retMessage; However, this function can cause a buffer underwrite if the input character string contains all whitespace. On some systems the while statement will move backwards past the beginning of a character string and will call the isspace() function on an address outside of the bounds of the local buffer. Example 2 The following is an example of code that may result in a buffer underwrite. This code is attempting to replace the substring "Replace Me" in destBuf with the string stored in srcBuf. It does so by using the function strstr(), which returns a pointer to the found substring in destBuf. Using pointer arithmetic, the starting index of the substring is found. (bad code)
Example Language: C
int main() {
... }
char *result = strstr(destBuf, "Replace Me"); int idx = result - destBuf; strcpy(&destBuf[idx], srcBuf); ... In the case where the substring is not found in destBuf, strstr() will return NULL, causing the pointer arithmetic to be undefined, potentially setting the value of idx to a negative number. If idx is negative, this will result in a buffer underwrite of destBuf.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This could be resultant from several errors, including a bad offset or an array index that decrements before the beginning of the buffer (see CWE-129).
CWE-498: Cloneable Class Containing Sensitive Information
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe code contains a class with sensitive data, but the class is cloneable. The data can then be accessed by cloning the class.
Cloneable classes are effectively open classes, since data cannot be hidden in them. Classes that do not explicitly deny cloning can be cloned by any other class without running the constructor.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Example 1 The following example demonstrates the weakness. (bad code)
Example Language: Java
public class CloneClient {
public CloneClient() //throws
java.lang.CloneNotSupportedException { Teacher t1 = new Teacher("guddu","22,nagar road"); //... // Do some stuff to remove the teacher. Teacher t2 = (Teacher)t1.clone(); System.out.println(t2.name); public static void main(String args[]) { new CloneClient(); class Teacher implements Cloneable { public Object clone() { try { return super.clone(); }catch (java.lang.CloneNotSupportedException e) { throw new RuntimeException(e.toString()); public String name; public String clas; public Teacher(String name,String clas) { this.name = name; this.clas = clas; Make classes uncloneable by defining a clone function like: (good code)
Example Language: Java
public final void clone() throws java.lang.CloneNotSupportedException {
throw new java.lang.CloneNotSupportedException(); }
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-482: Comparing instead of Assigning
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe code uses an operator for comparison when the intention was to perform an assignment.
In many languages, the compare statement is very close in appearance to the assignment statement; they are often confused.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The following example demonstrates the weakness. (bad code)
Example Language: Java
void called(int foo) {
foo==1; }if (foo==1) System.out.println("foo\n"); int main() { called(2); return 0; Example 2 The following C/C++ example shows a simple implementation of a stack that includes methods for adding and removing integer values from the stack. The example uses pointers to add and remove integer values to the stack array variable. (bad code)
Example Language: C
#define SIZE 50
int *tos, *p1, stack[SIZE]; void push(int i) { p1++;
if(p1==(tos+SIZE)) { // Print stack overflow error message and exit *p1 == i; int pop(void) { if(p1==tos) {
// Print stack underflow error message and exit p1--; return *(p1+1); int main(int argc, char *argv[]) { // initialize tos and p1 to point to the top of stack tos = stack; p1 = stack; // code to add and remove items from stack ... return 0; The push method includes an expression to assign the integer value to the location in the stack pointed to by the pointer variable. However, this expression uses the comparison operator "==" rather than the assignment operator "=". The result of using the comparison operator instead of the assignment operator causes erroneous values to be entered into the stack and can cause unexpected results.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-733: Compiler Optimization Removal or Modification of Security-critical Code
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe developer builds a security-critical protection mechanism into the software, but the compiler optimizes the program such that the mechanism is removed or modified.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Often Prevalent) C++ (Often Prevalent) Class: Compiled (Undetermined Prevalence) Example 1 The following code reads a password from the user, uses the password to connect to a back-end mainframe and then attempts to scrub the password from memory using memset(). (bad code)
Example Language: C
void GetData(char *MFAddr) {
char pwd[64];
if (GetPasswordFromUser(pwd, sizeof(pwd))) { if (ConnectToMainframe(MFAddr, pwd)) { // Interaction with mainframe memset(pwd, 0, sizeof(pwd)); The code in the example will behave correctly if it is executed verbatim, but if the code is compiled using an optimizing compiler, such as Microsoft Visual C++ .NET or GCC 3.x, then the call to memset() will be removed as a dead store because the buffer pwd is not used after its value is overwritten [18]. Because the buffer pwd contains a sensitive value, the application may be vulnerable to attack if the data are left memory resident. If attackers are able to access the correct region of memory, they may use the recovered password to gain control of the system. It is common practice to overwrite sensitive data manipulated in memory, such as passwords or cryptographic keys, in order to prevent attackers from learning system secrets. However, with the advent of optimizing compilers, programs do not always behave as their source code alone would suggest. In the example, the compiler interprets the call to memset() as dead code because the memory being written to is not subsequently used, despite the fact that there is clearly a security motivation for the operation to occur. The problem here is that many compilers, and in fact many programming languages, do not take this and other security concerns into consideration in their efforts to improve efficiency. Attackers typically exploit this type of vulnerability by using a core dump or runtime mechanism to access the memory used by a particular application and recover the secret information. Once an attacker has access to the secret information, it is relatively straightforward to further exploit the system and possibly compromise other resources with which the application interacts.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-14: Compiler Removal of Code to Clear Buffers
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterSensitive memory is cleared according to the source code, but compiler optimizations leave the memory untouched when it is not read from again, aka "dead store removal."
This compiler optimization error occurs when:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The following code reads a password from the user, uses the password to connect to a back-end mainframe and then attempts to scrub the password from memory using memset(). (bad code)
Example Language: C
void GetData(char *MFAddr) {
char pwd[64];
if (GetPasswordFromUser(pwd, sizeof(pwd))) { if (ConnectToMainframe(MFAddr, pwd)) { // Interaction with mainframe memset(pwd, 0, sizeof(pwd)); The code in the example will behave correctly if it is executed verbatim, but if the code is compiled using an optimizing compiler, such as Microsoft Visual C++ .NET or GCC 3.x, then the call to memset() will be removed as a dead store because the buffer pwd is not used after its value is overwritten [18]. Because the buffer pwd contains a sensitive value, the application may be vulnerable to attack if the data are left memory resident. If attackers are able to access the correct region of memory, they may use the recovered password to gain control of the system. It is common practice to overwrite sensitive data manipulated in memory, such as passwords or cryptographic keys, in order to prevent attackers from learning system secrets. However, with the advent of optimizing compilers, programs do not always behave as their source code alone would suggest. In the example, the compiler interprets the call to memset() as dead code because the memory being written to is not subsequently used, despite the fact that there is clearly a security motivation for the operation to occur. The problem here is that many compilers, and in fact many programming languages, do not take this and other security concerns into consideration in their efforts to improve efficiency. Attackers typically exploit this type of vulnerability by using a core dump or runtime mechanism to access the memory used by a particular application and recover the secret information. Once an attacker has access to the secret information, it is relatively straightforward to further exploit the system and possibly compromise other resources with which the application interacts.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterA race condition occurs within concurrent environments, and it is effectively a property of a code sequence. Depending on the context, a code sequence may be in the form of a function call, a small number of instructions, a series of program invocations, etc. A race condition violates these properties, which are closely related:
A race condition exists when an "interfering code sequence" can still access the shared resource, violating exclusivity. The interfering code sequence could be "trusted" or "untrusted." A trusted interfering code sequence occurs within the product; it cannot be modified by the attacker, and it can only be invoked indirectly. An untrusted interfering code sequence can be authored directly by the attacker, and typically it is external to the vulnerable product. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Sometimes Prevalent) C++ (Sometimes Prevalent) Java (Sometimes Prevalent) Technologies Class: Mobile (Undetermined Prevalence) Class: ICS/OT (Undetermined Prevalence) Example 1 This code could be used in an e-commerce application that supports transfers between accounts. It takes the total amount of the transfer, sends it to the new account, and deducts the amount from the original account. (bad code)
Example Language: Perl
$transfer_amount = GetTransferAmount();
$balance = GetBalanceFromDatabase(); if ($transfer_amount < 0) { FatalError("Bad Transfer Amount"); }$newbalance = $balance - $transfer_amount; if (($balance - $transfer_amount) < 0) { FatalError("Insufficient Funds"); }SendNewBalanceToDatabase($newbalance); NotifyUser("Transfer of $transfer_amount succeeded."); NotifyUser("New balance: $newbalance"); A race condition could occur between the calls to GetBalanceFromDatabase() and SendNewBalanceToDatabase(). Suppose the balance is initially 100.00. An attack could be constructed as follows: (attack code)
Example Language: Other
In the following pseudocode, the attacker makes two simultaneous calls of the program, CALLER-1 and CALLER-2. Both callers are for the same user account.
CALLER-1 (the attacker) is associated with PROGRAM-1 (the instance that handles CALLER-1). CALLER-2 is associated with PROGRAM-2. CALLER-1 makes a transfer request of 80.00. PROGRAM-1 calls GetBalanceFromDatabase and sets $balance to 100.00 PROGRAM-1 calculates $newbalance as 20.00, then calls SendNewBalanceToDatabase(). Due to high server load, the PROGRAM-1 call to SendNewBalanceToDatabase() encounters a delay. CALLER-2 makes a transfer request of 1.00. PROGRAM-2 calls GetBalanceFromDatabase() and sets $balance to 100.00. This happens because the previous PROGRAM-1 request was not processed yet. PROGRAM-2 determines the new balance as 99.00. After the initial delay, PROGRAM-1 commits its balance to the database, setting it to 20.00. PROGRAM-2 sends a request to update the database, setting the balance to 99.00 At this stage, the attacker should have a balance of 19.00 (due to 81.00 worth of transfers), but the balance is 99.00, as recorded in the database. To prevent this weakness, the programmer has several options, including using a lock to prevent multiple simultaneous requests to the web application, or using a synchronization mechanism that includes all the code between GetBalanceFromDatabase() and SendNewBalanceToDatabase(). Example 2 The following function attempts to acquire a lock in order to perform operations on a shared resource. (bad code)
Example Language: C
void f(pthread_mutex_t *mutex) {
pthread_mutex_lock(mutex);
/* access shared resource */ pthread_mutex_unlock(mutex); However, the code does not check the value returned by pthread_mutex_lock() for errors. If pthread_mutex_lock() cannot acquire the mutex for any reason, the function may introduce a race condition into the program and result in undefined behavior. In order to avoid data races, correctly written programs must check the result of thread synchronization functions and appropriately handle all errors, either by attempting to recover from them or reporting them to higher levels. (good code)
Example Language: C
int f(pthread_mutex_t *mutex) {
int result;
result = pthread_mutex_lock(mutex); if (0 != result) return result;
/* access shared resource */ return pthread_mutex_unlock(mutex); Example 3 Suppose a processor's Memory Management Unit (MMU) has 5 other shadow MMUs to distribute its workload for its various cores. Each MMU has the start address and end address of "accessible" memory. Any time this accessible range changes (as per the processor's boot status), the main MMU sends an update message to all the shadow MMUs. Suppose the interconnect fabric does not prioritize such "update" packets over other general traffic packets. This introduces a race condition. If an attacker can flood the target with enough messages so that some of those attack packets reach the target before the new access ranges gets updated, then the attacker can leverage this scenario.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Research Gap
Race conditions in web applications are under-studied and probably under-reported. However, in 2008 there has been growing interest in this area.
Research Gap
Much of the focus of race condition research has been in Time-of-check Time-of-use (TOCTOU) variants (CWE-367), but many race conditions are related to synchronization problems that do not necessarily require a time-of-check.
Research Gap
From a classification/taxonomy perspective, the relationships between concurrency and program state need closer investigation and may be useful in organizing related issues.
Maintenance
The relationship between race conditions and synchronization problems (CWE-662) needs to be further developed. They are not necessarily two perspectives of the same core concept, since synchronization is only one technique for avoiding race conditions, and synchronization can be used for other purposes besides race condition prevention.
CWE-243: Creation of chroot Jail Without Changing Working Directory
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses the chroot() system call to create a jail, but does not change the working directory afterward. This does not prevent access to files outside of the jail.
Improper use of chroot() may allow attackers to escape from the chroot jail. The chroot() function call does not change the process's current working directory, so relative paths may still refer to file system resources outside of the chroot jail after chroot() has been called.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Architectural Concepts" (CWE-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Operating Systems Class: Unix (Undetermined Prevalence) Example 1 Consider the following source code from a (hypothetical) FTP server: (bad code)
Example Language: C
chroot("/var/ftproot");
... fgets(filename, sizeof(filename), network); localfile = fopen(filename, "r"); while ((len = fread(buf, 1, sizeof(buf), localfile)) != EOF) { fwrite(buf, 1, sizeof(buf), network); }fclose(localfile); This code is responsible for reading a filename from the network, opening the corresponding file on the local machine, and sending the contents over the network. This code could be used to implement the FTP GET command. The FTP server calls chroot() in its initialization routines in an attempt to prevent access to files outside of /var/ftproot. But because the server does not change the current working directory by calling chdir("/"), an attacker could request the file "../../../../../etc/passwd" and obtain a copy of the system password file.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-766: Critical Data Element Declared Public
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product declares a critical variable, field, or member to be public when intended security policy requires it to be private.
This issue makes it more difficult to maintain the product, which indirectly affects security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it easier to introduce vulnerabilities. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C++ (Undetermined Prevalence) C# (Undetermined Prevalence) Java (Undetermined Prevalence) Example 1 The following example declares a critical variable public, making it accessible to anyone with access to the object in which it is contained. (bad code)
Example Language: C++
public: char* password;
Instead, the critical data should be declared private. (good code)
Example Language: C++
private: char* password;
Even though this example declares the password to be private, there are other possible issues with this implementation, such as the possibility of recovering the password from process memory (CWE-257). Example 2 The following example shows a basic user account class that includes member variables for the username and password as well as a public constructor for the class and a public method to authorize access to the user account. (bad code)
Example Language: C++
#define MAX_PASSWORD_LENGTH 15
#define MAX_USERNAME_LENGTH 15 class UserAccount { public:
UserAccount(char *username, char *password)
{ if ((strlen(username) > MAX_USERNAME_LENGTH) || }(strlen(password) > MAX_PASSWORD_LENGTH)) { ExitError("Invalid username or password"); }strcpy(this->username, username); strcpy(this->password, password); int authorizeAccess(char *username, char *password) { if ((strlen(username) > MAX_USERNAME_LENGTH) ||
(strlen(password) > MAX_PASSWORD_LENGTH)) { ExitError("Invalid username or password"); }// if the username and password in the input parameters are equal to // the username and password of this account class then authorize access if (strcmp(this->username, username) || strcmp(this->password, password)) return 0;
// otherwise do not authorize access else return 1;
char username[MAX_USERNAME_LENGTH+1]; char password[MAX_PASSWORD_LENGTH+1]; However, the member variables username and password are declared public and therefore will allow access and changes to the member variables to anyone with access to the object. These member variables should be declared private as shown below to prevent unauthorized access and changes. (good code)
Example Language: C++
class UserAccount
{ public: ...
private: char username[MAX_USERNAME_LENGTH+1]; };char password[MAX_PASSWORD_LENGTH+1];
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-493: Critical Public Variable Without Final Modifier
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product has a critical public variable that is not final, which allows the variable to be modified to contain unexpected values.
If a field is non-final and public, it can be changed once the value is set by any function that has access to the class which contains the field. This could lead to a vulnerability if other parts of the program make assumptions about the contents of that field.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Java (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 Suppose this WidgetData class is used for an e-commerce web site. The programmer attempts to prevent price-tampering attacks by setting the price of the widget using the constructor. (bad code)
Example Language: Java
public final class WidgetData extends Applet {
public float price; }... public WidgetData(...) { this.price = LookupPrice("MyWidgetType"); }The price field is not final. Even though the value is set by the constructor, it could be modified by anybody that has access to an instance of WidgetData. Example 2 Assume the following code is intended to provide the location of a configuration file that controls execution of the application. (bad code)
Example Language: C++
public string configPath = "/etc/application/config.dat";
(bad code)
Example Language: Java
public String configPath = new String("/etc/application/config.dat");
While this field is readable from any function, and thus might allow an information leak of a pathname, a more serious problem is that it can be changed by any function.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-396: Declaration of Catch for Generic Exception
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterCatching overly broad exceptions promotes complex error handling code that is more likely to contain security vulnerabilities.
Multiple catch blocks can get ugly and repetitive, but "condensing" catch blocks by catching a high-level class like Exception can obscure exceptions that deserve special treatment or that should not be caught at this point in the program. Catching an overly broad exception essentially defeats the purpose of a language's typed exceptions, and can become particularly dangerous if the program grows and begins to throw new types of exceptions. The new exception types will not receive any attention.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Python (Undetermined Prevalence) Example 1 The following code excerpt handles three types of exceptions in an identical fashion. (good code)
Example Language: Java
try {
doExchange(); }catch (IOException e) { logger.error("doExchange failed", e); }catch (InvocationTargetException e) { logger.error("doExchange failed", e); catch (SQLException e) { logger.error("doExchange failed", e); At first blush, it may seem preferable to deal with these exceptions in a single catch block, as follows: (bad code)
try {
doExchange(); }catch (Exception e) { logger.error("doExchange failed", e); }However, if doExchange() is modified to throw a new type of exception that should be handled in some different kind of way, the broad catch block will prevent the compiler from pointing out the situation. Further, the new catch block will now also handle exceptions derived from RuntimeException such as ClassCastException, and NullPointerException, which is not the programmer's intent.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-397: Declaration of Throws for Generic Exception
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThrowing overly broad exceptions promotes complex error handling code that is more likely to contain security vulnerabilities.
Declaring a method to throw Exception or Throwable makes it difficult for callers to perform proper error handling and error recovery. Java's exception mechanism, for example, is set up to make it easy for callers to anticipate what can go wrong and write code to handle each specific exceptional circumstance. Declaring that a method throws a generic form of exception defeats this system.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Example 1 The following method throws three types of exceptions. (good code)
Example Language: Java
public void doExchange() throws IOException, InvocationTargetException, SQLException {
... }While it might seem tidier to write (bad code)
public void doExchange() throws Exception {
... }doing so hampers the caller's ability to understand and handle the exceptions that occur. Further, if a later revision of doExchange() introduces a new type of exception that should be treated differently than previous exceptions, there is no easy way to enforce this requirement. Example 2 Early versions of C++ (C++98, C++03, C++11) included a feature known as Dynamic Exception Specification. This allowed functions to declare what type of exceptions it may throw. It is possible to declare a general class of exception to cover any derived exceptions that may be throw. (bad code)
int myfunction() throw(std::exception) {
if (0) throw out_of_range(); }throw length_error(); In the example above, the code declares that myfunction() can throw an exception of type "std::exception" thus hiding details about the possible derived exceptions that could potentially be thrown.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Applicable Platform
For C++, this weakness only applies to C++98, C++03, and C++11. It relies on a feature known as Dynamic Exception Specification, which was part of early versions of C++ but was deprecated in C++11. It has been removed for C++17 and later.
CWE-463: Deletion of Data Structure Sentinel
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe accidental deletion of a data-structure sentinel can cause serious programming logic problems.
Often times data-structure sentinels are used to mark structure of the data structure. A common example of this is the null character at the end of strings. Another common example is linked lists which may contain a sentinel to mark the end of the list. It is dangerous to allow this type of control data to be easily accessible. Therefore, it is important to protect from the deletion or modification outside of some wrapper interface which provides safety.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 This example creates a null terminated string and prints it contents. (bad code)
Example Language: C
char *foo;
int counter; foo=calloc(sizeof(char)*10); for (counter=0;counter!=10;counter++) { foo[counter]='a';
printf("%s\n",foo); } The string foo has space for 9 characters and a null terminator, but 10 characters are written to it. As a result, the string foo is not null terminated and calling printf() on it will have unpredictable and possibly dangerous results.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-415: Double Free
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product calls free() twice on the same memory address, potentially leading to modification of unexpected memory locations.
When a program calls free() twice with the same argument, the program's memory management data structures become corrupted. This corruption can cause the program to crash or, in some circumstances, cause two later calls to malloc() to return the same pointer. If malloc() returns the same value twice and the program later gives the attacker control over the data that is written into this doubly-allocated memory, the program becomes vulnerable to a buffer overflow attack.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The following code shows a simple example of a double free vulnerability. (bad code)
Example Language: C
char* ptr = (char*)malloc (SIZE);
... if (abrt) {
free(ptr);
}... free(ptr); Double free vulnerabilities have two common (and sometimes overlapping) causes:
Although some double free vulnerabilities are not much more complicated than this example, most are spread out across hundreds of lines of code or even different files. Programmers seem particularly susceptible to freeing global variables more than once. Example 2 While contrived, this code should be exploitable on Linux distributions that do not ship with heap-chunk check summing turned on. (bad code)
Example Language: C
#include <stdio.h>
#include <unistd.h> #define BUFSIZE1 512 #define BUFSIZE2 ((BUFSIZE1/2) - 8) int main(int argc, char **argv) { char *buf1R1; }char *buf2R1; char *buf1R2; buf1R1 = (char *) malloc(BUFSIZE2); buf2R1 = (char *) malloc(BUFSIZE2); free(buf1R1); free(buf2R1); buf1R2 = (char *) malloc(BUFSIZE1); strncpy(buf1R2, argv[1], BUFSIZE1-1); free(buf2R1); free(buf1R2);
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This is usually resultant from another weakness, such as an unhandled error or race condition between threads. It could also be primary to weaknesses such as buffer overflows.
Theoretical
It could be argued that Double Free would be most appropriately located as a child of "Use after Free", but "Use" and "Release" are considered to be distinct operations within vulnerability theory, therefore this is more accurately "Release of a Resource after Expiration or Release", which doesn't exist yet.
CWE-462: Duplicate Key in Associative List (Alist)
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterDuplicate keys in associative lists can lead to non-unique keys being mistaken for an error.
A duplicate key entry -- if the alist is designed properly -- could be used as a constant time replace function. However, duplicate key entries could be inserted by mistake. Because of this ambiguity, duplicate key entries in an association list are not recommended and should not be allowed.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Example 1 The following code adds data to a list and then attempts to sort the data. (bad code)
Example Language: Python
alist = []
while (foo()): #now assume there is a string data with a key basename queue.append(basename,data)
queue.sort() Since basename is not necessarily unique, this may not sort how one would like it to be.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-782: Exposed IOCTL with Insufficient Access Control
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product implements an IOCTL with functionality that should be restricted, but it does not properly enforce access control for the IOCTL.
When an IOCTL contains privileged functionality and is exposed unnecessarily, attackers may be able to access this functionality by invoking the IOCTL. Even if the functionality is benign, if the programmer has assumed that the IOCTL would only be accessed by a trusted process, there may be little or no validation of the incoming data, exposing weaknesses that would never be reachable if the attacker cannot call the IOCTL directly. The implementations of IOCTLs will differ between operating system types and versions, so the methods of attack and prevention may vary widely. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Architectural Concepts" (CWE-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Often Prevalent) C++ (Often Prevalent) Operating Systems Class: Unix (Undetermined Prevalence) Class: Windows (Undetermined Prevalence)
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This can be primary to many other weaknesses when the programmer assumes that the IOCTL can only be accessed by trusted parties. For example, a program or driver might not validate incoming addresses in METHOD_NEITHER IOCTLs in Windows environments (CWE-781), which could allow buffer overflow and similar attacks to take place, even when the attacker never should have been able to access the IOCTL at all.
Applicable Platform Because IOCTL functionality is typically performing low-level actions and closely interacts with the operating system, this weakness may only appear in code that is written in low-level languages.
CWE-122: Heap-based Buffer Overflow
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterA heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as malloc().
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 While buffer overflow examples can be rather complex, it is possible to have very simple, yet still exploitable, heap-based buffer overflows: (bad code)
Example Language: C
#define BUFSIZE 256
int main(int argc, char **argv) { char *buf; }buf = (char *)malloc(sizeof(char)*BUFSIZE); strcpy(buf, argv[1]); The buffer is allocated heap memory with a fixed size, but there is no guarantee the string in argv[1] will not exceed this size and cause an overflow. Example 2 This example applies an encoding procedure to an input string and stores it into a buffer. (bad code)
Example Language: C
char * copy_input(char *user_supplied_string){
int i, dst_index;
char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE); if ( MAX_SIZE <= strlen(user_supplied_string) ){ die("user string too long, die evil hacker!"); }dst_index = 0; for ( i = 0; i < strlen(user_supplied_string); i++ ){ if( '&' == user_supplied_string[i] ){
dst_buf[dst_index++] = '&'; }dst_buf[dst_index++] = 'a'; dst_buf[dst_index++] = 'm'; dst_buf[dst_index++] = 'p'; dst_buf[dst_index++] = ';'; else if ('<' == user_supplied_string[i] ){ /* encode to < */ else dst_buf[dst_index++] = user_supplied_string[i]; return dst_buf; The programmer attempts to encode the ampersand character in the user-controlled string, however the length of the string is validated before the encoding procedure is applied. Furthermore, the programmer assumes encoding expansion will only expand a given character by a factor of 4, while the encoding of the ampersand expands by 5. As a result, when the encoding procedure expands the string it is possible to overflow the destination buffer if the attacker provides a string of many ampersands.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
Heap-based buffer overflows are usually just as dangerous as stack-based buffer overflows.
CWE-781: Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control Code
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product defines an IOCTL that uses METHOD_NEITHER for I/O, but it does not validate or incorrectly validates the addresses that are provided.
When an IOCTL uses the METHOD_NEITHER option for I/O control, it is the responsibility of the IOCTL to validate the addresses that have been supplied to it. If validation is missing or incorrect, attackers can supply arbitrary memory addresses, leading to code execution or a denial of service.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Often Prevalent) C++ (Often Prevalent) Operating Systems Windows NT (Sometimes Prevalent)
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Applicable Platform Because IOCTL functionality is typically performing low-level actions and closely interacts with the operating system, this weakness may only appear in code that is written in low-level languages. Research Gap While this type of issue has been known since 2006, it is probably still under-studied and under-reported. Most of the focus has been on high-profile software and security products, but other kinds of system software also use drivers. Since exploitation requires the development of custom code, it requires some skill to find this weakness. Because exploitation typically requires local privileges, it might not be a priority for active attackers. However, remote exploitation may be possible for software such as device drivers. Even when remote vectors are not available, it may be useful as the final privilege-escalation step in multi-stage remote attacks against application-layer software, or as the primary attack by a local user on a multi-user system.
CWE-460: Improper Cleanup on Thrown Exception
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not clean up its state or incorrectly cleans up its state when an exception is thrown, leading to unexpected state or control flow.
Often, when functions or loops become complicated, some level of resource cleanup is needed throughout execution. Exceptions can disturb the flow of the code and prevent the necessary cleanup from happening.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Architectural Concepts" (CWE-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Example 1 The following example demonstrates the weakness. (bad code)
Example Language: Java
public class foo {
public static final void main( String args[] ) {
boolean returnValue; returnValue=doStuff(); public static final boolean doStuff( ) { boolean threadLock; boolean truthvalue=true; try { while( //check some condition ) { threadLock=true; //do some stuff to truthvalue threadLock=false; catch (Exception e){ System.err.println("You did something bad"); if (something) return truthvalue; return truthvalue; In this case, a thread might be left locked accidentally.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterUsing realloc() to resize buffers that store sensitive information can leave the sensitive information exposed to attack, because it is not removed from memory.
When sensitive data such as a password or an encryption key is not removed from memory, it could be exposed to an attacker using a "heap inspection" attack that reads the sensitive data using memory dumps or other methods. The realloc() function is commonly used to increase the size of a block of allocated memory. This operation often requires copying the contents of the old memory block into a new and larger block. This operation leaves the contents of the original block intact but inaccessible to the program, preventing the program from being able to scrub sensitive data from memory. If an attacker can later examine the contents of a memory dump, the sensitive data could be exposed.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The following code calls realloc() on a buffer containing sensitive data: (bad code)
Example Language: C
cleartext_buffer = get_secret();...
cleartext_buffer = realloc(cleartext_buffer, 1024); ... scrub_memory(cleartext_buffer, 1024); There is an attempt to scrub the sensitive data from memory, but realloc() is used, so it could return a pointer to a different part of memory. The memory that was originally allocated for cleartext_buffer could still contain an uncleared copy of the data.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-130: Improper Handling of Length Parameter Inconsistency
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product parses a formatted message or structure, but it does not handle or incorrectly handles a length field that is inconsistent with the actual length of the associated data.
If an attacker can manipulate the length parameter associated with an input such that it is inconsistent with the actual length of the input, this can be leveraged to cause the target application to behave in unexpected, and possibly, malicious ways. One of the possible motives for doing so is to pass in arbitrarily large input to the application. Another possible motivation is the modification of application state by including invalid data for subsequent properties of the application. Such weaknesses commonly lead to attacks such as buffer overflows and execution of arbitrary code.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Sometimes Prevalent) C++ (Sometimes Prevalent) Class: Not Language-Specific (Undetermined Prevalence) Example 1 In the following C/C++ example the method processMessageFromSocket() will get a message from a socket, placed into a buffer, and will parse the contents of the buffer into a structure that contains the message length and the message body. A for loop is used to copy the message body into a local character string which will be passed to another method for processing. (bad code)
Example Language: C
int processMessageFromSocket(int socket) {
int success;
char buffer[BUFFER_SIZE]; char message[MESSAGE_SIZE]; // get message from socket and store into buffer //Ignoring possibliity that buffer > BUFFER_SIZE if (getMessage(socket, buffer, BUFFER_SIZE) > 0) { // place contents of the buffer into message structure ExMessage *msg = recastBuffer(buffer); // copy message body into string for processing int index; for (index = 0; index < msg->msgLength; index++) { message[index] = msg->msgBody[index]; }message[index] = '\0'; // process message success = processMessage(message); return success; However, the message length variable from the structure is used as the condition for ending the for loop without validating that the message length variable accurately reflects the length of the message body (CWE-606). This can result in a buffer over-read (CWE-125) by reading from memory beyond the bounds of the buffer if the message length variable indicates a length that is longer than the size of a message body (CWE-130).
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-170: Improper Null Termination
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not terminate or incorrectly terminates a string or array with a null character or equivalent terminator.
Null termination errors frequently occur in two different ways. An off-by-one error could cause a null to be written out of bounds, leading to an overflow. Or, a program could use a strncpy() function call incorrectly, which prevents a null terminator from being added at all. Other scenarios are possible.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The following code reads from cfgfile and copies the input into inputbuf using strcpy(). The code mistakenly assumes that inputbuf will always contain a NULL terminator. (bad code)
Example Language: C
#define MAXLEN 1024
... char *pathbuf[MAXLEN]; ... read(cfgfile,inputbuf,MAXLEN); //does not null terminate strcpy(pathbuf,inputbuf); //requires null terminated input ... The code above will behave correctly if the data read from cfgfile is null terminated on disk as expected. But if an attacker is able to modify this input so that it does not contain the expected NULL character, the call to strcpy() will continue copying from memory until it encounters an arbitrary NULL character. This will likely overflow the destination buffer and, if the attacker can control the contents of memory immediately following inputbuf, can leave the application susceptible to a buffer overflow attack. Example 2 In the following code, readlink() expands the name of a symbolic link stored in pathname and puts the absolute path into buf. The length of the resulting value is then calculated using strlen(). (bad code)
Example Language: C
char buf[MAXPATH];
... readlink(pathname, buf, MAXPATH); int length = strlen(buf); ... The code above will not always behave correctly as readlink() does not append a NULL byte to buf. Readlink() will stop copying characters once the maximum size of buf has been reached to avoid overflowing the buffer, this will leave the value buf not NULL terminated. In this situation, strlen() will continue traversing memory until it encounters an arbitrary NULL character further on down the stack, resulting in a length value that is much larger than the size of string. Readlink() does return the number of bytes copied, but when this return value is the same as stated buf size (in this case MAXPATH), it is impossible to know whether the pathname is precisely that many bytes long, or whether readlink() has truncated the name to avoid overrunning the buffer. In testing, vulnerabilities like this one might not be caught because the unused contents of buf and the memory immediately following it may be NULL, thereby causing strlen() to appear as if it is behaving correctly. Example 3 While the following example is not exploitable, it provides a good example of how nulls can be omitted or misplaced, even when "safe" functions are used: (bad code)
Example Language: C
#include <stdio.h>
#include <string.h> int main() { char longString[] = "String signifying nothing"; char shortString[16]; strncpy(shortString, longString, 16); printf("The last character in shortString is: %c (%1$x)\n", shortString[15]); return (0); The above code gives the following output: "The last character in shortString is: n (6e)". So, the shortString array does not end in a NULL character, even though the "safe" string function strncpy() was used. The reason is that strncpy() does not impliciitly add a NULL character at the end of the string when the source is equal in length or longer than the provided size.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
Factors: this is usually resultant from other weaknesses such as off-by-one errors, but it can be primary to boundary condition violations such as buffer overflows. In buffer overflows, it can act as an expander for assumed-immutable data.
Relationship
Overlaps missing input terminator.
Applicable Platform Conceptually, this does not just apply to the C language; any language or representation that involves a terminator could have this type of problem. Maintenance
As currently described, this entry is more like a category than a weakness.
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Often Prevalent) C++ (Often Prevalent) Class: Assembly (Undetermined Prevalence) Example 1 This example takes an IP address from a user, verifies that it is well formed and then looks up the hostname and copies it into a buffer. (bad code)
Example Language: C
void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr; char hostname[64]; in_addr_t inet_addr(const char *cp); /*routine that ensures user_supplied_addr is in the right format for conversion */ validate_addr_form(user_supplied_addr); addr = inet_addr(user_supplied_addr); hp = gethostbyaddr( addr, sizeof(struct in_addr), AF_INET); strcpy(hostname, hp->h_name); This function allocates a buffer of 64 bytes to store the hostname, however there is no guarantee that the hostname will not be larger than 64 bytes. If an attacker specifies an address which resolves to a very large hostname, then the function may overwrite sensitive data or even relinquish control flow to the attacker. Note that this example also contains an unchecked return value (CWE-252) that can lead to a NULL pointer dereference (CWE-476). Example 2 This example applies an encoding procedure to an input string and stores it into a buffer. (bad code)
Example Language: C
char * copy_input(char *user_supplied_string){
int i, dst_index;
char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE); if ( MAX_SIZE <= strlen(user_supplied_string) ){ die("user string too long, die evil hacker!"); }dst_index = 0; for ( i = 0; i < strlen(user_supplied_string); i++ ){ if( '&' == user_supplied_string[i] ){
dst_buf[dst_index++] = '&'; }dst_buf[dst_index++] = 'a'; dst_buf[dst_index++] = 'm'; dst_buf[dst_index++] = 'p'; dst_buf[dst_index++] = ';'; else if ('<' == user_supplied_string[i] ){
/* encode to < */
}else dst_buf[dst_index++] = user_supplied_string[i]; return dst_buf; The programmer attempts to encode the ampersand character in the user-controlled string, however the length of the string is validated before the encoding procedure is applied. Furthermore, the programmer assumes encoding expansion will only expand a given character by a factor of 4, while the encoding of the ampersand expands by 5. As a result, when the encoding procedure expands the string it is possible to overflow the destination buffer if the attacker provides a string of many ampersands. Example 3 The following example asks a user for an offset into an array to select an item. (bad code)
Example Language: C
int main (int argc, char **argv) { char *items[] = {"boat", "car", "truck", "train"}; }int index = GetUntrustedOffset(); printf("You selected %s\n", items[index-1]); The programmer allows the user to specify which element in the list to select, however an attacker can provide an out-of-bounds offset, resulting in a buffer over-read (CWE-126). Example 4 In the following code, the method retrieves a value from an array at a specific array index location that is given as an input parameter to the method (bad code)
Example Language: C
int getValueFromArray(int *array, int len, int index) {
int value; // check that the array index is less than the maximum // length of the array if (index < len) {
// get the value at the specified index of the array
value = array[index]; // if array index is invalid then output error message // and return value indicating error else { printf("Value is: %d\n", array[index]); }value = -1; return value; However, this method only verifies that the given array index is less than the maximum length of the array but does not check for the minimum value (CWE-839). This will allow a negative value to be accepted as the input array index, which will result in a out of bounds read (CWE-125) and may allow access to sensitive memory. The input array index should be checked to verify that is within the maximum and minimum range required for the array (CWE-129). In this example the if statement should be modified to include a minimum range check, as shown below. (good code)
Example Language: C
... // check that the array index is within the correct // range of values for the array if (index >= 0 && index < len) { ... Example 5 Windows provides the _mbs family of functions to perform various operations on multibyte strings. When these functions are passed a malformed multibyte string, such as a string containing a valid leading byte followed by a single null byte, they can read or write past the end of the string buffer causing a buffer overflow. The following functions all pose a risk of buffer overflow: _mbsinc _mbsdec _mbsncat _mbsncpy _mbsnextc _mbsnset _mbsrev _mbsset _mbsstr _mbstok _mbccpy _mbslen
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Applicable Platform It is possible in any programming languages without memory management support to attempt an operation outside of the bounds of a memory buffer, but the consequences will vary widely depending on the language, platform, and chip architecture.
CWE-911: Improper Update of Reference Count
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a reference count to manage a resource, but it does not update or incorrectly updates the reference count.
Reference counts can be used when tracking how many objects contain a reference to a particular resource, such as in memory management or garbage collection. When the reference count reaches zero, the resource can be de-allocated or reused because there are no more objects that use it. If the reference count accidentally reaches zero, then the resource might be released too soon, even though it is still in use. If all objects no longer use the resource, but the reference count is not zero, then the resource might not ever be released.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Sometimes Prevalent) C++ (Sometimes Prevalent) Class: Not Language-Specific (Undetermined Prevalence)
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-129: Improper Validation of Array Index
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses untrusted input when calculating or using an array index, but the product does not validate or incorrectly validates the index to ensure the index references a valid position within the array.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Often Prevalent) C++ (Often Prevalent) Class: Not Language-Specific (Undetermined Prevalence) Example 1 In the code snippet below, an untrusted integer value is used to reference an object in an array. (bad code)
Example Language: Java
public String getValue(int index) {
return array[index]; }If index is outside of the range of the array, this may result in an ArrayIndexOutOfBounds Exception being raised. Example 2 The following example takes a user-supplied value to allocate an array of objects and then operates on the array. (bad code)
Example Language: Java
private void buildList ( int untrustedListSize ){
if ( 0 > untrustedListSize ){ }die("Negative value supplied for list size, die evil hacker!"); }Widget[] list = new Widget [ untrustedListSize ]; list[0] = new Widget(); This example attempts to build a list from a user-specified value, and even checks to ensure a non-negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0 and then try to store a new Widget in the first location, causing an exception to be thrown. Example 3 In the following code, the method retrieves a value from an array at a specific array index location that is given as an input parameter to the method (bad code)
Example Language: C
int getValueFromArray(int *array, int len, int index) {
int value; // check that the array index is less than the maximum // length of the array if (index < len) {
// get the value at the specified index of the array
value = array[index]; // if array index is invalid then output error message // and return value indicating error else { printf("Value is: %d\n", array[index]); }value = -1; return value; However, this method only verifies that the given array index is less than the maximum length of the array but does not check for the minimum value (CWE-839). This will allow a negative value to be accepted as the input array index, which will result in a out of bounds read (CWE-125) and may allow access to sensitive memory. The input array index should be checked to verify that is within the maximum and minimum range required for the array (CWE-129). In this example the if statement should be modified to include a minimum range check, as shown below. (good code)
Example Language: C
... // check that the array index is within the correct // range of values for the array if (index >= 0 && index < len) { ... Example 4 The following example retrieves the sizes of messages for a pop3 mail server. The message sizes are retrieved from a socket that returns in a buffer the message number and the message size, the message number (num) and size (size) are extracted from the buffer and the message size is placed into an array using the message number for the array index. (bad code)
Example Language: C
/* capture the sizes of all messages */ int getsizes(int sock, int count, int *sizes) { ...
char buf[BUFFER_SIZE]; int ok; int num, size; // read values from socket and added to sizes array while ((ok = gen_recv(sock, buf, sizeof(buf))) == 0) {
// continue read from socket until buf only contains '.'
if (DOTLINE(buf)) break;
else if (sscanf(buf, "%d %d", &num, &size) == 2)sizes[num - 1] = size;
...
In this example the message number retrieved from the buffer could be a value that is outside the allowable range of indices for the array and could possibly be a negative number. Without proper validation of the value to be used for the array index an array overflow could occur and could potentially lead to unauthorized access to memory addresses and system crashes. The value of the array index should be validated to ensure that it is within the allowable range of indices for the array as in the following code. (good code)
Example Language: C
/* capture the sizes of all messages */ int getsizes(int sock, int count, int *sizes) { ...
char buf[BUFFER_SIZE]; int ok; int num, size; // read values from socket and added to sizes array while ((ok = gen_recv(sock, buf, sizeof(buf))) == 0) { // continue read from socket until buf only contains '.' if (DOTLINE(buf)) break;
else if (sscanf(buf, "%d %d", &num, &size) == 2) { if (num > 0 && num <= (unsigned)count)
sizes[num - 1] = size;
else /* warn about possible attempt to induce buffer overflow */ report(stderr, "Warning: ignoring bogus data for message sizes returned by server.\n"); ...
Example 5 In the following example the method displayProductSummary is called from a Web service servlet to retrieve product summary information for display to the user. The servlet obtains the integer value of the product number from the user and passes it to the displayProductSummary method. The displayProductSummary method passes the integer value of the product number to the getProductSummary method which obtains the product summary from the array object containing the project summaries using the integer value of the product number as the array index. (bad code)
Example Language: Java
// Method called from servlet to obtain product information public String displayProductSummary(int index) { String productSummary = new String("");
try { String productSummary = getProductSummary(index);
} catch (Exception ex) {...} return productSummary; public String getProductSummary(int index) { return products[index]; }In this example the integer value used as the array index that is provided by the user may be outside the allowable range of indices for the array which may provide unexpected results or cause the application to fail. The integer value used for the array index should be validated to ensure that it is within the allowable range of indices for the array as in the following code. (good code)
Example Language: Java
// Method called from servlet to obtain product information public String displayProductSummary(int index) { String productSummary = new String("");
try { String productSummary = getProductSummary(index);
} catch (Exception ex) {...} return productSummary; public String getProductSummary(int index) { String productSummary = "";
if ((index >= 0) && (index < MAX_PRODUCTS)) { productSummary = products[index]; }else { System.err.println("index is out of bounds"); }throw new IndexOutOfBoundsException(); return productSummary; An alternative in Java would be to use one of the collection objects such as ArrayList that will automatically generate an exception if an attempt is made to access an array index that is out of bounds. (good code)
Example Language: Java
ArrayList productArray = new ArrayList(MAX_PRODUCTS);
... try { productSummary = (String) productArray.get(index); } catch (IndexOutOfBoundsException ex) {...}Example 6 The following example asks a user for an offset into an array to select an item. (bad code)
Example Language: C
int main (int argc, char **argv) { char *items[] = {"boat", "car", "truck", "train"}; }int index = GetUntrustedOffset(); printf("You selected %s\n", items[index-1]); The programmer allows the user to specify which element in the list to select, however an attacker can provide an out-of-bounds offset, resulting in a buffer over-read (CWE-126).
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This weakness can precede uncontrolled memory allocation (CWE-789) in languages that automatically expand an array when an index is used that is larger than the size of the array, such as JavaScript.
Theoretical
An improperly validated array index might lead directly to the always-incorrect behavior of "access of array using out-of-bounds index."
CWE-1325: Improperly Controlled Sequential Memory Allocation
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product manages a group of objects or resources and performs a separate memory allocation for each object, but it does not properly limit the total amount of memory that is consumed by all of the combined objects.
While the product might limit the amount of memory that is allocated in a single operation for a single object (such as a malloc of an array), if an attacker can cause multiple objects to be allocated in separate operations, then this might cause higher total memory consumption than the developer intended, leading to a denial of service. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Class: Not Language-Specific (Undetermined Prevalence) Example 1 This example contains a small allocation of stack memory. When the program was first constructed, the number of times this memory was allocated was probably inconsequential and presented no problem. Over time, as the number of objects in the database grow, the number of allocations will grow - eventually consuming the available stack, i.e. "stack exhaustion." An attacker who is able to add elements to the database could cause stack exhaustion more rapidly than assumed by the developer. (bad code)
Example Language: C
// Gets the size from the number of objects in a database, which over time can conceivably get very large
int end_limit = get_nmbr_obj_from_db(); int i; int *base = NULL; int *p =base; for (i = 0; i < end_limit; i++) {
*p = alloca(sizeof(int *)); // Allocate memory on the stack
}p = *p; // // Point to the next location to be saved Since this uses alloca(), it allocates memory directly on the stack. If end_limit is large enough, then the stack can be entirely consumed.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-1335: Incorrect Bitwise Shift of Integer
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterAn integer value is specified to be shifted by a negative amount or an amount greater than or equal to the number of bits contained in the value causing an unexpected or indeterminate result.
Specifying a value to be shifted by a negative amount is undefined in various languages. Various computer architectures implement this action in different ways. The compilers and interpreters when generating code to accomplish a shift generally do not do a check for this issue. Specifying an over-shift, a shift greater than or equal to the number of bits contained in a value to be shifted, produces a result which varies by architecture and compiler. In some languages, this action is specifically listed as producing an undefined result. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) C# (Undetermined Prevalence) Java (Undetermined Prevalence) JavaScript (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Example 1 A negative shift amount for an x86 or x86_64 shift instruction will produce the number of bits to be shifted by taking a 2's-complement of the shift amount and effectively masking that amount to the lowest 6 bits for a 64 bit shift instruction. (bad code)
Example Language: C
unsigned int r = 1 << -5;
The example above ends up with a shift amount of -5. The hexadecimal value is FFFFFFFFFFFFFFFD which, when bits above the 6th bit are masked off, the shift amount becomes a binary shift value of 111101 which is 61 decimal. A shift of 61 produces a very different result than -5. The previous example is a very simple version of the following code which is probably more realistic of what happens in a real system. (bad code)
Example Language: C
int choose_bit(int reg_bit, int bit_number_from_elsewhere)
{
if (NEED_TO_SHIFT)
}{
reg_bit -= bit_number_from_elsewhere;
}return reg_bit; unsigned int handle_io_register(unsigned int *r) {
unsigned int the_bit = 1 << choose_bit(5, 10);
}
*r |= the_bit; return the_bit; (good code)
Example Language: C
int choose_bit(int reg_bit, int bit_number_from_elsewhere)
{
if (NEED_TO_SHIFT)
}{
reg_bit -= bit_number_from_elsewhere;
}return reg_bit; unsigned int handle_io_register(unsigned int *r) {
int the_bit_number = choose_bit(5, 10);
}
if ((the_bit_number > 0) && (the_bit_number < 63)) {
unsigned int the_bit = 1 << the_bit_number;
}*r |= the_bit; return the_bit; Note that the good example not only checks for negative shifts and disallows them, but it also checks for over-shifts. No bit operation is done if the shift is out of bounds. Depending on the program, perhaps an error message should be logged.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-483: Incorrect Block Delimitation
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe code does not explicitly delimit a block that is intended to contain 2 or more statements, creating a logic error.
In some languages, braces (or other delimiters) are optional for blocks. When the delimiter is omitted, it is possible to insert a logic error in which a statement is thought to be in a block but is not. In some cases, the logic error can have security implications.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Sometimes Prevalent) C++ (Sometimes Prevalent) Example 1 In this example, the programmer has indented the statements to call Do_X() and Do_Y(), as if the intention is that these functions are only called when the condition is true. However, because there are no braces to signify the block, Do_Y() will always be executed, even if the condition is false. (bad code)
Example Language: C
if (condition==true)
Do_X();
Do_Y(); This might not be what the programmer intended. When the condition is critical for security, such as in making a security decision or detecting a critical error, this may produce a vulnerability. Example 2 In this example, the programmer has indented the Do_Y() statement as if the intention is that the function should be associated with the preceding conditional and should only be called when the condition is true. However, because Do_X() was called on the same line as the conditional and there are no braces to signify the block, Do_Y() will always be executed, even if the condition is false. (bad code)
Example Language: C
if (condition==true) Do_X();
Do_Y();
This might not be what the programmer intended. When the condition is critical for security, such as in making a security decision or detecting a critical error, this may produce a vulnerability.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-131: Incorrect Calculation of Buffer Size
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not correctly calculate the size to be used when allocating a buffer, which could lead to a buffer overflow.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The following code allocates memory for a maximum number of widgets. It then gets a user-specified number of widgets, making sure that the user does not request too many. It then initializes the elements of the array using InitializeWidget(). Because the number of widgets can vary for each request, the code inserts a NULL pointer to signify the location of the last widget. (bad code)
Example Language: C
int i;
unsigned int numWidgets; Widget **WidgetList; numWidgets = GetUntrustedSizeValue(); if ((numWidgets == 0) || (numWidgets > MAX_NUM_WIDGETS)) { ExitError("Incorrect number of widgets requested!"); }WidgetList = (Widget **)malloc(numWidgets * sizeof(Widget *)); printf("WidgetList ptr=%p\n", WidgetList); for(i=0; i<numWidgets; i++) { WidgetList[i] = InitializeWidget(); }WidgetList[numWidgets] = NULL; showWidgets(WidgetList); However, this code contains an off-by-one calculation error (CWE-193). It allocates exactly enough space to contain the specified number of widgets, but it does not include the space for the NULL pointer. As a result, the allocated buffer is smaller than it is supposed to be (CWE-131). So if the user ever requests MAX_NUM_WIDGETS, there is an out-of-bounds write (CWE-787) when the NULL is assigned. Depending on the environment and compilation settings, this could cause memory corruption. Example 2 The following image processing code allocates a table for images. (bad code)
Example Language: C
img_t table_ptr; /*struct containing img data, 10kB each*/
int num_imgs; ... num_imgs = get_num_imgs(); table_ptr = (img_t*)malloc(sizeof(img_t)*num_imgs); ... This code intends to allocate a table of size num_imgs, however as num_imgs grows large, the calculation determining the size of the list will eventually overflow (CWE-190). This will result in a very small list to be allocated instead. If the subsequent code operates on the list as if it were num_imgs long, it may result in many types of out-of-bounds problems (CWE-119). Example 3 This example applies an encoding procedure to an input string and stores it into a buffer. (bad code)
Example Language: C
char * copy_input(char *user_supplied_string){
int i, dst_index;
char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE); if ( MAX_SIZE <= strlen(user_supplied_string) ){ die("user string too long, die evil hacker!"); }dst_index = 0; for ( i = 0; i < strlen(user_supplied_string); i++ ){ if( '&' == user_supplied_string[i] ){
dst_buf[dst_index++] = '&'; }dst_buf[dst_index++] = 'a'; dst_buf[dst_index++] = 'm'; dst_buf[dst_index++] = 'p'; dst_buf[dst_index++] = ';'; else if ('<' == user_supplied_string[i] ){ /* encode to < */ else dst_buf[dst_index++] = user_supplied_string[i]; return dst_buf; The programmer attempts to encode the ampersand character in the user-controlled string, however the length of the string is validated before the encoding procedure is applied. Furthermore, the programmer assumes encoding expansion will only expand a given character by a factor of 4, while the encoding of the ampersand expands by 5. As a result, when the encoding procedure expands the string it is possible to overflow the destination buffer if the attacker provides a string of many ampersands. Example 4 The following code is intended to read an incoming packet from a socket and extract one or more headers. (bad code)
Example Language: C
DataPacket *packet;
int numHeaders; PacketHeader *headers; sock=AcceptSocketConnection(); ReadPacket(packet, sock); numHeaders =packet->headers; if (numHeaders > 100) { ExitError("too many headers!"); }headers = malloc(numHeaders * sizeof(PacketHeader); ParsePacketHeaders(packet, headers); The code performs a check to make sure that the packet does not contain too many headers. However, numHeaders is defined as a signed int, so it could be negative. If the incoming packet specifies a value such as -3, then the malloc calculation will generate a negative number (say, -300 if each header can be a maximum of 100 bytes). When this result is provided to malloc(), it is first converted to a size_t type. This conversion then produces a large value such as 4294966996, which may cause malloc() to fail or to allocate an extremely large amount of memory (CWE-195). With the appropriate negative numbers, an attacker could trick malloc() into using a very small positive number, which then allocates a buffer that is much smaller than expected, potentially leading to a buffer overflow. Example 5 The following code attempts to save three different identification numbers into an array. The array is allocated from memory using a call to malloc(). (bad code)
Example Language: C
int *id_sequence;
/* Allocate space for an array of three ids. */ id_sequence = (int*) malloc(3); if (id_sequence == NULL) exit(1); /* Populate the id array. */ id_sequence[0] = 13579; id_sequence[1] = 24680; id_sequence[2] = 97531; The problem with the code above is the value of the size parameter used during the malloc() call. It uses a value of '3' which by definition results in a buffer of three bytes to be created. However the intention was to create a buffer that holds three ints, and in C, each int requires 4 bytes worth of memory, so an array of 12 bytes is needed, 4 bytes for each int. Executing the above code could result in a buffer overflow as 12 bytes of data is being saved into 3 bytes worth of allocated space. The overflow would occur during the assignment of id_sequence[0] and would continue with the assignment of id_sequence[1] and id_sequence[2]. The malloc() call could have used '3*sizeof(int)' as the value for the size parameter in order to allocate the correct amount of space required to store the three ints.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance This is a broad category. Some examples include:
This level of detail is rarely available in public reports, so it is difficult to find good examples. Maintenance This weakness may be a composite or a chain. It also may contain layering or perspective differences. This issue may be associated with many different types of incorrect calculations (CWE-682), although the integer overflow (CWE-190) is probably the most prevalent. This can be primary to resource consumption problems (CWE-400), including uncontrolled memory allocation (CWE-789). However, its relationship with out-of-bounds buffer access (CWE-119) must also be considered.
CWE-135: Incorrect Calculation of Multi-Byte String Length
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not correctly calculate the length of strings that can contain wide or multi-byte characters.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The following example would be exploitable if any of the commented incorrect malloc calls were used. (bad code)
Example Language: C
#include <stdio.h>
#include <strings.h> #include <wchar.h> int main() { wchar_t wideString[] = L"The spazzy orange tiger jumped " \ "over the tawny jaguar."; wchar_t *newString; printf("Strlen() output: %d\nWcslen() output: %d\n", strlen(wideString), wcslen(wideString)); /* Wrong because the number of chars in a string isn't related to its length in bytes // newString = (wchar_t *) malloc(strlen(wideString)); */ /* Wrong because wide characters aren't 1 byte long! // newString = (wchar_t *) malloc(wcslen(wideString)); */ /* Wrong because wcslen does not include the terminating null */ newString = (wchar_t *) malloc(wcslen(wideString) * sizeof(wchar_t)); /* correct! */ newString = (wchar_t *) malloc((wcslen(wideString) + 1) * sizeof(wchar_t)); /* ... */ The output from the printf() statement would be: (result)
Strlen() output: 0
Wcslen() output: 53
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-468: Incorrect Pointer Scaling
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterIn C and C++, one may often accidentally refer to the wrong memory due to the semantics of when math operations are implicitly scaled.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 This example attempts to calculate the position of the second byte of a pointer. (bad code)
Example Language: C
int *p = x;
char * second_char = (char *)(p + 1); In this example, second_char is intended to point to the second byte of p. But, adding 1 to p actually adds sizeof(int) to p, giving a result that is incorrect (3 bytes off on 32-bit platforms). If the resulting memory address is read, this could potentially be an information leak. If it is a write, it could be a security-critical write to unauthorized memory-- whether or not it is a buffer overflow. Note that the above code may also be wrong in other ways, particularly in a little endian environment.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-704: Incorrect Type Conversion or Cast
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not correctly convert an object, resource, or structure from one type to a different type.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Often Prevalent) C++ (Often Prevalent) Class: Not Language-Specific (Undetermined Prevalence) Example 1 In this example, depending on the return value of accecssmainframe(), the variable amount can hold a negative value when it is returned. Because the function is declared to return an unsigned value, amount will be implicitly cast to an unsigned number. (bad code)
Example Language: C
unsigned int readdata () {
int amount = 0; }... amount = accessmainframe(); ... return amount; If the return value of accessmainframe() is -1, then the return value of readdata() will be 4,294,967,295 on a system that uses 32-bit integers. Example 2 The following code uses a union to support the representation of different types of messages. It formats messages differently, depending on their type. (bad code)
Example Language: C
#define NAME_TYPE 1
#define ID_TYPE 2 struct MessageBuffer { int msgType; };union { char *name; };int nameID; int main (int argc, char **argv) { struct MessageBuffer buf;
char *defaultMessage = "Hello World"; buf.msgType = NAME_TYPE; buf.name = defaultMessage; printf("Pointer of buf.name is %p\n", buf.name); /* This particular value for nameID is used to make the code architecture-independent. If coming from untrusted input, it could be any value. */ buf.nameID = (int)(defaultMessage + 1); printf("Pointer of buf.name is now %p\n", buf.name); if (buf.msgType == NAME_TYPE) { printf("Message: %s\n", buf.name); }else { printf("Message: Use ID %d\n", buf.nameID); }The code intends to process the message as a NAME_TYPE, and sets the default message to "Hello World." However, since both buf.name and buf.nameID are part of the same union, they can act as aliases for the same memory location, depending on memory layout after compilation. As a result, modification of buf.nameID - an int - can effectively modify the pointer that is stored in buf.name - a string. Execution of the program might generate output such as:
Pointer of name is 10830
Pointer of name is now 10831
Message: ello World
Notice how the pointer for buf.name was changed, even though buf.name was not explicitly modified. In this case, the first "H" character of the message is omitted. However, if an attacker is able to fully control the value of buf.nameID, then buf.name could contain an arbitrary pointer, leading to out-of-bounds reads or writes.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-192: Integer Coercion Error
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterInteger coercion refers to a set of flaws pertaining to the type casting, extension, or truncation of primitive data types.
Several flaws fall under the category of integer coercion errors. For the most part, these errors in and of themselves result only in availability and data integrity issues. However, in some circumstances, they may result in other, more complicated security related flaws, such as buffer overflow conditions.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Example 1 The following code is intended to read an incoming packet from a socket and extract one or more headers. (bad code)
Example Language: C
DataPacket *packet;
int numHeaders; PacketHeader *headers; sock=AcceptSocketConnection(); ReadPacket(packet, sock); numHeaders =packet->headers; if (numHeaders > 100) { ExitError("too many headers!"); }headers = malloc(numHeaders * sizeof(PacketHeader); ParsePacketHeaders(packet, headers); The code performs a check to make sure that the packet does not contain too many headers. However, numHeaders is defined as a signed int, so it could be negative. If the incoming packet specifies a value such as -3, then the malloc calculation will generate a negative number (say, -300 if each header can be a maximum of 100 bytes). When this result is provided to malloc(), it is first converted to a size_t type. This conversion then produces a large value such as 4294966996, which may cause malloc() to fail or to allocate an extremely large amount of memory (CWE-195). With the appropriate negative numbers, an attacker could trick malloc() into using a very small positive number, which then allocates a buffer that is much smaller than expected, potentially leading to a buffer overflow. Example 2 The following code reads a maximum size and performs validation on that size. It then performs a strncpy, assuming it will not exceed the boundaries of the array. While the use of "short s" is forced in this particular example, short int's are frequently used within real-world code, such as code that processes structured data. (bad code)
Example Language: C
int GetUntrustedInt () {
return(0x0000FFFF); }void main (int argc, char **argv) { char path[256];
char *input; int i; short s; unsigned int sz; i = GetUntrustedInt(); s = i; /* s is -1 so it passes the safety check - CWE-697 */ if (s > 256) { DiePainfully("go away!\n"); }/* s is sign-extended and saved in sz */ sz = s; /* output: i=65535, s=-1, sz=4294967295 - your mileage may vary */ printf("i=%d, s=%d, sz=%u\n", i, s, sz); input = GetUserInput("Enter pathname:"); /* strncpy interprets s as unsigned int, so it's treated as MAX_INT (CWE-195), enabling buffer overflow (CWE-119) */ strncpy(path, input, s); path[255] = '\0'; /* don't want CWE-170 */ printf("Path is: %s\n", path); This code first exhibits an example of CWE-839, allowing "s" to be a negative number. When the negative short "s" is converted to an unsigned integer, it becomes an extremely large positive integer. When this converted integer is used by strncpy() it will lead to a buffer overflow (CWE-119).
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
Within C, it might be that "coercion" is semantically different than "casting", possibly depending on whether the programmer directly specifies the conversion, or if the compiler does it implicitly. This has implications for the presentation of this entry and others, such as CWE-681, and whether there is enough of a difference for these entries to be split.
CWE-191: Integer Underflow (Wrap or Wraparound)
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product subtracts one value from another, such that the result is less than the minimum allowable integer value, which produces a value that is not equal to the correct result.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Example 1 The following example subtracts from a 32 bit signed integer. (bad code)
Example Language: C
#include <stdio.h>
#include <stdbool.h> main (void) { int i; }i = -2147483648; i = i - 1; return 0; The example has an integer underflow. The value of i is already at the lowest negative value possible, so after subtracting 1, the new value of i is 2147483647. Example 2 This code performs a stack allocation based on a length calculation. (bad code)
Example Language: C
int a = 5, b = 6;
}
size_t len = a - b; char buf[len]; // Just blows up the stack Since a and b are declared as signed ints, the "a - b" subtraction gives a negative result (-1). However, since len is declared to be unsigned, len is cast to an extremely large positive number (on 32-bit systems - 4294967295). As a result, the buffer buf[len] declaration uses an extremely large size to allocate on the stack, very likely more than the entire computer's memory space. Miscalculations usually will not be so obvious. The calculation will either be complicated or the result of an attacker's input to attain the negative value.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-789: Memory Allocation with Excessive Size Value
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product allocates memory based on an untrusted, large size value, but it does not ensure that the size is within expected limits, allowing arbitrary amounts of memory to be allocated.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Class: Not Language-Specific (Undetermined Prevalence) Example 1 Consider the following code, which accepts an untrusted size value and allocates a buffer to contain a string of the given size. (bad code)
Example Language: C
unsigned int size = GetUntrustedInt();
/* ignore integer overflow (CWE-190) for this example */ unsigned int totBytes = size * sizeof(char); char *string = (char *)malloc(totBytes); InitializeString(string); Suppose an attacker provides a size value of:
12345678
This will cause 305,419,896 bytes (over 291 megabytes) to be allocated for the string. Example 2 Consider the following code, which accepts an untrusted size value and uses the size as an initial capacity for a HashMap. (bad code)
Example Language: Java
unsigned int size = GetUntrustedInt();
HashMap list = new HashMap(size); The HashMap constructor will verify that the initial capacity is not negative, however there is no check in place to verify that sufficient memory is present. If the attacker provides a large enough value, the application will run into an OutOfMemoryError. Example 3 This code performs a stack allocation based on a length calculation. (bad code)
Example Language: C
int a = 5, b = 6;
}
size_t len = a - b; char buf[len]; // Just blows up the stack Since a and b are declared as signed ints, the "a - b" subtraction gives a negative result (-1). However, since len is declared to be unsigned, len is cast to an extremely large positive number (on 32-bit systems - 4294967295). As a result, the buffer buf[len] declaration uses an extremely large size to allocate on the stack, very likely more than the entire computer's memory space. Miscalculations usually will not be so obvious. The calculation will either be complicated or the result of an attacker's input to attain the negative value. Example 4 This example shows a typical attempt to parse a string with an error resulting from a difference in assumptions between the caller to a function and the function's action. (bad code)
Example Language: C
int proc_msg(char *s, int msg_len)
{
// Note space at the end of the string - assume all strings have preamble with space
}int pre_len = sizeof("preamble: "); char buf[pre_len - msg_len]; ... Do processing here if we get this far char *s = "preamble: message\n"; char *sl = strchr(s, ':'); // Number of characters up to ':' (not including space) int jnklen = sl == NULL ? 0 : sl - s; // If undefined pointer, use zero length int ret_val = proc_msg ("s", jnklen); // Violate assumption of preamble length, end up with negative value, blow out stack The buffer length ends up being -1, resulting in a blown out stack. The space character after the colon is included in the function calculation, but not in the caller's calculation. This, unfortunately, is not usually so obvious but exists in an obtuse series of calculations. Example 5 The following code obtains an untrusted number that is used as an index into an array of messages. (bad code)
Example Language: Perl
my $num = GetUntrustedNumber();
my @messages = (); $messages[$num] = "Hello World"; The index is not validated at all (CWE-129), so it might be possible for an attacker to modify an element in @messages that was not intended. If an index is used that is larger than the current size of the array, the Perl interpreter automatically expands the array so that the large index works. If $num is a large value such as 2147483648 (1<<31), then the assignment to $messages[$num] would attempt to create a very large array, then eventually produce an error message such as: Out of memory during array extend This memory exhaustion will cause the Perl program to exit, possibly a denial of service. In addition, the lack of memory could also prevent many other programs from successfully running on the system. Example 6 This example shows a typical attempt to parse a string with an error resulting from a difference in assumptions between the caller to a function and the function's action. The buffer length ends up being -1 resulting in a blown out stack. The space character after the colon is included in the function calculation, but not in the caller's calculation. This, unfortunately, is not usually so obvious but exists in an obtuse series of calculations. (bad code)
Example Language: C
int proc_msg(char *s, int msg_len)
{ int pre_len = sizeof("preamble: "); // Note space at the end of the string - assume all strings have preamble with space
char buf[pre_len - msg_len];
... Do processing here and set status
return status;
}
char *s = "preamble: message\n"; char *sl = strchr(s, ':'); // Number of characters up to ':' (not including space) int jnklen = sl == NULL ? 0 : sl - s; // If undefined pointer, use zero length int ret_val = proc_msg ("s", jnklen); // Violate assumption of preamble length, end up with negative value, blow out stack (good code)
Example Language: C
int proc_msg(char *s, int msg_len)
{ int pre_len = sizeof("preamble: "); // Note space at the end of the string - assume all strings have preamble with space
if (pre_len <= msg_len) { // Log error; return error_code; }
char buf[pre_len - msg_len];
... Do processing here and set status
return status;
}
char *s = "preamble: message\n"; char *sl = strchr(s, ':'); // Number of characters up to ':' (not including space) int jnklen = sl == NULL ? 0 : sl - s; // If undefined pointer, use zero length int ret_val = proc_msg ("s", jnklen); // Violate assumption of preamble length, end up with negative value, blow out stack
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This weakness can be closely associated with integer overflows (CWE-190). Integer overflow attacks would concentrate on providing an extremely large number that triggers an overflow that causes less memory to be allocated than expected. By providing a large value that does not trigger an integer overflow, the attacker could still cause excessive amounts of memory to be allocated.
Applicable Platform Uncontrolled memory allocation is possible in many languages, such as dynamic array allocation in perl or initial size parameters in Collections in Java. However, languages like C and C++ where programmers have the power to more directly control memory management will be more susceptible.
CWE-762: Mismatched Memory Management Routines
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product attempts to return a memory resource to the system, but it calls a release function that is not compatible with the function that was originally used to allocate that resource.
This weakness can be generally described as mismatching memory management routines, such as:
When the memory management functions are mismatched, the consequences may be as severe as code execution, memory corruption, or program crash. Consequences and ease of exploit will vary depending on the implementation of the routines and the object being managed. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 This example allocates a BarObj object using the new operator in C++, however, the programmer then deallocates the object using free(), which may lead to unexpected behavior. (bad code)
Example Language: C++
void foo(){
BarObj *ptr = new BarObj()
/* do some work with ptr here */ ... free(ptr); Instead, the programmer should have either created the object with one of the malloc family functions, or else deleted the object with the delete operator. (good code)
Example Language: C++
void foo(){
BarObj *ptr = new BarObj()
/* do some work with ptr here */ ... delete ptr; Example 2 In this example, the program does not use matching functions such as malloc/free, new/delete, and new[]/delete[] to allocate/deallocate the resource. (bad code)
Example Language: C++
class A {
void foo(); };void A::foo(){ int *ptr; }ptr = (int*)malloc(sizeof(int)); delete ptr; Example 3 In this example, the program calls the delete[] function on non-heap memory. (bad code)
Example Language: C++
class A{
void foo(bool); };void A::foo(bool heap) { int localArray[2] = { }11,22 };int *p = localArray; if (heap){ p = new int[2]; }delete[] p;
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Applicable Platform This weakness is possible in any programming language that allows manual management of memory.
CWE-478: Missing Default Case in Multiple Condition Expression
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe code does not have a default case in an expression with multiple conditions, such as a switch statement.
If a multiple-condition expression (such as a switch in C) omits the default case but does not consider or handle all possible values that could occur, then this might lead to complex logical errors and resultant weaknesses. Because of this, further decisions are made based on poor information, and cascading failure results. This cascading failure may result in any number of security issues, and constitutes a significant failure in the system.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Python (Undetermined Prevalence) JavaScript (Undetermined Prevalence) Example 1 The following does not properly check the return code in the case where the security_check function returns a -1 value when an error occurs. If an attacker can supply data that will invoke an error, the attacker can bypass the security check: (bad code)
Example Language: C
#define FAILED 0
#define PASSED 1 int result; ... result = security_check(data); switch (result) { case FAILED:
printf("Security check failed!\n");
exit(-1); //Break never reached because of exit() break; case PASSED: printf("Security check passed.\n");
break; // program execution continues... ... Instead a default label should be used for unaccounted conditions: (good code)
Example Language: C
#define FAILED 0
#define PASSED 1 int result; ... result = security_check(data); switch (result) { case FAILED:
printf("Security check failed!\n");
exit(-1); //Break never reached because of exit() break; case PASSED: printf("Security check passed.\n");
break; default: printf("Unknown error (%d), exiting...\n",result);
exit(-1); This label is used because the assumption cannot be made that all possible cases are accounted for. A good practice is to reserve the default case for error handling. Example 2 In the following Java example the method getInterestRate retrieves the interest rate for the number of points for a mortgage. The number of points is provided within the input parameter and a switch statement will set the interest rate value to be returned based on the number of points. (bad code)
Example Language: Java
public static final String INTEREST_RATE_AT_ZERO_POINTS = "5.00";
public static final String INTEREST_RATE_AT_ONE_POINTS = "4.75"; public static final String INTEREST_RATE_AT_TWO_POINTS = "4.50"; ... public BigDecimal getInterestRate(int points) { BigDecimal result = new BigDecimal(INTEREST_RATE_AT_ZERO_POINTS);
switch (points) { case 0:
result = new BigDecimal(INTEREST_RATE_AT_ZERO_POINTS);
break; case 1: result = new BigDecimal(INTEREST_RATE_AT_ONE_POINTS);
break; case 2: result = new BigDecimal(INTEREST_RATE_AT_TWO_POINTS);
break; return result; However, this code assumes that the value of the points input parameter will always be 0, 1 or 2 and does not check for other incorrect values passed to the method. This can be easily accomplished by providing a default label in the switch statement that outputs an error message indicating an invalid value for the points input parameter and returning a null value. (good code)
Example Language: Java
public static final String INTEREST_RATE_AT_ZERO_POINTS = "5.00";
public static final String INTEREST_RATE_AT_ONE_POINTS = "4.75"; public static final String INTEREST_RATE_AT_TWO_POINTS = "4.50"; ... public BigDecimal getInterestRate(int points) { BigDecimal result = new BigDecimal(INTEREST_RATE_AT_ZERO_POINTS);
switch (points) { case 0:
result = new BigDecimal(INTEREST_RATE_AT_ZERO_POINTS);
break; case 1: result = new BigDecimal(INTEREST_RATE_AT_ONE_POINTS);
break; case 2: result = new BigDecimal(INTEREST_RATE_AT_TWO_POINTS);
break; default: System.err.println("Invalid value for points, must be 0, 1 or 2");
System.err.println("Returning null value for interest rate"); result = null; return result; Example 3 In the following Python example the match-case statements (available in Python version 3.10 and later) perform actions based on the result of the process_data() function. The expected return is either 0 or 1. However, if an unexpected result (e.g., -1 or 2) is obtained then no actions will be taken potentially leading to an unexpected program state. (bad code)
Example Language: Python
result = process_data(data)
match result: case 0:
print("Properly handle zero case.")
case 1: print("Properly handle one case.")
# program execution continues... The recommended approach is to add a default case that captures any unexpected result conditions, regardless of how improbable these unexpected conditions might be, and properly handles them. (good code)
Example Language: Python
result = process_data(data)
match result: case 0:
print("Properly handle zero case.")
case 1: print("Properly handle one case.")
case _: print("Properly handle unexpected condition.")
# program execution continues... Example 4 In the following JavaScript example the switch-case statements (available in JavaScript version 1.2 and later) are used to process a given step based on the result of a calcuation involving two inputs. The expected return is either 1, 2, or 3. However, if an unexpected result (e.g., 4) is obtained then no action will be taken potentially leading to an unexpected program state. (bad code)
Example Language: JavaScript
let step = input1 + input2;
switch(step) { case 1:
alert("Process step 1.");
break; case 2: alert("Process step 2.");
break; case 3: alert("Process step 3.");
break; } // program execution continues... The recommended approach is to add a default case that captures any unexpected result conditions and properly handles them. (good code)
Example Language: JavaScript
let step = input1 + input2;
switch(step) { case 1:
alert("Process step 1.");
break; case 2: alert("Process step 2.");
break; case 3: alert("Process step 3.");
break; default: alert("Unexpected step encountered.");
} // program execution continues... Example 5 The Finite State Machine (FSM) shown in the "bad" code snippet below assigns the output ("out") based on the value of state, which is determined based on the user provided input ("user_input"). (bad code)
Example Language: Verilog
module fsm_1(out, user_input, clk, rst_n);
input [2:0] user_input; input clk, rst_n; output reg [2:0] out; reg [1:0] state; always @ (posedge clk or negedge rst_n ) begin
endmodule
if (!rst_n)
end
state = 3'h0;
elsecase (user_input)
3'h0:
endcase
3'h1: 3'h2: 3'h3: state = 2'h3; 3'h4: state = 2'h2; 3'h5: state = 2'h1; out <= {1'h1, state};
The case statement does not include a default to handle the scenario when the user provides inputs of 3'h6 and 3'h7. Those inputs push the system to an undefined state and might cause a crash (denial of service) or any other unanticipated outcome. Adding a default statement to handle undefined inputs mitigates this issue. This is shown in the "Good" code snippet below. The default statement is in bold. (good code)
Example Language: Verilog
case (user_input)
3'h0:
endcase3'h1: 3'h2: 3'h3: state = 2'h3; 3'h4: state = 2'h2; 3'h5: state = 2'h1; default: state = 2'h0;
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-401: Missing Release of Memory after Effective Lifetime
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not sufficiently track and release allocated memory after it has been used, which slowly consumes remaining memory.
This is often triggered by improper handling of malformed data or unexpectedly interrupted sessions. In some languages, developers are responsible for tracking memory allocation and releasing the memory. If there are no more pointers or references to the memory, then it can no longer be tracked and identified for release.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The following C function leaks a block of allocated memory if the call to read() does not return the expected number of bytes: (bad code)
Example Language: C
char* getBlock(int fd) {
char* buf = (char*) malloc(BLOCK_SIZE);
if (!buf) { return NULL; }if (read(fd, buf, BLOCK_SIZE) != BLOCK_SIZE) { return NULL; return buf;
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This is often a resultant weakness due to improper handling of malformed data or early termination of sessions.
Terminology
"memory leak" has sometimes been used to describe other kinds of issues, e.g. for information leaks in which the contents of memory are inadvertently leaked (CVE-2003-0400 is one such example of this terminology conflict).
CWE-1341: Multiple Releases of Same Resource or Handle
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product attempts to close or release a resource or handle more than once, without any successful open between the close operations.
Code typically requires "opening" handles or references to resources such as memory, files, devices, socket connections, services, etc. When the code is finished with using the resource, it is typically expected to "close" or "release" the resource, which indicates to the environment (such as the OS) that the resource can be re-assigned or reused by unrelated processes or actors - or in some cases, within the same process. API functions or other abstractions are often used to perform this release, such as free() or delete() within C/C++, or file-handle close() operations that are used in many languages. Unfortunately, the implementation or design of such APIs might expect the developer to be responsible for ensuring that such APIs are only called once per release of the resource. If the developer attempts to release the same resource/handle more than once, then the API's expectations are not met, resulting in undefined and/or insecure behavior. This could lead to consequences such as memory corruption, data corruption, execution path corruption, or other consequences. Note that while the implementation for most (if not all) resource reservation allocations involve a unique identifier/pointer/symbolic reference, then if this identifier is reused, checking the identifier for resource closure may result in a false state of openness and closing of the wrong resource. For this reason, reuse of identifiers is discouraged. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Java (Undetermined Prevalence) Rust (Undetermined Prevalence) Class: Not Language-Specific (Undetermined Prevalence) C (Undetermined Prevalence) C++ (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Example 1 This example attempts to close a file twice. In some cases, the C library fclose() function will catch the error and return an error code. In other implementations, a double-free (CWE-415) occurs, causing the program to fault. Note that the examples presented here are simplistic, and double fclose() calls will frequently be spread around a program, making them more difficult to find during code reviews. (bad code)
Example Language: C
char b[2000];
FILE *f = fopen("dbl_cls.c", "r"); if (f) { b[0] = 0;
}
fread(b, 1, sizeof(b) - 1, f); printf("%s\n'", b); int r1 = fclose(f); printf("\n-----------------\n1 close done '%d'\n", r1); int r2 = fclose(f); // Double close printf("2 close done '%d'\n", r2); There are multiple possible fixes. This fix only has one call to fclose(), which is typically the preferred handling of this problem - but this simplistic method is not always possible. (good code)
Example Language: C
char b[2000];
FILE *f = fopen("dbl_cls.c", "r"); if (f) { b[0] = 0;
}
fread(b, 1, sizeof(b) - 1, f); printf("%s\n'", b); int r = fclose(f); printf("\n-----------------\n1 close done '%d'\n", r); This fix uses a flag to call fclose() only once. Note that this flag is explicit. The variable "f" could also have been used as it will be either NULL if the file is not able to be opened or a valid pointer if the file was successfully opened. If "f" is replacing "f_flg" then "f" would need to be set to NULL after the first fclose() call so the second fclose call would never be executed. (good code)
Example Language: C
char b[2000];
int f_flg = 0; FILE *f = fopen("dbl_cls.c", "r"); if (f) { f_flg = 1; b[0] = 0; fread(b, 1, sizeof(b) - 1, f); printf("%s\n'", b); if (f_flg) { int r1 = fclose(f); f_flg = 0; printf("\n-----------------\n1 close done '%d'\n", r1); } if (f_flg) { int r2 = fclose(f); // Double close f_flg = 0; printf("2 close done '%d'\n", r2); } } Example 2 The following code shows a simple example of a double free vulnerability. (bad code)
Example Language: C
char* ptr = (char*)malloc (SIZE);
... if (abrt) { free(ptr); }... free(ptr); Double free vulnerabilities have two common (and sometimes overlapping) causes:
Although some double free vulnerabilities are not much more complicated than this example, most are spread out across hundreds of lines of code or even different files. Programmers seem particularly susceptible to freeing global variables more than once.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Terminology
The terms related to "release" may vary depending on the type of resource, programming language, specification, or framework. "Close" has been used synonymously for the release of resources like file descriptors and file handles. "Return" is sometimes used instead of Release. "Free" is typically used when releasing memory or buffers back into the system for reuse.
CWE-476: NULL Pointer Dereference
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Go (Undetermined Prevalence) Example 1 While there are no complete fixes aside from conscientious programming, the following steps will go a long way to ensure that NULL pointer dereferences do not occur. (good code)
if (pointer1 != NULL) {
/* make use of pointer1 */ /* ... */ When working with a multithreaded or otherwise asynchronous environment, ensure that proper locking APIs are used to lock before the if statement; and unlock when it has finished. Example 2 This example takes an IP address from a user, verifies that it is well formed and then looks up the hostname and copies it into a buffer. (bad code)
Example Language: C
void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr; char hostname[64]; in_addr_t inet_addr(const char *cp); /*routine that ensures user_supplied_addr is in the right format for conversion */ validate_addr_form(user_supplied_addr); addr = inet_addr(user_supplied_addr); hp = gethostbyaddr( addr, sizeof(struct in_addr), AF_INET); strcpy(hostname, hp->h_name); If an attacker provides an address that appears to be well-formed, but the address does not resolve to a hostname, then the call to gethostbyaddr() will return NULL. Since the code does not check the return value from gethostbyaddr (CWE-252), a NULL pointer dereference (CWE-476) would then occur in the call to strcpy(). Note that this code is also vulnerable to a buffer overflow (CWE-119). Example 3 In the following code, the programmer assumes that the system always has a property named "cmd" defined. If an attacker can control the program's environment so that "cmd" is not defined, the program throws a NULL pointer exception when it attempts to call the trim() method. (bad code)
Example Language: Java
String cmd = System.getProperty("cmd");
cmd = cmd.trim(); Example 4 This Android application has registered to handle a URL when sent an intent: (bad code)
Example Language: Java
... IntentFilter filter = new IntentFilter("com.example.URLHandler.openURL"); MyReceiver receiver = new MyReceiver(); registerReceiver(receiver, filter); ... public class UrlHandlerReceiver extends BroadcastReceiver { @Override
public void onReceive(Context context, Intent intent) { if("com.example.URLHandler.openURL".equals(intent.getAction())) {
String URL = intent.getStringExtra("URLToOpen");
int length = URL.length(); ... } The application assumes the URL will always be included in the intent. When the URL is not present, the call to getStringExtra() will return null, thus causing a null pointer exception when length() is called. Example 5 Consider the following example of a typical client server exchange. The HandleRequest function is intended to perform a request and use a defer to close the connection whenever the function returns. (bad code)
Example Language: Go
func HandleRequest(client http.Client, request *http.Request) (*http.Response, error) {
response, err := client.Do(request)
}defer response.Body.Close() if err != nil {
return nil, err
}... If a user supplies a malformed request or violates the client policy, the Do method can return a nil response and a non-nil err. This HandleRequest Function evaluates the close before checking the error. A deferred call's arguments are evaluated immediately, so the defer statement panics due to a nil response.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-839: Numeric Range Comparison Without Minimum Check
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product checks a value to ensure that it is less than or equal to a maximum, but it does not also verify that the value is greater than or equal to the minimum.
Some products use signed integers or floats even when their values are only expected to be positive or 0. An input validation check might assume that the value is positive, and only check for the maximum value. If the value is negative, but the code assumes that the value is positive, this can produce an error. The error may have security consequences if the negative value is used for memory allocation, array access, buffer access, etc. Ultimately, the error could lead to a buffer overflow or other type of memory corruption. The use of a negative number in a positive-only context could have security implications for other types of resources. For example, a shopping cart might check that the user is not requesting more than 10 items, but a request for -3 items could cause the application to calculate a negative price and credit the attacker's account.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Often Prevalent) C++ (Often Prevalent) Example 1 The following code is intended to read an incoming packet from a socket and extract one or more headers. (bad code)
Example Language: C
DataPacket *packet;
int numHeaders; PacketHeader *headers; sock=AcceptSocketConnection(); ReadPacket(packet, sock); numHeaders =packet->headers; if (numHeaders > 100) { ExitError("too many headers!"); }headers = malloc(numHeaders * sizeof(PacketHeader); ParsePacketHeaders(packet, headers); The code performs a check to make sure that the packet does not contain too many headers. However, numHeaders is defined as a signed int, so it could be negative. If the incoming packet specifies a value such as -3, then the malloc calculation will generate a negative number (say, -300 if each header can be a maximum of 100 bytes). When this result is provided to malloc(), it is first converted to a size_t type. This conversion then produces a large value such as 4294966996, which may cause malloc() to fail or to allocate an extremely large amount of memory (CWE-195). With the appropriate negative numbers, an attacker could trick malloc() into using a very small positive number, which then allocates a buffer that is much smaller than expected, potentially leading to a buffer overflow. Example 2 The following code reads a maximum size and performs a sanity check on that size. It then performs a strncpy, assuming it will not exceed the boundaries of the array. While the use of "short s" is forced in this particular example, short int's are frequently used within real-world code, such as code that processes structured data. (bad code)
Example Language: C
int GetUntrustedInt () {
return(0x0000FFFF); }void main (int argc, char **argv) { char path[256];
char *input; int i; short s; unsigned int sz; i = GetUntrustedInt(); s = i; /* s is -1 so it passes the safety check - CWE-697 */ if (s > 256) { DiePainfully("go away!\n"); }/* s is sign-extended and saved in sz */ sz = s; /* output: i=65535, s=-1, sz=4294967295 - your mileage may vary */ printf("i=%d, s=%d, sz=%u\n", i, s, sz); input = GetUserInput("Enter pathname:"); /* strncpy interprets s as unsigned int, so it's treated as MAX_INT (CWE-195), enabling buffer overflow (CWE-119) */ strncpy(path, input, s); path[255] = '\0'; /* don't want CWE-170 */ printf("Path is: %s\n", path); This code first exhibits an example of CWE-839, allowing "s" to be a negative number. When the negative short "s" is converted to an unsigned integer, it becomes an extremely large positive integer. When this converted integer is used by strncpy() it will lead to a buffer overflow (CWE-119). Example 3 In the following code, the method retrieves a value from an array at a specific array index location that is given as an input parameter to the method (bad code)
Example Language: C
int getValueFromArray(int *array, int len, int index) {
int value; // check that the array index is less than the maximum // length of the array if (index < len) { // get the value at the specified index of the array value = array[index]; // if array index is invalid then output error message // and return value indicating error else { printf("Value is: %d\n", array[index]); }value = -1; return value; However, this method only verifies that the given array index is less than the maximum length of the array but does not check for the minimum value (CWE-839). This will allow a negative value to be accepted as the input array index, which will result in a out of bounds read (CWE-125) and may allow access to sensitive memory. The input array index should be checked to verify that is within the maximum and minimum range required for the array (CWE-129). In this example the if statement should be modified to include a minimum range check, as shown below. (good code)
Example Language: C
... // check that the array index is within the correct // range of values for the array if (index >= 0 && index < len) { ... Example 4 The following code shows a simple BankAccount class with deposit and withdraw methods. (bad code)
Example Language: Java
public class BankAccount {
public final int MAXIMUM_WITHDRAWAL_LIMIT = 350; // variable for bank account balance private double accountBalance; // constructor for BankAccount public BankAccount() { accountBalance = 0; }// method to deposit amount into BankAccount public void deposit(double depositAmount) {...} // method to withdraw amount from BankAccount public void withdraw(double withdrawAmount) { if (withdrawAmount < MAXIMUM_WITHDRAWAL_LIMIT) { double newBalance = accountBalance - withdrawAmount; accountBalance = newBalance; else { System.err.println("Withdrawal amount exceeds the maximum limit allowed, please try again..."); }... // other methods for accessing the BankAccount object ... The withdraw method includes a check to ensure that the withdrawal amount does not exceed the maximum limit allowed, however the method does not check to ensure that the withdrawal amount is greater than a minimum value (CWE-129). Performing a range check on a value that does not include a minimum check can have significant security implications, in this case not including a minimum range check can allow a negative value to be used which would cause the financial application using this class to deposit money into the user account rather than withdrawing. In this example the if statement should the modified to include a minimum range check, as shown below. (good code)
Example Language: Java
public class BankAccount {
public final int MINIMUM_WITHDRAWAL_LIMIT = 0; public final int MAXIMUM_WITHDRAWAL_LIMIT = 350; ... // method to withdraw amount from BankAccount public void withdraw(double withdrawAmount) { if (withdrawAmount < MAXIMUM_WITHDRAWAL_LIMIT && withdrawAmount > MINIMUM_WITHDRAWAL_LIMIT) { ... Note that this example does not protect against concurrent access to the BankAccount balance variable, see CWE-413 and CWE-362. While it is out of scope for this example, note that the use of doubles or floats in financial calculations may be subject to certain kinds of attacks where attackers use rounding errors to steal money.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-197: Numeric Truncation Error
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterTruncation errors occur when a primitive is cast to a primitive of a smaller size and data is lost in the conversion.
When a primitive is cast to a smaller primitive, the high order bits of the large value are lost in the conversion, potentially resulting in an unexpected value that is not equal to the original value. This value may be required as an index into a buffer, a loop iterator, or simply necessary state data. In any case, the value cannot be trusted and the system will be in an undefined state. While this method may be employed viably to isolate the low bits of a value, this usage is rare, and truncation usually implies that an implementation error has occurred.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Example 1 This example, while not exploitable, shows the possible mangling of values associated with truncation errors: (bad code)
Example Language: C
int intPrimitive;
short shortPrimitive; intPrimitive = (int)(~((int)0) ^ (1 << (sizeof(int)*8-1))); shortPrimitive = intPrimitive; printf("Int MAXINT: %d\nShort MAXINT: %d\n", intPrimitive, shortPrimitive); The above code, when compiled and run on certain systems, returns the following output: (result)
Int MAXINT: 2147483647
Short MAXINT: -1 This problem may be exploitable when the truncated value is used as an array index, which can happen implicitly when 64-bit values are used as indexes, as they are truncated to 32 bits. Example 2 In the following Java example, the method updateSalesForProduct is part of a business application class that updates the sales information for a particular product. The method receives as arguments the product ID and the integer amount sold. The product ID is used to retrieve the total product count from an inventory object which returns the count as an integer. Before calling the method of the sales object to update the sales count the integer values are converted to The primitive type short since the method requires short type for the method arguments. (bad code)
Example Language: Java
...
// update sales database for number of product sold with product ID public void updateSalesForProduct(String productID, int amountSold) { // get the total number of products in inventory database int productCount = inventory.getProductCount(productID); // convert integer values to short, the method for the // sales object requires the parameters to be of type short short count = (short) productCount; short sold = (short) amountSold; // update sales database for product sales.updateSalesCount(productID, count, sold); ... However, a numeric truncation error can occur if the integer values are higher than the maximum value allowed for the primitive type short. This can cause unexpected results or loss or corruption of data. In this case the sales database may be corrupted with incorrect data. Explicit casting from a from a larger size primitive type to a smaller size primitive type should be prevented. The following example an if statement is added to validate that the integer values less than the maximum value for the primitive type short before the explicit cast and the call to the sales method. (good code)
Example Language: Java
...
// update sales database for number of product sold with product ID public void updateSalesForProduct(String productID, int amountSold) { // get the total number of products in inventory database int productCount = inventory.getProductCount(productID); // make sure that integer numbers are not greater than // maximum value for type short before converting if ((productCount < Short.MAX_VALUE) && (amountSold < Short.MAX_VALUE)) { // convert integer values to short, the method for the // sales object requires the parameters to be of type short short count = (short) productCount; short sold = (short) amountSold; // update sales database for product sales.updateSalesCount(productID, count, sold); else { // throw exception or perform other processing ... }...
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Research Gap
This weakness has traditionally been under-studied and under-reported, although vulnerabilities in popular software have been published in 2008 and 2009.
CWE-484: Omitted Break Statement in Switch
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product omits a break statement within a switch or similar construct, causing code associated with multiple conditions to execute. This can cause problems when the programmer only intended to execute code associated with one condition.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) PHP (Undetermined Prevalence) Example 1 In both of these examples, a message is printed based on the month passed into the function: (bad code)
Example Language: Java
public void printMessage(int month){
switch (month) {
case 1: print("January"); case 2: print("February"); case 3: print("March"); case 4: print("April"); case 5: print("May"); case 6: print("June"); case 7: print("July"); case 8: print("August"); case 9: print("September"); case 10: print("October"); case 11: print("November"); case 12: print("December"); println(" is a great month"); (bad code)
Example Language: C
void printMessage(int month){
switch (month) {
case 1: printf("January"); case 2: printf("February"); case 3: printf("March"); case 4: printf("April"); case 5: printff("May"); case 6: printf("June"); case 7: printf("July"); case 8: printf("August"); case 9: printf("September"); case 10: printf("October"); case 11: printf("November"); case 12: printf("December"); printf(" is a great month"); Both examples do not use a break statement after each case, which leads to unintended fall-through behavior. For example, calling "printMessage(10)" will result in the text "OctoberNovemberDecember is a great month" being printed.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-783: Operator Precedence Logic Error
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses an expression in which operator precedence causes incorrect logic to be used.
While often just a bug, operator precedence logic errors can have serious consequences if they are used in security-critical code, such as making an authentication decision.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Rarely Prevalent) C++ (Rarely Prevalent) Class: Not Language-Specific (Rarely Prevalent) Example 1 In the following example, the method validateUser makes a call to another method to authenticate a username and password for a user and returns a success or failure code. (bad code)
Example Language: C
#define FAIL 0
#define SUCCESS 1 ... int validateUser(char *username, char *password) { int isUser = FAIL; // call method to authenticate username and password // if authentication fails then return failure otherwise return success if (isUser = AuthenticateUser(username, password) == FAIL) { return isUser; }else { isUser = SUCCESS; }return isUser; However, the method that authenticates the username and password is called within an if statement with incorrect operator precedence logic. Because the comparison operator "==" has a higher precedence than the assignment operator "=", the comparison operator will be evaluated first and if the method returns FAIL then the comparison will be true, the return variable will be set to true and SUCCESS will be returned. This operator precedence logic error can be easily resolved by properly using parentheses within the expression of the if statement, as shown below. (good code)
Example Language: C
...
if ((isUser = AuthenticateUser(username, password)) == FAIL) { ... Example 2 In this example, the method calculates the return on investment for an accounting/financial application. The return on investment is calculated by subtracting the initial investment costs from the current value and then dividing by the initial investment costs. (bad code)
Example Language: Java
public double calculateReturnOnInvestment(double currentValue, double initialInvestment) {
double returnROI = 0.0; // calculate return on investment returnROI = currentValue - initialInvestment / initialInvestment; return returnROI; However, the return on investment calculation will not produce correct results because of the incorrect operator precedence logic in the equation. The divide operator has a higher precedence than the minus operator, therefore the equation will divide the initial investment costs by the initial investment costs which will only subtract one from the current value. Again this operator precedence logic error can be resolved by the correct use of parentheses within the equation, as shown below. (good code)
Example Language: Java
...
returnROI = (currentValue - initialInvestment) / initialInvestment; ... Note that the initialInvestment variable in this example should be validated to ensure that it is greater than zero to avoid a potential divide by zero error (CWE-369).
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-125: Out-of-bounds Read
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThis table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Technologies Class: ICS/OT (Often Prevalent) Example 1 In the following code, the method retrieves a value from an array at a specific array index location that is given as an input parameter to the method (bad code)
Example Language: C
int getValueFromArray(int *array, int len, int index) {
int value; // check that the array index is less than the maximum // length of the array if (index < len) { // get the value at the specified index of the array value = array[index]; // if array index is invalid then output error message // and return value indicating error else { printf("Value is: %d\n", array[index]); }value = -1; return value; However, this method only verifies that the given array index is less than the maximum length of the array but does not check for the minimum value (CWE-839). This will allow a negative value to be accepted as the input array index, which will result in a out of bounds read (CWE-125) and may allow access to sensitive memory. The input array index should be checked to verify that is within the maximum and minimum range required for the array (CWE-129). In this example the if statement should be modified to include a minimum range check, as shown below. (good code)
Example Language: C
... // check that the array index is within the correct // range of values for the array if (index >= 0 && index < len) { ...
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-787: Out-of-bounds Write
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Often Prevalent) C++ (Often Prevalent) Class: Assembly (Undetermined Prevalence) Technologies Class: ICS/OT (Often Prevalent) Example 1 The following code attempts to save four different identification numbers into an array. (bad code)
Example Language: C
int id_sequence[3];
/* Populate the id array. */ id_sequence[0] = 123; id_sequence[1] = 234; id_sequence[2] = 345; id_sequence[3] = 456; Since the array is only allocated to hold three elements, the valid indices are 0 to 2; so, the assignment to id_sequence[3] is out of bounds. Example 2 In the following code, it is possible to request that memcpy move a much larger segment of memory than assumed: (bad code)
Example Language: C
int returnChunkSize(void *) {
/* if chunk info is valid, return the size of usable memory, * else, return -1 to indicate an error */ ... int main() { ... }memcpy(destBuf, srcBuf, (returnChunkSize(destBuf)-1)); ... If returnChunkSize() happens to encounter an error it will return -1. Notice that the return value is not checked before the memcpy operation (CWE-252), so -1 can be passed as the size argument to memcpy() (CWE-805). Because memcpy() assumes that the value is unsigned, it will be interpreted as MAXINT-1 (CWE-195), and therefore will copy far more memory than is likely available to the destination buffer (CWE-787, CWE-788). Example 3 This code takes an IP address from the user and verifies that it is well formed. It then looks up the hostname and copies it into a buffer. (bad code)
Example Language: C
void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr; char hostname[64]; in_addr_t inet_addr(const char *cp); /*routine that ensures user_supplied_addr is in the right format for conversion */ validate_addr_form(user_supplied_addr); addr = inet_addr(user_supplied_addr); hp = gethostbyaddr( addr, sizeof(struct in_addr), AF_INET); strcpy(hostname, hp->h_name); This function allocates a buffer of 64 bytes to store the hostname. However, there is no guarantee that the hostname will not be larger than 64 bytes. If an attacker specifies an address which resolves to a very large hostname, then the function may overwrite sensitive data or even relinquish control flow to the attacker. Note that this example also contains an unchecked return value (CWE-252) that can lead to a NULL pointer dereference (CWE-476). Example 4 This code applies an encoding procedure to an input string and stores it into a buffer. (bad code)
Example Language: C
char * copy_input(char *user_supplied_string){
int i, dst_index;
char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE); if ( MAX_SIZE <= strlen(user_supplied_string) ){ die("user string too long, die evil hacker!"); }dst_index = 0; for ( i = 0; i < strlen(user_supplied_string); i++ ){ if( '&' == user_supplied_string[i] ){
dst_buf[dst_index++] = '&'; }dst_buf[dst_index++] = 'a'; dst_buf[dst_index++] = 'm'; dst_buf[dst_index++] = 'p'; dst_buf[dst_index++] = ';'; else if ('<' == user_supplied_string[i] ){ /* encode to < */ else dst_buf[dst_index++] = user_supplied_string[i]; return dst_buf; The programmer attempts to encode the ampersand character in the user-controlled string. However, the length of the string is validated before the encoding procedure is applied. Furthermore, the programmer assumes encoding expansion will only expand a given character by a factor of 4, while the encoding of the ampersand expands by 5. As a result, when the encoding procedure expands the string it is possible to overflow the destination buffer if the attacker provides a string of many ampersands. Example 5 In the following C/C++ code, a utility function is used to trim trailing whitespace from a character string. The function copies the input string to a local character string and uses a while statement to remove the trailing whitespace by moving backward through the string and overwriting whitespace with a NUL character. (bad code)
Example Language: C
char* trimTrailingWhitespace(char *strMessage, int length) {
char *retMessage;
char *message = malloc(sizeof(char)*(length+1)); // copy input string to a temporary string char message[length+1]; int index; for (index = 0; index < length; index++) { message[index] = strMessage[index]; }message[index] = '\0'; // trim trailing whitespace int len = index-1; while (isspace(message[len])) { message[len] = '\0'; }len--; // return string without trailing whitespace retMessage = message; return retMessage; However, this function can cause a buffer underwrite if the input character string contains all whitespace. On some systems the while statement will move backwards past the beginning of a character string and will call the isspace() function on an address outside of the bounds of the local buffer. Example 6 The following code allocates memory for a maximum number of widgets. It then gets a user-specified number of widgets, making sure that the user does not request too many. It then initializes the elements of the array using InitializeWidget(). Because the number of widgets can vary for each request, the code inserts a NULL pointer to signify the location of the last widget. (bad code)
Example Language: C
int i;
unsigned int numWidgets; Widget **WidgetList; numWidgets = GetUntrustedSizeValue(); if ((numWidgets == 0) || (numWidgets > MAX_NUM_WIDGETS)) { ExitError("Incorrect number of widgets requested!"); }WidgetList = (Widget **)malloc(numWidgets * sizeof(Widget *)); printf("WidgetList ptr=%p\n", WidgetList); for(i=0; i<numWidgets; i++) { WidgetList[i] = InitializeWidget(); }WidgetList[numWidgets] = NULL; showWidgets(WidgetList); However, this code contains an off-by-one calculation error (CWE-193). It allocates exactly enough space to contain the specified number of widgets, but it does not include the space for the NULL pointer. As a result, the allocated buffer is smaller than it is supposed to be (CWE-131). So if the user ever requests MAX_NUM_WIDGETS, there is an out-of-bounds write (CWE-787) when the NULL is assigned. Depending on the environment and compilation settings, this could cause memory corruption. Example 7 The following is an example of code that may result in a buffer underwrite. This code is attempting to replace the substring "Replace Me" in destBuf with the string stored in srcBuf. It does so by using the function strstr(), which returns a pointer to the found substring in destBuf. Using pointer arithmetic, the starting index of the substring is found. (bad code)
Example Language: C
int main() {
... }
char *result = strstr(destBuf, "Replace Me"); int idx = result - destBuf; strcpy(&destBuf[idx], srcBuf); ... In the case where the substring is not found in destBuf, strstr() will return NULL, causing the pointer arithmetic to be undefined, potentially setting the value of idx to a negative number. If idx is negative, this will result in a buffer underwrite of destBuf.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-374: Passing Mutable Objects to an Untrusted Method
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
The function or method that has been called can alter or delete the mutable data. This could violate assumptions that the calling function has made about its state. In situations where unknown code is called with references to mutable data, this external code could make changes to the data sent. If this data was not previously cloned, the modified data might not be valid in the context of execution.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Example 1 The following example demonstrates the weakness. (bad code)
Example Language: C
private:
int foo;
complexType bar; String baz; otherClass externalClass; public: void doStuff() {
externalClass.doOtherStuff(foo, bar, baz) }In this example, bar and baz will be passed by reference to doOtherStuff() which may change them. Example 2 In the following Java example, the BookStore class manages the sale of books in a bookstore, this class includes the member objects for the bookstore inventory and sales database manager classes. The BookStore class includes a method for updating the sales database and inventory when a book is sold. This method retrieves a Book object from the bookstore inventory object using the supplied ISBN number for the book class, then calls a method for the sales object to update the sales information and then calls a method for the inventory object to update inventory for the BookStore. (bad code)
Example Language: Java
public class BookStore {
private BookStoreInventory inventory;
private SalesDBManager sales; ... // constructor for BookStore public BookStore() { this.inventory = new BookStoreInventory(); }this.sales = new SalesDBManager(); ... public void updateSalesAndInventoryForBookSold(String bookISBN) { // Get book object from inventory using ISBN Book book = inventory.getBookWithISBN(bookISBN); // update sales information for book sold sales.updateSalesInformation(book); // update inventory inventory.updateInventory(book); // other BookStore methods ... public class Book { private String title; }private String author; private String isbn; // Book object constructors and get/set methods ... However, in this example the Book object that is retrieved and passed to the method of the sales object could have its contents modified by the method. This could cause unexpected results when the book object is sent to the method for the inventory object to update the inventory. In the Java programming language arguments to methods are passed by value, however in the case of objects a reference to the object is passed by value to the method. When an object reference is passed as a method argument a copy of the object reference is made within the method and therefore both references point to the same object. This allows the contents of the object to be modified by the method that holds the copy of the object reference. [REF-374] In this case the contents of the Book object could be modified by the method of the sales object prior to the call to update the inventory. To prevent the contents of the Book object from being modified, a copy of the Book object should be made before the method call to the sales object. In the following example a copy of the Book object is made using the clone() method and the copy of the Book object is passed to the method of the sales object. This will prevent any changes being made to the original Book object. (good code)
Example Language: Java
...
public void updateSalesAndInventoryForBookSold(String bookISBN) { // Get book object from inventory using ISBN Book book = inventory.getBookWithISBN(bookISBN); // Create copy of book object to make sure contents are not changed Book bookSold = (Book) book.clone(); // update sales information for book sold sales.updateSalesInformation(bookSold); // update inventory inventory.updateInventory(book); ...
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-495: Private Data Structure Returned From A Public Method
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product has a method that is declared public, but returns a reference to a private data structure, which could then be modified in unexpected ways.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Example 1 Here, a public method in a Java class returns a reference to a private array. Given that arrays in Java are mutable, any modifications made to the returned reference would be reflected in the original private array. (bad code)
Example Language: Java
private String[] colors;
public String[] getColors() { return colors; }Example 2 In this example, the Color class defines functions that return non-const references to private members (an array type and an integer type), which are then arbitrarily altered from outside the control of the class. (bad code)
Example Language: C++
class Color
{ private: };int[2] colorArray; public:int colorValue; Color () : colorArray { 1, 2 }, colorValue (3) { }; int[2] & fa () { return colorArray; } // return reference to private array int & fv () { return colorValue; } // return reference to private integer int main () { Color c; }c.fa () [1] = 42; // modifies private array element c.fv () = 42; // modifies private int return 0;
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-496: Public Data Assigned to Private Array-Typed Field
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterAssigning public data to a private array is equivalent to giving public access to the array.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Example 1 In the example below, the setRoles() method assigns a publically-controllable array to a private field, thus allowing the caller to modify the private array directly by virtue of the fact that arrays in Java are mutable. (bad code)
Example Language: Java
private String[] userRoles;
public void setUserRoles(String[] userRoles) { this.userRoles = userRoles; }
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-500: Public Static Field Not Marked Final
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterAn object contains a public static field that is not marked final, which might allow it to be modified in unexpected ways.
Public static variables can be read without an accessor and changed without a mutator by any classes in the application.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C++ (Undetermined Prevalence) Java (Undetermined Prevalence) Example 1 The following examples use of a public static String variable to contain the name of a property/configuration file for the application. (bad code)
Example Language: C++
class SomeAppClass {
public: static string appPropertiesConfigFile = "app/properties.config";
... (bad code)
Example Language: Java
public class SomeAppClass {
public static String appPropertiesFile = "app/Application.properties"; ... Having a public static variable that is not marked final (constant) may allow the variable to the altered in a way not intended by the application. In this example the String variable can be modified to indicate a different on nonexistent properties file which could cause the application to crash or caused unexpected behavior. (good code)
Example Language: C++
class SomeAppClass {
public: static const string appPropertiesConfigFile = "app/properties.config";
... (good code)
Example Language: Java
public class SomeAppClass {
public static final String appPropertiesFile = "app/Application.properties"; ...
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-366: Race Condition within a Thread
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterIf two threads of execution use a resource simultaneously, there exists the possibility that resources may be used while invalid, in turn making the state of execution undefined.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Example 1 The following example demonstrates the weakness. (bad code)
Example Language: C
int foo = 0;
int storenum(int num) { static int counter = 0; }counter++; if (num > foo) foo = num; return foo; (bad code)
Example Language: Java
public classRace {
static int foo = 0;
public static void main() { new Threader().start(); foo = 1; public static class Threader extends Thread { public void run() { System.out.println(foo); }
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-188: Reliance on Data/Memory Layout
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product makes invalid assumptions about how protocol data or memory is organized at a lower level, resulting in unintended program behavior.
When changing platforms or protocol versions, in-memory organization of data may change in unintended ways. For example, some architectures may place local variables A and B right next to each other with A on top; some may place them next to each other with B on top; and others may add some padding to each. The padding size may vary to ensure that each variable is aligned to a proper word size. In protocol implementations, it is common to calculate an offset relative to another field to pick out a specific piece of data. Exceptional conditions, often involving new protocol versions, may add corner cases that change the data layout in an unusual way. The result can be that an implementation accesses an unintended field in the packet, treating data of one type as data of another type. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 In this example function, the memory address of variable b is derived by adding 1 to the address of variable a. This derived address is then used to assign the value 0 to b. (bad code)
Example Language: C
void example() {
char a; }char b; *(&a + 1) = 0; Here, b may not be one byte past a. It may be one byte in front of a. Or, they may have three bytes between them because they are aligned on 32-bit boundaries.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-466: Return of Pointer Value Outside of Expected Range
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterA function can return a pointer to memory that is outside of the buffer that the pointer is expected to reference.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence)
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
This entry should have a chaining relationship with CWE-119 instead of a parent / child relationship, however the focus of this weakness does not map cleanly to any existing entries in CWE. A new parent is being considered which covers the more generic problem of incorrect return values. There is also an abstract relationship to weaknesses in which one component sends incorrect messages to another component; in this case, one routine is sending an incorrect value to another.
CWE-562: Return of Stack Variable Address
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterA function returns the address of a stack variable, which will cause unintended program behavior, typically in the form of a crash.
Because local variables are allocated on the stack, when a program returns a pointer to a local variable, it is returning a stack address. A subsequent function call is likely to re-use this same stack address, thereby overwriting the value of the pointer, which no longer corresponds to the same variable since a function's stack frame is invalidated when it returns. At best this will cause the value of the pointer to change unexpectedly. In many cases it causes the program to crash the next time the pointer is dereferenced.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The following function returns a stack address. (bad code)
Example Language: C
char* getName() {
char name[STR_MAX]; }fillInName(name); return name;
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-375: Returning a Mutable Object to an Untrusted Caller
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterSending non-cloned mutable data as a return value may result in that data being altered or deleted by the calling function.
In situations where functions return references to mutable data, it is possible that the external code which called the function may make changes to the data sent. If this data was not previously cloned, the class will then be using modified data which may violate assumptions about its internal state.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Example 1 This class has a private list of patients, but provides a way to see the list : (bad code)
Example Language: Java
public class ClinicalTrial {
private PatientClass[] patientList = new PatientClass[50]; }public getPatients(...){ return patientList; }While this code only means to allow reading of the patient list, the getPatients() method returns a reference to the class's original patient list instead of a reference to a copy of the list. Any caller of this method can arbitrarily modify the contents of the patient list even though it is a private member of the class.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-364: Signal Handler Race Condition
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterRace conditions frequently occur in signal handlers, since signal handlers support asynchronous actions. These race conditions have a variety of root causes and symptoms. Attackers may be able to exploit a signal handler race condition to cause the product state to be corrupted, possibly leading to a denial of service or even code execution. These issues occur when non-reentrant functions, or state-sensitive actions occur in the signal handler, where they may be called at any time. These behaviors can violate assumptions being made by the "regular" code that is interrupted, or by other signal handlers that may also be invoked. If these functions are called at an inopportune moment - such as while a non-reentrant function is already running - memory corruption could occur that may be exploitable for code execution. Another signal race condition commonly found occurs when free is called within a signal handler, resulting in a double free and therefore a write-what-where condition. Even if a given pointer is set to NULL after it has been freed, a race condition still exists between the time the memory was freed and the pointer was set to NULL. This is especially problematic if the same signal handler has been set for more than one signal -- since it means that the signal handler itself may be reentered. There are several known behaviors related to signal handlers that have received the label of "signal handler race condition":
Signal handler vulnerabilities are often classified based on the absence of a specific protection mechanism, although this style of classification is discouraged in CWE because programmers often have a choice of several different mechanisms for addressing the weakness. Such protection mechanisms may preserve exclusivity of access to the shared resource, and behavioral atomicity for the relevant code:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Sometimes Prevalent) C++ (Sometimes Prevalent) Example 1 This code registers the same signal handler function with two different signals (CWE-831). If those signals are sent to the process, the handler creates a log message (specified in the first argument to the program) and exits. (bad code)
Example Language: C
char *logMessage;
void handler (int sigNum) { syslog(LOG_NOTICE, "%s\n", logMessage);
free(logMessage); /* artificially increase the size of the timing window to make demonstration of this weakness easier. */ sleep(10); exit(0); int main (int argc, char* argv[]) { logMessage = strdup(argv[1]);
/* Register signal handlers. */ signal(SIGHUP, handler); signal(SIGTERM, handler); /* artificially increase the size of the timing window to make demonstration of this weakness easier. */ sleep(10); The handler function uses global state (globalVar and logMessage), and it can be called by both the SIGHUP and SIGTERM signals. An attack scenario might follow these lines:
At this point, the state of the heap is uncertain, because malloc is still modifying the metadata for the heap; the metadata might be in an inconsistent state. The SIGTERM-handler call to free() is assuming that the metadata is inconsistent, possibly causing it to write data to the wrong location while managing the heap. The result is memory corruption, which could lead to a crash or even code execution, depending on the circumstances under which the code is running. Note that this is an adaptation of a classic example as originally presented by Michal Zalewski [REF-360]; the original example was shown to be exploitable for code execution. Also note that the strdup(argv[1]) call contains a potential buffer over-read (CWE-126) if the program is called without any arguments, because argc would be 0, and argv[1] would point outside the bounds of the array. Example 2 The following code registers a signal handler with multiple signals in order to log when a specific event occurs and to free associated memory before exiting. (bad code)
Example Language: C
#include <signal.h>
#include <syslog.h> #include <string.h> #include <stdlib.h> void *global1, *global2; char *what; void sh (int dummy) { syslog(LOG_NOTICE,"%s\n",what);
free(global2); free(global1); /* Sleep statements added to expand timing window for race condition */ sleep(10); exit(0); int main (int argc,char* argv[]) { what=argv[1];
global1=strdup(argv[2]); global2=malloc(340); signal(SIGHUP,sh); signal(SIGTERM,sh); /* Sleep statements added to expand timing window for race condition */ sleep(10); exit(0); However, the following sequence of events may result in a double-free (CWE-415):
This is just one possible exploitation of the above code. As another example, the syslog call may use malloc calls which are not async-signal safe. This could cause corruption of the heap management structures. For more details, consult the example within "Delivering Signals for Fun and Profit" [REF-360].
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-479: Signal Handler Use of a Non-reentrant Function
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterNon-reentrant functions are functions that cannot safely be called, interrupted, and then recalled before the first call has finished without resulting in memory corruption. This can lead to an unexpected system state and unpredictable results with a variety of potential consequences depending on context, including denial of service and code execution. Many functions are not reentrant, but some of them can result in the corruption of memory if they are used in a signal handler. The function call syslog() is an example of this. In order to perform its functionality, it allocates a small amount of memory as "scratch space." If syslog() is suspended by a signal call and the signal handler calls syslog(), the memory used by both of these functions enters an undefined, and possibly, exploitable state. Implementations of malloc() and free() manage metadata in global structures in order to track which memory is allocated versus which memory is available, but they are non-reentrant. Simultaneous calls to these functions can cause corruption of the metadata. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 In this example, a signal handler uses syslog() to log a message: (bad code)
char *message;
void sh(int dummy) { syslog(LOG_NOTICE,"%s\n",message); }sleep(10); exit(0); int main(int argc,char* argv[]) { ... }signal(SIGHUP,sh); signal(SIGTERM,sh); sleep(10); exit(0); If the execution of the first call to the signal handler is suspended after invoking syslog(), and the signal handler is called a second time, the memory allocated by syslog() enters an undefined, and possibly, exploitable state.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-195: Signed to Unsigned Conversion Error
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a signed primitive and performs a cast to an unsigned primitive, which can produce an unexpected value if the value of the signed primitive can not be represented using an unsigned primitive.
It is dangerous to rely on implicit casts between signed and unsigned numbers because the result can take on an unexpected value and violate assumptions made by the program. Often, functions will return negative values to indicate a failure. When the result of a function is to be used as a size parameter, using these negative return values can have unexpected results. For example, if negative size values are passed to the standard memory copy or allocation functions they will be implicitly cast to a large unsigned value. This may lead to an exploitable buffer overflow or underflow condition. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 In this example the variable amount can hold a negative value when it is returned. Because the function is declared to return an unsigned int, amount will be implicitly converted to unsigned. (bad code)
Example Language: C
unsigned int readdata () {
int amount = 0; }... if (result == ERROR) amount = -1; ... return amount; If the error condition in the code above is met, then the return value of readdata() will be 4,294,967,295 on a system that uses 32-bit integers. Example 2 In this example, depending on the return value of accecssmainframe(), the variable amount can hold a negative value when it is returned. Because the function is declared to return an unsigned value, amount will be implicitly cast to an unsigned number. (bad code)
Example Language: C
unsigned int readdata () {
int amount = 0; }... amount = accessmainframe(); ... return amount; If the return value of accessmainframe() is -1, then the return value of readdata() will be 4,294,967,295 on a system that uses 32-bit integers. Example 3 The following code is intended to read an incoming packet from a socket and extract one or more headers. (bad code)
Example Language: C
DataPacket *packet;
int numHeaders; PacketHeader *headers; sock=AcceptSocketConnection(); ReadPacket(packet, sock); numHeaders =packet->headers; if (numHeaders > 100) { ExitError("too many headers!"); }headers = malloc(numHeaders * sizeof(PacketHeader); ParsePacketHeaders(packet, headers); The code performs a check to make sure that the packet does not contain too many headers. However, numHeaders is defined as a signed int, so it could be negative. If the incoming packet specifies a value such as -3, then the malloc calculation will generate a negative number (say, -300 if each header can be a maximum of 100 bytes). When this result is provided to malloc(), it is first converted to a size_t type. This conversion then produces a large value such as 4294966996, which may cause malloc() to fail or to allocate an extremely large amount of memory (CWE-195). With the appropriate negative numbers, an attacker could trick malloc() into using a very small positive number, which then allocates a buffer that is much smaller than expected, potentially leading to a buffer overflow. Example 4 This example processes user input comprised of a series of variable-length structures. The first 2 bytes of input dictate the size of the structure to be processed. (bad code)
Example Language: C
char* processNext(char* strm) {
char buf[512]; }short len = *(short*) strm; strm += sizeof(len); if (len <= 512) { memcpy(buf, strm, len); }process(buf); return strm + len; else { return -1; }The programmer has set an upper bound on the structure size: if it is larger than 512, the input will not be processed. The problem is that len is a signed short, so the check against the maximum structure length is done with signed values, but len is converted to an unsigned integer for the call to memcpy() and the negative bit will be extended to result in a huge value for the unsigned integer. If len is negative, then it will appear that the structure has an appropriate size (the if branch will be taken), but the amount of memory copied by memcpy() will be quite large, and the attacker will be able to overflow the stack with data in strm. Example 5 In the following example, it is possible to request that memcpy move a much larger segment of memory than assumed: (bad code)
Example Language: C
int returnChunkSize(void *) {
/* if chunk info is valid, return the size of usable memory, * else, return -1 to indicate an error */ ... int main() { ... }memcpy(destBuf, srcBuf, (returnChunkSize(destBuf)-1)); ... If returnChunkSize() happens to encounter an error it will return -1. Notice that the return value is not checked before the memcpy operation (CWE-252), so -1 can be passed as the size argument to memcpy() (CWE-805). Because memcpy() assumes that the value is unsigned, it will be interpreted as MAXINT-1 (CWE-195), and therefore will copy far more memory than is likely available to the destination buffer (CWE-787, CWE-788). Example 6 This example shows a typical attempt to parse a string with an error resulting from a difference in assumptions between the caller to a function and the function's action. (bad code)
Example Language: C
int proc_msg(char *s, int msg_len)
{
// Note space at the end of the string - assume all strings have preamble with space
}int pre_len = sizeof("preamble: "); char buf[pre_len - msg_len]; ... Do processing here if we get this far char *s = "preamble: message\n"; char *sl = strchr(s, ':'); // Number of characters up to ':' (not including space) int jnklen = sl == NULL ? 0 : sl - s; // If undefined pointer, use zero length int ret_val = proc_msg ("s", jnklen); // Violate assumption of preamble length, end up with negative value, blow out stack The buffer length ends up being -1, resulting in a blown out stack. The space character after the colon is included in the function calculation, but not in the caller's calculation. This, unfortunately, is not usually so obvious but exists in an obtuse series of calculations.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-121: Stack-based Buffer Overflow
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterA stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 While buffer overflow examples can be rather complex, it is possible to have very simple, yet still exploitable, stack-based buffer overflows: (bad code)
Example Language: C
#define BUFSIZE 256
int main(int argc, char **argv) { char buf[BUFSIZE]; }strcpy(buf, argv[1]); The buffer size is fixed, but there is no guarantee the string in argv[1] will not exceed this size and cause an overflow. Example 2 This example takes an IP address from a user, verifies that it is well formed and then looks up the hostname and copies it into a buffer. (bad code)
Example Language: C
void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr; char hostname[64]; in_addr_t inet_addr(const char *cp); /*routine that ensures user_supplied_addr is in the right format for conversion */ validate_addr_form(user_supplied_addr); addr = inet_addr(user_supplied_addr); hp = gethostbyaddr( addr, sizeof(struct in_addr), AF_INET); strcpy(hostname, hp->h_name); This function allocates a buffer of 64 bytes to store the hostname, however there is no guarantee that the hostname will not be larger than 64 bytes. If an attacker specifies an address which resolves to a very large hostname, then the function may overwrite sensitive data or even relinquish control flow to the attacker. Note that this example also contains an unchecked return value (CWE-252) that can lead to a NULL pointer dereference (CWE-476).
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other
Stack-based buffer overflows can instantiate in return address overwrites, stack pointer overwrites or frame pointer overwrites. They can also be considered function pointer overwrites, array indexer overwrites or write-what-where condition, etc.
CWE-248: Uncaught Exception
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
When an exception is not caught, it may cause the program to crash or expose sensitive information.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Example 1 The following example attempts to resolve a hostname. (bad code)
Example Language: Java
protected void doPost (HttpServletRequest req, HttpServletResponse res) throws IOException {
String ip = req.getRemoteAddr(); }InetAddress addr = InetAddress.getByName(ip); ... out.println("hello " + addr.getHostName()); A DNS lookup failure will cause the Servlet to throw an exception. Example 2 The _alloca() function allocates memory on the stack. If an allocation request is too large for the available stack space, _alloca() throws an exception. If the exception is not caught, the program will crash, potentially enabling a denial of service attack. _alloca() has been deprecated as of Microsoft Visual Studio 2005(R). It has been replaced with the more secure _alloca_s(). Example 3 EnterCriticalSection() can raise an exception, potentially causing the program to crash. Under operating systems prior to Windows 2000, the EnterCriticalSection() function can raise an exception in low memory situations. If the exception is not caught, the program will crash, potentially enabling a denial of service attack.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-690: Unchecked Return Value to NULL Pointer Dereference
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not check for an error after calling a function that can return with a NULL pointer if the function fails, which leads to a resultant NULL pointer dereference.
While unchecked return value weaknesses are not limited to returns of NULL pointers (see the examples in CWE-252), functions often return NULL to indicate an error status. When this error condition is not checked, a NULL pointer dereference can occur.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The code below makes a call to the getUserName() function but doesn't check the return value before dereferencing (which may cause a NullPointerException). (bad code)
Example Language: Java
String username = getUserName();
if (username.equals(ADMIN_USER)) { ... }Example 2 This example takes an IP address from a user, verifies that it is well formed and then looks up the hostname and copies it into a buffer. (bad code)
Example Language: C
void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr; char hostname[64]; in_addr_t inet_addr(const char *cp); /*routine that ensures user_supplied_addr is in the right format for conversion */ validate_addr_form(user_supplied_addr); addr = inet_addr(user_supplied_addr); hp = gethostbyaddr( addr, sizeof(struct in_addr), AF_INET); strcpy(hostname, hp->h_name); If an attacker provides an address that appears to be well-formed, but the address does not resolve to a hostname, then the call to gethostbyaddr() will return NULL. Since the code does not check the return value from gethostbyaddr (CWE-252), a NULL pointer dereference (CWE-476) would then occur in the call to strcpy(). Note that this code is also vulnerable to a buffer overflow (CWE-119).
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-194: Unexpected Sign Extension
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product performs an operation on a number that causes it to be sign extended when it is transformed into a larger data type. When the original number is negative, this can produce unexpected values that lead to resultant weaknesses.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The following code reads a maximum size and performs a sanity check on that size. It then performs a strncpy, assuming it will not exceed the boundaries of the array. While the use of "short s" is forced in this particular example, short int's are frequently used within real-world code, such as code that processes structured data. (bad code)
Example Language: C
int GetUntrustedInt () {
return(0x0000FFFF); }void main (int argc, char **argv) { char path[256];
char *input; int i; short s; unsigned int sz; i = GetUntrustedInt(); s = i; /* s is -1 so it passes the safety check - CWE-697 */ if (s > 256) { DiePainfully("go away!\n"); }/* s is sign-extended and saved in sz */ sz = s; /* output: i=65535, s=-1, sz=4294967295 - your mileage may vary */ printf("i=%d, s=%d, sz=%u\n", i, s, sz); input = GetUserInput("Enter pathname:"); /* strncpy interprets s as unsigned int, so it's treated as MAX_INT (CWE-195), enabling buffer overflow (CWE-119) */ strncpy(path, input, s); path[255] = '\0'; /* don't want CWE-170 */ printf("Path is: %s\n", path); This code first exhibits an example of CWE-839, allowing "s" to be a negative number. When the negative short "s" is converted to an unsigned integer, it becomes an extremely large positive integer. When this converted integer is used by strncpy() it will lead to a buffer overflow (CWE-119).
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
Sign extension errors can lead to buffer overflows and other memory-based problems. They are also likely to be factors in other weaknesses that are not based on memory operations, but rely on numeric calculation.
Maintenance
This entry is closely associated with signed-to-unsigned conversion errors (CWE-195) and other numeric errors. These relationships need to be more closely examined within CWE.
CWE-196: Unsigned to Signed Conversion Error
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses an unsigned primitive and performs a cast to a signed primitive, which can produce an unexpected value if the value of the unsigned primitive can not be represented using a signed primitive.
Although less frequent an issue than signed-to-unsigned conversion, unsigned-to-signed conversion can be the perfect precursor to dangerous buffer underwrite conditions that allow attackers to move down the stack where they otherwise might not have access in a normal buffer overflow condition. Buffer underwrites occur frequently when large unsigned values are cast to signed values, and then used as indexes into a buffer or for pointer arithmetic.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence)
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-416: Use After Free
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The following example demonstrates the weakness. (bad code)
Example Language: C
#include <stdio.h>
#include <unistd.h> #define BUFSIZER1 512 #define BUFSIZER2 ((BUFSIZER1/2) - 8) int main(int argc, char **argv) { char *buf1R1; }char *buf2R1; char *buf2R2; char *buf3R2; buf1R1 = (char *) malloc(BUFSIZER1); buf2R1 = (char *) malloc(BUFSIZER1); free(buf2R1); buf2R2 = (char *) malloc(BUFSIZER2); buf3R2 = (char *) malloc(BUFSIZER2); strncpy(buf2R1, argv[1], BUFSIZER1-1); free(buf1R1); free(buf2R2); free(buf3R2); Example 2 The following code illustrates a use after free error: (bad code)
Example Language: C
char* ptr = (char*)malloc (SIZE);
if (err) { abrt = 1; }free(ptr); ... if (abrt) { logError("operation aborted before commit", ptr); }When an error occurs, the pointer is immediately freed. However, this pointer is later incorrectly used in the logError function.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-910: Use of Expired File Descriptor
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
After a file descriptor for a particular file or device has been released, it can be reused. The code might not write to the original file, since the reused file descriptor might reference a different file or device.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Sometimes Prevalent) C++ (Sometimes Prevalent) Class: Not Language-Specific (Undetermined Prevalence)
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-134: Use of Externally-Controlled Format String
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a function that accepts a format string as an argument, but the format string originates from an external source.
When an attacker can modify an externally-controlled format string, this can lead to buffer overflows, denial of service, or data representation problems. It should be noted that in some circumstances, such as internationalization, the set of format strings is externally controlled by design. If the source of these format strings is trusted (e.g. only contained in library files that are only modifiable by the system administrator), then the external control might not itself pose a vulnerability. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Often Prevalent) C++ (Often Prevalent) Perl (Rarely Prevalent) Example 1 The following program prints a string provided as an argument. (bad code)
Example Language: C
#include <stdio.h>
void printWrapper(char *string) { printf(string); int main(int argc, char **argv) { char buf[5012]; memcpy(buf, argv[1], 5012); printWrapper(argv[1]); return (0); The example is exploitable, because of the call to printf() in the printWrapper() function. Note: The stack buffer was added to make exploitation more simple. Example 2 The following code copies a command line argument into a buffer using snprintf(). (bad code)
Example Language: C
int main(int argc, char **argv){
char buf[128]; }... snprintf(buf,128,argv[1]); This code allows an attacker to view the contents of the stack and write to the stack using a command line argument containing a sequence of formatting directives. The attacker can read from the stack by providing more formatting directives, such as %x, than the function takes as arguments to be formatted. (In this example, the function takes no arguments to be formatted.) By using the %n formatting directive, the attacker can write to the stack, causing snprintf() to write the number of bytes output thus far to the specified argument (rather than reading a value from the argument, which is the intended behavior). A sophisticated version of this attack will use four staggered writes to completely control the value of a pointer on the stack. Example 3 Certain implementations make more advanced attacks even easier by providing format directives that control the location in memory to read from or write to. An example of these directives is shown in the following code, written for glibc: (bad code)
Example Language: C
printf("%d %d %1$d %1$d\n", 5, 9);
This code produces the following output: 5 9 5 5 It is also possible to use half-writes (%hn) to accurately control arbitrary DWORDS in memory, which greatly reduces the complexity needed to execute an attack that would otherwise require four staggered writes, such as the one mentioned in the first example.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Applicable Platform This weakness is possible in any programming language that support format strings. Research Gap
Format string issues are under-studied for languages other than C. Memory or disk consumption, control flow or variable alteration, and data corruption may result from format string exploitation in applications written in other languages such as Perl, PHP, Python, etc.
Other While Format String vulnerabilities typically fall under the Buffer Overflow category, technically they are not overflowed buffers. The Format String vulnerability is fairly new (circa 1999) and stems from the fact that there is no realistic way for a function that takes a variable number of arguments to determine just how many arguments were passed in. The most common functions that take a variable number of arguments, including C-runtime functions, are the printf() family of calls. The Format String problem appears in a number of ways. A *printf() call without a format specifier is dangerous and can be exploited. For example, printf(input); is exploitable, while printf(y, input); is not exploitable in that context. The result of the first call, used incorrectly, allows for an attacker to be able to peek at stack memory since the input string will be used as the format specifier. The attacker can stuff the input string with format specifiers and begin reading stack values, since the remaining parameters will be pulled from the stack. Worst case, this improper use may give away enough control to allow an arbitrary value (or values in the case of an exploit program) to be written into the memory of the running program. Frequently targeted entities are file names, process names, identifiers. Format string problems are a classic C/C++ issue that are now rare due to the ease of discovery. One main reason format string vulnerabilities can be exploited is due to the %n operator. The %n operator will write the number of characters, which have been printed by the format string therefore far, to the memory pointed to by its argument. Through skilled creation of a format string, a malicious user may use values on the stack to create a write-what-where condition. Once this is achieved, they can execute arbitrary code. Other operators can be used as well; for example, a %9999s operator could also trigger a buffer overflow, or when used in file-formatting functions like fprintf, it can generate a much larger output than intended.
CWE-558: Use of getlogin() in Multithreaded Application
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses the getlogin() function in a multithreaded context, potentially causing it to return incorrect values.
The getlogin() function returns a pointer to a string that contains the name of the user associated with the calling process. The function is not reentrant, meaning that if it is called from another process, the contents are not locked out and the value of the string can be changed by another process. This makes it very risky to use because the username can be changed by other processes, so the results of the function cannot be trusted.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The following code relies on getlogin() to determine whether or not a user is trusted. It is easily subverted. (bad code)
Example Language: C
pwd = getpwnam(getlogin());
if (isTrustedGroup(pwd->pw_gid)) { allow(); } else {deny(); }
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-480: Use of Incorrect Operator
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product accidentally uses the wrong operator, which changes the logic in security-relevant ways.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Sometimes Prevalent) C++ (Sometimes Prevalent) Perl (Sometimes Prevalent) Class: Not Language-Specific (Undetermined Prevalence) Example 1 The following C/C++ and C# examples attempt to validate an int input parameter against the integer value 100. (bad code)
Example Language: C
int isValid(int value) {
if (value=100) { }printf("Value is valid\n"); }return(1); printf("Value is not valid\n"); return(0); (bad code)
Example Language: C#
bool isValid(int value) {
if (value=100) { }Console.WriteLine("Value is valid."); }return true; Console.WriteLine("Value is not valid."); return false; However, the expression to be evaluated in the if statement uses the assignment operator "=" rather than the comparison operator "==". The result of using the assignment operator instead of the comparison operator causes the int variable to be reassigned locally and the expression in the if statement will always evaluate to the value on the right hand side of the expression. This will result in the input value not being properly validated, which can cause unexpected results. Example 2 The following C/C++ example shows a simple implementation of a stack that includes methods for adding and removing integer values from the stack. The example uses pointers to add and remove integer values to the stack array variable. (bad code)
Example Language: C
#define SIZE 50
int *tos, *p1, stack[SIZE]; void push(int i) { p1++;
if(p1==(tos+SIZE)) { // Print stack overflow error message and exit *p1 == i; int pop(void) { if(p1==tos) {
// Print stack underflow error message and exit p1--; return *(p1+1); int main(int argc, char *argv[]) { // initialize tos and p1 to point to the top of stack tos = stack; p1 = stack; // code to add and remove items from stack ... return 0; The push method includes an expression to assign the integer value to the location in the stack pointed to by the pointer variable. However, this expression uses the comparison operator "==" rather than the assignment operator "=". The result of using the comparison operator instead of the assignment operator causes erroneous values to be entered into the stack and can cause unexpected results. Example 3 The example code below is taken from the CVA6 processor core of the HACK@DAC'21 buggy OpenPiton SoC. Debug access allows users to access internal hardware registers that are otherwise not exposed for user access or restricted access through access control protocols. Hence, requests to enter debug mode are checked and authorized only if the processor has sufficient privileges. In addition, debug accesses are also locked behind password checkers. Thus, the processor enters debug mode only when the privilege level requirement is met, and the correct debug password is provided. The following code [REF-1377] illustrates an instance of a vulnerable implementation of debug mode. The core correctly checks if the debug requests have sufficient privileges and enables the debug_mode_d and debug_mode_q signals. It also correctly checks for debug password and enables umode_i signal. (bad code)
Example Language: Verilog
module csr_regfile #(
...
// check that we actually want to enter debug depending on the privilege level we are currently in
...unique case (priv_lvl_o)
riscv::PRIV_LVL_M: begin
debug_mode_d = dcsr_q.ebreakm;
riscv::PRIV_LVL_U: begin
debug_mode_d = dcsr_q.ebreaku;
assign priv_lvl_o = (debug_mode_q || umode_i) ? riscv::PRIV_LVL_M : priv_lvl_q;
...
debug_mode_q <= debug_mode_d;
...However, it grants debug access and changes the privilege level, priv_lvl_o, even when one of the two checks is satisfied and the other is not. Because of this, debug access can be granted by simply requesting with sufficient privileges (i.e., debug_mode_q is enabled) and failing the password check (i.e., umode_i is disabled). This allows an attacker to bypass the debug password checking and gain debug access to the core, compromising the security of the processor. A fix to this issue is to only change the privilege level of the processor when both checks are satisfied, i.e., the request has enough privileges (i.e., debug_mode_q is enabled) and the password checking is successful (i.e., umode_i is enabled) [REF-1378]. (good code)
Example Language: Verilog
module csr_regfile #(
...
// check that we actually want to enter debug depending on the privilege level we are currently in
...unique case (priv_lvl_o)
riscv::PRIV_LVL_M: begin
debug_mode_d = dcsr_q.ebreakm;
riscv::PRIV_LVL_U: begin
debug_mode_d = dcsr_q.ebreaku;
assign priv_lvl_o = (debug_mode_q && umode_i) ? riscv::PRIV_LVL_M : priv_lvl_q;
...
debug_mode_q <= debug_mode_d;
...
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-242: Use of Inherently Dangerous Function
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
Certain functions behave in dangerous ways regardless of how they are used. Functions in this category were often implemented without taking security concerns into account. The gets() function is unsafe because it does not perform bounds checking on the size of its input. An attacker can easily send arbitrarily-sized input to gets() and overflow the destination buffer. Similarly, the >> operator is unsafe to use when reading into a statically-allocated character array because it does not perform bounds checking on the size of its input. An attacker can easily send arbitrarily-sized input to the >> operator and overflow the destination buffer.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The code below calls gets() to read information into a buffer. (bad code)
Example Language: C
char buf[BUFSIZE];
gets(buf); The gets() function in C is inherently unsafe. Example 2 The code below calls the gets() function to read in data from the command line. (bad code)
Example Language: C
char buf[24]; }printf("Please enter your name and press <Enter>\n"); gets(buf); ... However, gets() is inherently unsafe, because it copies all input from STDIN to the buffer without checking size. This allows the user to provide a string that is larger than the buffer size, resulting in an overflow condition.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product invokes a function for normalizing paths or file names, but it provides an output buffer that is smaller than the maximum possible size, such as PATH_MAX.
Passing an inadequately-sized output buffer to a path manipulation function can result in a buffer overflow. Such functions include realpath(), readlink(), PathAppend(), and others.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 In this example the function creates a directory named "output\<name>" in the current directory and returns a heap-allocated copy of its name. (bad code)
Example Language: C
char *createOutputDirectory(char *name) {
char outputDirectoryName[128];
if (getCurrentDirectory(128, outputDirectoryName) == 0) { return null; }if (!PathAppend(outputDirectoryName, "output")) { return null; }if (!PathAppend(outputDirectoryName, name)) { return null; if (SHCreateDirectoryEx(NULL, outputDirectoryName, NULL) != ERROR_SUCCESS) { return null; return StrDup(outputDirectoryName); For most values of the current directory and the name parameter, this function will work properly. However, if the name parameter is particularly long, then the second call to PathAppend() could overflow the outputDirectoryName buffer, which is smaller than MAX_PATH bytes.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
This entry is at a much lower level of abstraction than most entries because it is function-specific. It also has significant overlap with other entries that can vary depending on the perspective. For example, incorrect usage could trigger either a stack-based overflow (CWE-121) or a heap-based overflow (CWE-122). The CWE team has not decided how to handle such entries.
CWE-469: Use of Pointer Subtraction to Determine Size
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product subtracts one pointer from another in order to determine size, but this calculation can be incorrect if the pointers do not exist in the same memory chunk.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The following example contains the method size that is used to determine the number of nodes in a linked list. The method is passed a pointer to the head of the linked list. (bad code)
Example Language: C
struct node {
int data; };struct node* next; // Returns the number of nodes in a linked list from // the given pointer to the head of the list. int size(struct node* head) { struct node* current = head; }struct node* tail; while (current != NULL) { tail = current; }current = current->next; return tail - head; // other methods for manipulating the list ... However, the method creates a pointer that points to the end of the list and uses pointer subtraction to determine the number of nodes in the list by subtracting the tail pointer from the head pointer. There no guarantee that the pointers exist in the same memory area, therefore using pointer subtraction in this way could return incorrect results and allow other unintended behavior. In this example a counter should be used to determine the number of nodes in the list, as shown in the following code. (good code)
Example Language: C
... int size(struct node* head) { struct node* current = head; }int count = 0; while (current != NULL) { count++; }current = current->next; return count;
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-676: Use of Potentially Dangerous Function
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product invokes a potentially dangerous function that could introduce a vulnerability if it is used incorrectly, but the function can also be used safely.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The following code attempts to create a local copy of a buffer to perform some manipulations to the data. (bad code)
Example Language: C
void manipulate_string(char * string){
char buf[24]; }strcpy(buf, string); ... However, the programmer does not ensure that the size of the data pointed to by string will fit in the local buffer and copies the data with the potentially dangerous strcpy() function. This may result in a buffer overflow condition if an attacker can influence the contents of the string parameter.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This weakness is different than CWE-242 (Use of Inherently Dangerous Function). CWE-242 covers functions with such significant security problems that they can never be guaranteed to be safe. Some functions, if used properly, do not directly pose a security risk, but can introduce a weakness if not called correctly. These are regarded as potentially dangerous. A well-known example is the strcpy() function. When provided with a destination buffer that is larger than its source, strcpy() will not overflow. However, it is so often misused that some developers prohibit strcpy() entirely.
CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded Context
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses the singleton pattern when creating a resource within a multithreaded environment.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Java (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 This method is part of a singleton pattern, yet the following singleton() pattern is not thread-safe. It is possible that the method will create two objects instead of only one. (bad code)
Example Language: Java
private static NumberConverter singleton;
public static NumberConverter get_singleton() { if (singleton == null) { }singleton = new NumberConverter(); }return singleton; Consider the following course of events:
At this point, the threads have created and returned two different objects.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-467: Use of sizeof() on a Pointer Type
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe code calls sizeof() on a pointer type, which can be an incorrect calculation if the programmer intended to determine the size of the data that is being pointed to.
The use of sizeof() on a pointer can sometimes generate useful information. An obvious case is to find out the wordsize on a platform. More often than not, the appearance of sizeof(pointer) indicates a bug.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 Care should be taken to ensure sizeof returns the size of the data structure itself, and not the size of the pointer to the data structure. In this example, sizeof(foo) returns the size of the pointer. (bad code)
Example Language: C
double *foo;
... foo = (double *)malloc(sizeof(foo)); In this example, sizeof(*foo) returns the size of the data structure and not the size of the pointer. (good code)
Example Language: C
double *foo;
... foo = (double *)malloc(sizeof(*foo)); Example 2 This example defines a fixed username and password. The AuthenticateUser() function is intended to accept a username and a password from an untrusted user, and check to ensure that it matches the username and password. If the username and password match, AuthenticateUser() is intended to indicate that authentication succeeded. (bad code)
/* Ignore CWE-259 (hard-coded password) and CWE-309 (use of password system for authentication) for this example. */ char *username = "admin"; char *pass = "password"; int AuthenticateUser(char *inUser, char *inPass) { printf("Sizeof username = %d\n", sizeof(username));
printf("Sizeof pass = %d\n", sizeof(pass)); if (strncmp(username, inUser, sizeof(username))) { printf("Auth failure of username using sizeof\n"); }return(AUTH_FAIL); /* Because of CWE-467, the sizeof returns 4 on many platforms and architectures. */ if (! strncmp(pass, inPass, sizeof(pass))) { printf("Auth success of password using sizeof\n"); }return(AUTH_SUCCESS); else { printf("Auth fail of password using sizeof\n"); }return(AUTH_FAIL); int main (int argc, char **argv) { int authResult;
if (argc < 3) { ExitError("Usage: Provide a username and password"); }authResult = AuthenticateUser(argv[1], argv[2]); if (authResult != AUTH_SUCCESS) { ExitError("Authentication failed"); }else { DoAuthenticatedTask(argv[1]); }In AuthenticateUser(), because sizeof() is applied to a parameter with an array type, the sizeof() call might return 4 on many modern architectures. As a result, the strncmp() call only checks the first four characters of the input password, resulting in a partial comparison (CWE-187), leading to improper authentication (CWE-287). Because of the partial comparison, any of these passwords would still cause authentication to succeed for the "admin" user: (attack code)
pass5
passABCDEFGH passWORD Because only 4 characters are checked, this significantly reduces the search space for an attacker, making brute force attacks more feasible. The same problem also applies to the username, so values such as "adminXYZ" and "administrator" will succeed for the username.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-457: Use of Uninitialized Variable
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe code uses a variable that has not been initialized, leading to unpredictable or unintended results.
In some languages such as C and C++, stack variables are not initialized by default. They generally contain junk data with the contents of stack memory before the function was invoked. An attacker can sometimes control or read these contents. In other languages or conditions, a variable that is not explicitly initialized can be given a default value that has security implications, depending on the logic of the program. The presence of an uninitialized variable can sometimes indicate a typographic error in the code.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Sometimes Prevalent) C++ (Sometimes Prevalent) Perl (Often Prevalent) PHP (Often Prevalent) Class: Not Language-Specific (Undetermined Prevalence) Example 1 This code prints a greeting using information stored in a POST request: (bad code)
Example Language: PHP
if (isset($_POST['names'])) {
$nameArray = $_POST['names']; }echo "Hello " . $nameArray['first']; This code checks if the POST array 'names' is set before assigning it to the $nameArray variable. However, if the array is not in the POST request, $nameArray will remain uninitialized. This will cause an error when the array is accessed to print the greeting message, which could lead to further exploit. Example 2 The following switch statement is intended to set the values of the variables aN and bN before they are used: (bad code)
Example Language: C
int aN, Bn;
switch (ctl) { case -1:
aN = 0;
bN = 0; break; case 0: aN = i;
bN = -i; break; case 1: aN = i + NEXT_SZ;
bN = i - NEXT_SZ; break; default: aN = -1;
aN = -1; break; repaint(aN, bN); In the default case of the switch statement, the programmer has accidentally set the value of aN twice. As a result, bN will have an undefined value. Most uninitialized variable issues result in general software reliability problems, but if attackers can intentionally trigger the use of an uninitialized variable, they might be able to launch a denial of service attack by crashing the program. Under the right circumstances, an attacker may be able to control the value of an uninitialized variable by affecting the values on the stack prior to the invocation of the function. Example 3 This example will leave test_string in an unknown condition when i is the same value as err_val, because test_string is not initialized (CWE-456). Depending on where this code segment appears (e.g. within a function body), test_string might be random if it is stored on the heap or stack. If the variable is declared in static memory, it might be zero or NULL. Compiler optimization might contribute to the unpredictability of this address. (bad code)
Example Language: C
char *test_string;
if (i != err_val) { test_string = "Hello World!";
}printf("%s", test_string); When the printf() is reached, test_string might be an unexpected address, so the printf might print junk strings (CWE-457). To fix this code, there are a couple approaches to making sure that test_string has been properly set once it reaches the printf(). One solution would be to set test_string to an acceptable default before the conditional: (good code)
Example Language: C
char *test_string = "Done at the beginning";
if (i != err_val) { test_string = "Hello World!";
}printf("%s", test_string); Another solution is to ensure that each branch of the conditional - including the default/else branch - could ensure that test_string is set: (good code)
Example Language: C
char *test_string;
if (i != err_val) { test_string = "Hello World!";
}else { test_string = "Done on the other side!";
}printf("%s", test_string);
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-128: Wrap-around Error
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterWrap around errors occur whenever a value is incremented past the maximum value for its type and therefore "wraps around" to a very small, negative, or undefined value.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Often Prevalent) C++ (Often Prevalent) Example 1 The following image processing code allocates a table for images. (bad code)
Example Language: C
img_t table_ptr; /*struct containing img data, 10kB each*/
int num_imgs; ... num_imgs = get_num_imgs(); table_ptr = (img_t*)malloc(sizeof(img_t)*num_imgs); ... This code intends to allocate a table of size num_imgs, however as num_imgs grows large, the calculation determining the size of the list will eventually overflow (CWE-190). This will result in a very small list to be allocated instead. If the subsequent code operates on the list as if it were num_imgs long, it may result in many types of out-of-bounds problems (CWE-119).
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
The relationship between overflow and wrap-around needs to be examined more closely, since several entries (including CWE-190) are closely related.
CWE-123: Write-what-where Condition
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterAny condition where the attacker has the ability to write an arbitrary value to an arbitrary location, often as the result of a buffer overflow.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Example 1 The classic example of a write-what-where condition occurs when the accounting information for memory allocations is overwritten in a particular fashion. Here is an example of potentially vulnerable code: (bad code)
Example Language: C
#define BUFSIZE 256
int main(int argc, char **argv) { char *buf1 = (char *) malloc(BUFSIZE); }char *buf2 = (char *) malloc(BUFSIZE); strcpy(buf1, argv[1]); free(buf2); Vulnerability in this case is dependent on memory layout. The call to strcpy() can be used to write past the end of buf1, and, with a typical layout, can overwrite the accounting information that the system keeps for buf2 when it is allocated. Note that if the allocation header for buf2 can be overwritten, buf2 itself can be overwritten as well. The allocation header will generally keep a linked list of memory "chunks". Particularly, there may be a "previous" chunk and a "next" chunk. Here, the previous chunk for buf2 will probably be buf1, and the next chunk may be null. When the free() occurs, most memory allocators will rewrite the linked list using data from buf2. Particularly, the "next" chunk for buf1 will be updated and the "previous" chunk for any subsequent chunk will be updated. The attacker can insert a memory address for the "next" chunk and a value to write into that memory address for the "previous" chunk. This could be used to overwrite a function pointer that gets dereferenced later, replacing it with a memory address that the attacker has legitimate access to, where they have placed malicious code, resulting in arbitrary code execution.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |