CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > VIEW SLICE: CWE-1424: Weaknesses Addressed by ISA/IEC 62443 Requirements (4.16)  
ID

CWE VIEW: Weaknesses Addressed by ISA/IEC 62443 Requirements

View ID: 1424
Vulnerability Mapping: PROHIBITED This CWE ID must not be used to map to real-world vulnerabilities
Type: Implicit
Downloads: Booklet | CSV | XML
+ Objective
This view (slice) covers weaknesses that are addressed by following requirements in the ISA/IEC 62443 series of standards for industrial automation and control systems (IACS). Members of the CWE ICS/OT SIG analyzed a set of CWEs and mapped them to specific requirements covered by ISA/IEC 62443. These mappings are recorded in Taxonomy_Mapping elements.
+ Filter
/Weakness_Catalog/Weaknesses/Weakness[./Taxonomy_Mappings/Taxonomy_Mapping/@Taxonomy_Name='ISA/IEC 62443']
+ Membership
Nature Type ID Name
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 94 Improper Control of Generation of Code ('Code Injection')
HasMember VariantVariant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 122 Heap-based Buffer Overflow
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 190 Integer Overflow or Wraparound
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 250 Execution with Unnecessary Privileges
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 256 Plaintext Storage of a Password
HasMember ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 269 Improper Privilege Management
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 276 Incorrect Default Permissions
HasMember ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 287 Improper Authentication
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 306 Missing Authentication for Critical Function
HasMember ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 311 Missing Encryption of Sensitive Data
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 312 Cleartext Storage of Sensitive Information
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 319 Cleartext Transmission of Sensitive Information
HasMember VariantVariant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 321 Use of Hard-coded Cryptographic Key
HasMember ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 327 Use of a Broken or Risky Cryptographic Algorithm
HasMember ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 346 Origin Validation Error
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 347 Improper Verification of Cryptographic Signature
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 353 Missing Support for Integrity Check
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 354 Improper Validation of Integrity Check Value
HasMember ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 400 Uncontrolled Resource Consumption
HasMember VariantVariant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 416 Use After Free
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 654 Reliance on a Single Factor in a Security Decision
HasMember ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 655 Insufficient Psychological Acceptability
HasMember ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 657 Violation of Secure Design Principles
HasMember ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 754 Improper Check for Unusual or Exceptional Conditions
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 770 Allocation of Resources Without Limits or Throttling
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 771 Missing Reference to Active Allocated Resource
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 779 Logging of Excessive Data
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 787 Out-of-bounds Write
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 798 Use of Hard-coded Credentials
HasMember ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 862 Missing Authorization
HasMember ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 863 Incorrect Authorization
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 920 Improper Restriction of Power Consumption
HasMember ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 1059 Insufficient Technical Documentation
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1235 Incorrect Use of Autoboxing and Unboxing for Performance Critical Operations
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1242 Inclusion of Undocumented Features or Chicken Bits
HasMember BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1246 Improper Write Handling in Limited-write Non-Volatile Memories
HasMember ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 1357 Reliance on Insufficiently Trustworthy Component
HasMember ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 1391 Use of Weak Credentials
HasMember ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 1395 Dependency on Vulnerable Third-Party Component
+ Vulnerability Mapping Notes

Usage: PROHIBITED

(this CWE ID must not be used to map to real-world vulnerabilities)

Reason: View

Rationale:

This entry is a View. Views are not weaknesses and therefore inappropriate to describe the root causes of vulnerabilities.

Comments:

Use this View or other Views to search and navigate for the appropriate weakness.
+ Notes

Maintenance

The Taxonomy_Mappings to ISA/IEC 62443 were added between CWE 4.9 and CWE 4.14, but some mappings are still under review and might change in future CWE versions. These draft mappings were performed by members of the "Mapping CWE to 62443" subgroup of the CWE ICS/OT Special Interest Group (SIG).
+ View Metrics
CWEs in this view Total CWEs
Weaknesses 39 out of 940
Categories 0 out of 374
Views 0 out of 51
Total 39 out of 1365
+ Content History
+ Submissions
Submission Date Submitter Organization
2024-02-14
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE

View Components

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

CWE-770: Allocation of Resources Without Limits or Throttling

Weakness ID: 770
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product allocates a reusable resource or group of resources on behalf of an actor without imposing any restrictions on the size or number of resources that can be allocated, in violation of the intended security policy for that actor.
+ Extended Description

Code frequently has to work with limited resources, so programmers must be careful to ensure that resources are not consumed too quickly, or too easily. Without use of quotas, resource limits, or other protection mechanisms, it can be easy for an attacker to consume many resources by rapidly making many requests, or causing larger resources to be used than is needed. When too many resources are allocated, or if a single resource is too large, then it can prevent the code from working correctly, possibly leading to a denial of service.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Availability

Technical Impact: DoS: Resource Consumption (CPU); DoS: Resource Consumption (Memory); DoS: Resource Consumption (Other)

When allocating resources without limits, an attacker could prevent other systems, applications, or processes from accessing the same type of resource.
+ Potential Mitigations

Phase: Requirements

Clearly specify the minimum and maximum expectations for capabilities, and dictate which behaviors are acceptable when resource allocation reaches limits.

Phase: Architecture and Design

Limit the amount of resources that are accessible to unprivileged users. Set per-user limits for resources. Allow the system administrator to define these limits. Be careful to avoid CWE-410.

Phase: Architecture and Design

Design throttling mechanisms into the system architecture. The best protection is to limit the amount of resources that an unauthorized user can cause to be expended. A strong authentication and access control model will help prevent such attacks from occurring in the first place, and it will help the administrator to identify who is committing the abuse. The login application should be protected against DoS attacks as much as possible. Limiting the database access, perhaps by caching result sets, can help minimize the resources expended. To further limit the potential for a DoS attack, consider tracking the rate of requests received from users and blocking requests that exceed a defined rate threshold.

Phase: Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

Note: This will only be applicable to cases where user input can influence the size or frequency of resource allocations.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.

Phase: Architecture and Design

Mitigation of resource exhaustion attacks requires that the target system either:

  • recognizes the attack and denies that user further access for a given amount of time, typically by using increasing time delays
  • uniformly throttles all requests in order to make it more difficult to consume resources more quickly than they can again be freed.

The first of these solutions is an issue in itself though, since it may allow attackers to prevent the use of the system by a particular valid user. If the attacker impersonates the valid user, they may be able to prevent the user from accessing the server in question.

The second solution can be difficult to effectively institute -- and even when properly done, it does not provide a full solution. It simply requires more resources on the part of the attacker.

Phase: Architecture and Design

Ensure that protocols have specific limits of scale placed on them.

Phases: Architecture and Design; Implementation

If the program must fail, ensure that it fails gracefully (fails closed). There may be a temptation to simply let the program fail poorly in cases such as low memory conditions, but an attacker may be able to assert control before the software has fully exited. Alternately, an uncontrolled failure could cause cascading problems with other downstream components; for example, the program could send a signal to a downstream process so the process immediately knows that a problem has occurred and has a better chance of recovery.

Ensure that all failures in resource allocation place the system into a safe posture.

Phases: Operation; Architecture and Design

Strategy: Resource Limitation

Use resource-limiting settings provided by the operating system or environment. For example, when managing system resources in POSIX, setrlimit() can be used to set limits for certain types of resources, and getrlimit() can determine how many resources are available. However, these functions are not available on all operating systems.

When the current levels get close to the maximum that is defined for the application (see CWE-770), then limit the allocation of further resources to privileged users; alternately, begin releasing resources for less-privileged users. While this mitigation may protect the system from attack, it will not necessarily stop attackers from adversely impacting other users.

Ensure that the application performs the appropriate error checks and error handling in case resources become unavailable (CWE-703).

+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 400 Uncontrolled Resource Consumption
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 665 Improper Initialization
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 774 Allocation of File Descriptors or Handles Without Limits or Throttling
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 789 Memory Allocation with Excessive Size Value
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1325 Improperly Controlled Sequential Memory Allocation
CanFollow Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 20 Improper Input Validation
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 399 Resource Management Errors
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 840 Business Logic Errors
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 400 Uncontrolled Resource Consumption
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Architectural Concepts" (CWE-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1011 Authorize Actors
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design OMISSION: This weakness is caused by missing a security tactic during the architecture and design phase.
Implementation
Operation
System Configuration
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Often Prevalent)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

This code allocates a socket and forks each time it receives a new connection.

(bad code)
Example Language:
sock=socket(AF_INET, SOCK_STREAM, 0);
while (1) {
newsock=accept(sock, ...);
printf("A connection has been accepted\n");
pid = fork();
}

The program does not track how many connections have been made, and it does not limit the number of connections. Because forking is a relatively expensive operation, an attacker would be able to cause the system to run out of CPU, processes, or memory by making a large number of connections. Alternatively, an attacker could consume all available connections, preventing others from accessing the system remotely.


Example 2

In the following example a server socket connection is used to accept a request to store data on the local file system using a specified filename. The method openSocketConnection establishes a server socket to accept requests from a client. When a client establishes a connection to this service the getNextMessage method is first used to retrieve from the socket the name of the file to store the data, the openFileToWrite method will validate the filename and open a file to write to on the local file system. The getNextMessage is then used within a while loop to continuously read data from the socket and output the data to the file until there is no longer any data from the socket.

(bad code)
Example Language:
int writeDataFromSocketToFile(char *host, int port)
{

char filename[FILENAME_SIZE];
char buffer[BUFFER_SIZE];
int socket = openSocketConnection(host, port);

if (socket < 0) {
printf("Unable to open socket connection");
return(FAIL);
}
if (getNextMessage(socket, filename, FILENAME_SIZE) > 0) {
if (openFileToWrite(filename) > 0) {
while (getNextMessage(socket, buffer, BUFFER_SIZE) > 0){
if (!(writeToFile(buffer) > 0))
break;
}
}
closeFile();
}
closeSocket(socket);
}

This example creates a situation where data can be dumped to a file on the local file system without any limits on the size of the file. This could potentially exhaust file or disk resources and/or limit other clients' ability to access the service.


Example 3

In the following example, the processMessage method receives a two dimensional character array containing the message to be processed. The two-dimensional character array contains the length of the message in the first character array and the message body in the second character array. The getMessageLength method retrieves the integer value of the length from the first character array. After validating that the message length is greater than zero, the body character array pointer points to the start of the second character array of the two-dimensional character array and memory is allocated for the new body character array.

(bad code)
Example Language:

/* process message accepts a two-dimensional character array of the form [length][body] containing the message to be processed */
int processMessage(char **message)
{
char *body;

int length = getMessageLength(message[0]);

if (length > 0) {
body = &message[1][0];
processMessageBody(body);
return(SUCCESS);
}
else {
printf("Unable to process message; invalid message length");
return(FAIL);
}
}

This example creates a situation where the length of the body character array can be very large and will consume excessive memory, exhausting system resources. This can be avoided by restricting the length of the second character array with a maximum length check

Also, consider changing the type from 'int' to 'unsigned int', so that you are always guaranteed that the number is positive. This might not be possible if the protocol specifically requires allowing negative values, or if you cannot control the return value from getMessageLength(), but it could simplify the check to ensure the input is positive, and eliminate other errors such as signed-to-unsigned conversion errors (CWE-195) that may occur elsewhere in the code.

(good code)
Example Language:
unsigned int length = getMessageLength(message[0]);
if ((length > 0) && (length < MAX_LENGTH)) {...}

Example 4

In the following example, a server object creates a server socket and accepts client connections to the socket. For every client connection to the socket a separate thread object is generated using the ClientSocketThread class that handles request made by the client through the socket.

(bad code)
Example Language: Java 
public void acceptConnections() {
try {
ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0;
boolean hasConnections = true;
while (hasConnections) {
Socket client = serverSocket.accept();
Thread t = new Thread(new ClientSocketThread(client));
t.setName(client.getInetAddress().getHostName() + ":" + counter++);
t.start();
}
serverSocket.close();


} catch (IOException ex) {...}
}

In this example there is no limit to the number of client connections and client threads that are created. Allowing an unlimited number of client connections and threads could potentially overwhelm the system and system resources.

The server should limit the number of client connections and the client threads that are created. This can be easily done by creating a thread pool object that limits the number of threads that are generated.

(good code)
Example Language: Java 
public static final int SERVER_PORT = 4444;
public static final int MAX_CONNECTIONS = 10;
...

public void acceptConnections() {
try {
ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0;
boolean hasConnections = true;
while (hasConnections) {
hasConnections = checkForMoreConnections();
Socket client = serverSocket.accept();
Thread t = new Thread(new ClientSocketThread(client));
t.setName(client.getInetAddress().getHostName() + ":" + counter++);
ExecutorService pool = Executors.newFixedThreadPool(MAX_CONNECTIONS);
pool.execute(t);
}
serverSocket.close();


} catch (IOException ex) {...}
}

Example 5

An unnamed web site allowed a user to purchase tickets for an event. A menu option allowed the user to purchase up to 10 tickets, but the back end did not restrict the actual number of tickets that could be purchased.

Example 5 References:
[REF-667] Rafal Los. "Real-Life Example of a 'Business Logic Defect' (Screen Shots!)". 2011. <http://h30501.www3.hp.com/t5/Following-the-White-Rabbit-A/Real-Life-Example-of-a-Business-Logic-Defect-Screen-Shots/ba-p/22581>.

Example 6

Here the problem is that every time a connection is made, more memory is allocated. So if one just opened up more and more connections, eventually the machine would run out of memory.

(bad code)
Example Language:
bar connection() {
foo = malloc(1024);
return foo;
}

endConnection(bar foo) {
free(foo);
}

int main() {
while(1) {
foo=connection();
}

endConnection(foo)
}

+ Observed Examples
Reference Description
Chain: Python library does not limit the resources used to process images that specify a very large number of bands (CWE-1284), leading to excessive memory consumption (CWE-789) or an integer overflow (CWE-190).
Language interpreter does not restrict the number of temporary files being created when handling a MIME request with a large number of parts..
Driver does not use a maximum width when invoking sscanf style functions, causing stack consumption.
Large integer value for a length property in an object causes a large amount of memory allocation.
Product allows exhaustion of file descriptors when processing a large number of TCP packets.
Communication product allows memory consumption with a large number of SIP requests, which cause many sessions to be created.
Product allows attackers to cause a denial of service via a large number of directives, each of which opens a separate window.
CMS does not restrict the number of searches that can occur simultaneously, leading to resource exhaustion.
web application scanner attempts to read an excessively large file created by a user, causing process termination
Go-based workload orchestrator does not limit resource usage with unauthenticated connections, allowing a DoS by flooding the service
+ Detection Methods

Manual Static Analysis

Manual static analysis can be useful for finding this weakness, but it might not achieve desired code coverage within limited time constraints. If denial-of-service is not considered a significant risk, or if there is strong emphasis on consequences such as code execution, then manual analysis may not focus on this weakness at all.

Fuzzing

While fuzzing is typically geared toward finding low-level implementation bugs, it can inadvertently find uncontrolled resource allocation problems. This can occur when the fuzzer generates a large number of test cases but does not restart the targeted product in between test cases. If an individual test case produces a crash, but it does not do so reliably, then an inability to limit resource allocation may be the cause.

When the allocation is directly affected by numeric inputs, then fuzzing may produce indications of this weakness.

Effectiveness: Opportunistic

Automated Dynamic Analysis

Certain automated dynamic analysis techniques may be effective in producing side effects of uncontrolled resource allocation problems, especially with resources such as processes, memory, and connections. The technique may involve generating a large number of requests to the product within a short time frame. Manual analysis is likely required to interpret the results.

Automated Static Analysis

Specialized configuration or tuning may be required to train automated tools to recognize this weakness.

Automated static analysis typically has limited utility in recognizing unlimited allocation problems, except for the missing release of program-independent system resources such as files, sockets, and processes, or unchecked arguments to memory. For system resources, automated static analysis may be able to detect circumstances in which resources are not released after they have expired, or if too much of a resource is requested at once, as can occur with memory. Automated analysis of configuration files may be able to detect settings that do not specify a maximum value.

Automated static analysis tools will not be appropriate for detecting exhaustion of custom resources, such as an intended security policy in which a bulletin board user is only allowed to make a limited number of posts per day.

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 802 2010 Top 25 - Risky Resource Management
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 857 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 14 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 858 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 15 - Serialization (SER)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 861 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 18 - Miscellaneous (MSC)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 867 2011 Top 25 - Weaknesses On the Cusp
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 876 CERT C++ Secure Coding Section 08 - Memory Management (MEM)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 877 CERT C++ Secure Coding Section 09 - Input Output (FIO)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 985 SFP Secondary Cluster: Unrestricted Consumption
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1147 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1148 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1152 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous (MSC)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1416 Comprehensive Categorization: Resource Lifecycle Management
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Relationship

This entry is different from uncontrolled resource consumption (CWE-400) in that there are other weaknesses that are related to inability to control resource consumption, such as holding on to a resource too long after use, or not correctly keeping track of active resources so that they can be managed and released when they are finished (CWE-771).

Theoretical

Vulnerability theory is largely about how behaviors and resources interact. "Resource exhaustion" can be regarded as either a consequence or an attack, depending on the perspective. This entry is an attempt to reflect one of the underlying weaknesses that enable these attacks (or consequences) to take place.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure Coding Standard for Java (2011) FIO04-J Close resources when they are no longer needed
The CERT Oracle Secure Coding Standard for Java (2011) SER12-J Avoid memory and resource leaks during serialization
The CERT Oracle Secure Coding Standard for Java (2011) MSC05-J Do not exhaust heap space
ISA/IEC 62443 Part 4-2 Req CR 7.2
ISA/IEC 62443 Part 4-2 Req CR 2.7
ISA/IEC 62443 Part 4-1 Req SI-1
ISA/IEC 62443 Part 4-1 Req SI-2
ISA/IEC 62443 Part 3-3 Req SR 7.2
ISA/IEC 62443 Part 3-3 Req SR 2.7
+ References
[REF-386] Joao Antunes, Nuno Ferreira Neves and Paulo Verissimo. "Detection and Prediction of Resource-Exhaustion Vulnerabilities". Proceedings of the IEEE International Symposium on Software Reliability Engineering (ISSRE). 2008-11. <http://homepages.di.fc.ul.pt/~nuno/PAPERS/ISSRE08.pdf>.
[REF-387] D.J. Bernstein. "Resource exhaustion". <http://cr.yp.to/docs/resources.html>.
[REF-388] Pascal Meunier. "Resource exhaustion". Secure Programming Educational Material. 2004. <http://homes.cerias.purdue.edu/~pmeunier/secprog/sanitized/class1/6.resource%20exhaustion.ppt>.
[REF-7] Michael Howard and David LeBlanc. "Writing Secure Code". Chapter 17, "Protecting Against Denial of Service Attacks" Page 517. 2nd Edition. Microsoft Press. 2002-12-04. <https://www.microsoftpressstore.com/store/writing-secure-code-9780735617223>.
[REF-667] Rafal Los. "Real-Life Example of a 'Business Logic Defect' (Screen Shots!)". 2011. <http://h30501.www3.hp.com/t5/Following-the-White-Rabbit-A/Real-Life-Example-of-a-Business-Logic-Defect-Screen-Shots/ba-p/22581>.
[REF-672] Frank Kim. "Top 25 Series - Rank 22 - Allocation of Resources Without Limits or Throttling". SANS Software Security Institute. 2010-03-23. <https://web.archive.org/web/20170113055136/https://software-security.sans.org/blog/2010/03/23/top-25-series-rank-22-allocation-of-resources-without-limits-or-throttling/>. URL validated: 2023-04-07.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 10, "Resource Limits", Page 574. 1st Edition. Addison Wesley. 2006.
+ Content History
+ Submissions
Submission Date Submitter Organization
2009-05-13
(CWE 1.4, 2009-05-27)
CWE Content Team MITRE
+ Contributions
Contribution Date Contributor Organization
2023-11-14
(CWE 4.14, 2024-02-29)
participants in the CWE ICS/OT SIG 62443 Mapping Fall Workshop
Contributed or reviewed taxonomy mappings for ISA/IEC 62443
+ Modifications
Modification Date Modifier Organization
2009-07-27 CWE Content Team MITRE
updated Related_Attack_Patterns
2009-10-29 CWE Content Team MITRE
updated Relationships
2009-12-28 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Detection_Factors, Observed_Examples, References, Time_of_Introduction
2010-02-16 CWE Content Team MITRE
updated Common_Consequences, Detection_Factors, Potential_Mitigations, References, Related_Attack_Patterns, Relationships
2010-04-05 CWE Content Team MITRE
updated Common_Consequences, Demonstrative_Examples, Related_Attack_Patterns
2010-06-21 CWE Content Team MITRE
updated Common_Consequences, Potential_Mitigations, References
2010-09-27 CWE Content Team MITRE
updated Demonstrative_Examples, Potential_Mitigations
2011-03-29 CWE Content Team MITRE
updated Demonstrative_Examples, Detection_Factors, Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Relationships
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-05-11 CWE Content Team MITRE
updated Demonstrative_Examples, References, Related_Attack_Patterns, Relationships, Taxonomy_Mappings
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2014-02-18 CWE Content Team MITRE
updated Related_Attack_Patterns
2014-06-23 CWE Content Team MITRE
updated Related_Attack_Patterns
2014-07-30 CWE Content Team MITRE
updated Relationships
2015-12-07 CWE Content Team MITRE
updated Related_Attack_Patterns
2017-05-03 CWE Content Team MITRE
updated Related_Attack_Patterns
2017-11-08 CWE Content Team MITRE
updated Demonstrative_Examples, Likelihood_of_Exploit, Modes_of_Introduction, Potential_Mitigations, References, Relationships, Taxonomy_Mappings
2018-03-27 CWE Content Team MITRE
updated References
2019-01-03 CWE Content Team MITRE
updated Demonstrative_Examples, Description, Relationships, Taxonomy_Mappings
2019-06-20 CWE Content Team MITRE
updated Related_Attack_Patterns, Relationships
2020-02-24 CWE Content Team MITRE
updated Potential_Mitigations, Related_Attack_Patterns, Relationships
2020-06-25 CWE Content Team MITRE
updated Applicable_Platforms, Description, Maintenance_Notes, Potential_Mitigations, Relationship_Notes, Relationships
2020-12-10 CWE Content Team MITRE
updated Relationships
2021-07-20 CWE Content Team MITRE
updated Observed_Examples
2022-10-13 CWE Content Team MITRE
updated Observed_Examples, References
2023-01-31 CWE Content Team MITRE
updated Description, Detection_Factors
2023-04-27 CWE Content Team MITRE
updated References, Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Taxonomy_Mappings

CWE-312: Cleartext Storage of Sensitive Information

Weakness ID: 312
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product stores sensitive information in cleartext within a resource that might be accessible to another control sphere.
+ Extended Description

Because the information is stored in cleartext (i.e., unencrypted), attackers could potentially read it. Even if the information is encoded in a way that is not human-readable, certain techniques could determine which encoding is being used, then decode the information.

When organizations adopt cloud services, it can be easier for attackers to access the data from anywhere on the Internet.

In some systems/environments such as cloud, the use of "double encryption" (at both the software and hardware layer) might be required, and the developer might be solely responsible for both layers, instead of shared responsibility with the administrator of the broader system/environment.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Confidentiality

Technical Impact: Read Application Data

An attacker with access to the system could read sensitive information stored in cleartext.
+ Potential Mitigations

Phases: Implementation; System Configuration; Operation

When storing data in the cloud (e.g., S3 buckets, Azure blobs, Google Cloud Storage, etc.), use the provider's controls to encrypt the data at rest. [REF-1297] [REF-1299] [REF-1301]
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 311 Missing Encryption of Sensitive Data
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 922 Insecure Storage of Sensitive Information
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 313 Cleartext Storage in a File or on Disk
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 314 Cleartext Storage in the Registry
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 315 Cleartext Storage of Sensitive Information in a Cookie
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 316 Cleartext Storage of Sensitive Information in Memory
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 317 Cleartext Storage of Sensitive Information in GUI
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 318 Cleartext Storage of Sensitive Information in Executable
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 526 Cleartext Storage of Sensitive Information in an Environment Variable
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 199 Information Management Errors
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 311 Missing Encryption of Sensitive Data
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Architectural Concepts" (CWE-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1013 Encrypt Data
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design OMISSION: This weakness is caused by missing a security tactic during the architecture and design phase.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Technologies

Class: Cloud Computing (Undetermined Prevalence)

Class: ICS/OT (Undetermined Prevalence)

Class: Mobile (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

The following code excerpt stores a plaintext user account ID in a browser cookie.

(bad code)
Example Language: Java 
response.addCookie( new Cookie("userAccountID", acctID);

Because the account ID is in plaintext, the user's account information is exposed if their computer is compromised by an attacker.


Example 2

This code writes a user's login information to a cookie so the user does not have to login again later.

(bad code)
Example Language: PHP 
function persistLogin($username, $password){
$data = array("username" => $username, "password"=> $password);
setcookie ("userdata", $data);
}

The code stores the user's username and password in plaintext in a cookie on the user's machine. This exposes the user's login information if their computer is compromised by an attacker. Even if the user's machine is not compromised, this weakness combined with cross-site scripting (CWE-79) could allow an attacker to remotely copy the cookie.

Also note this example code also exhibits Plaintext Storage in a Cookie (CWE-315).


Example 3

The following code attempts to establish a connection, read in a password, then store it to a buffer.

(bad code)
Example Language:
server.sin_family = AF_INET; hp = gethostbyname(argv[1]);
if (hp==NULL) error("Unknown host");
memcpy( (char *)&server.sin_addr,(char *)hp->h_addr,hp->h_length);
if (argc < 3) port = 80;
else port = (unsigned short)atoi(argv[3]);
server.sin_port = htons(port);
if (connect(sock, (struct sockaddr *)&server, sizeof server) < 0) error("Connecting");
...
while ((n=read(sock,buffer,BUFSIZE-1))!=-1) {

write(dfd,password_buffer,n);
...

While successful, the program does not encrypt the data before writing it to a buffer, possibly exposing it to unauthorized actors.


Example 4

The following examples show a portion of properties and configuration files for Java and ASP.NET applications. The files include username and password information but they are stored in cleartext.

This Java example shows a properties file with a cleartext username / password pair.

(bad code)
Example Language: Java 

# Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This configuration file includes username and password information for a connection to a database but the pair is stored in cleartext.

(bad code)
Example Language: ASP.NET 
...
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;" providerName="System.Data.Odbc" />
</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties file in cleartext as this will allow anyone who can read the file access to the resource. If possible, encrypt this information.


Example 5

In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications.

At least one OT product stored a password in plaintext.


Example 6

In 2021, a web site operated by PeopleGIS stored data of US municipalities in Amazon Web Service (AWS) Simple Storage Service (S3) buckets.

(bad code)
Example Language: Other 
A security researcher found 86 S3 buckets that could be accessed without authentication (CWE-306) and stored data unencrypted (CWE-312). These buckets exposed over 1000 GB of data and 1.6 million files including physical addresses, phone numbers, tax documents, pictures of driver's license IDs, etc. [REF-1296] [REF-1295]

While it was not publicly disclosed how the data was protected after discovery, multiple options could have been considered.

(good code)
Example Language: Other 
The sensitive information could have been protected by ensuring that the buckets did not have public read access, e.g., by enabling the s3-account-level-public-access-blocks-periodic rule to Block Public Access. In addition, the data could have been encrypted at rest using the appropriate S3 settings, e.g., by enabling server-side encryption using the s3-bucket-server-side-encryption-enabled setting. Other settings are available to further prevent bucket data from being leaked. [REF-1297]

Example 7

Consider the following PowerShell command examples for encryption scopes of Azure storage objects. In the first example, an encryption scope is set for the storage account.

(bad code)
Example Language: Shell 
New-AzStorageEncryptionScope -ResourceGroupName "MyResourceGroup" -AccountName "MyStorageAccount" -EncryptionScopeName testscope -StorageEncryption

The result (edited and formatted for readability) might be:

(bad code)
Example Language: Other 
ResourceGroupName: MyResourceGroup, StorageAccountName: MyStorageAccount

Name State Source RequireInfrastructureEncryption
testscope Enabled Microsoft.Storage

However, the empty string under RequireInfrastructureEncryption indicates this service was not enabled at the time of creation, because the -RequireInfrastructureEncryption argument was not specified in the command.

Including the -RequireInfrastructureEncryption argument addresses the issue:

(good code)
Example Language: Shell 
New-AzStorageEncryptionScope -ResourceGroupName "MyResourceGroup" -AccountName "MyStorageAccount" -EncryptionScopeName testscope -StorageEncryption -RequireInfrastructureEncryption

This produces the report:

(result)
Example Language: Other 
ResourceGroupName: MyResourceGroup, StorageAccountName: MyStorageAccount

Name State Source RequireInfrastructureEncryption
testscope Enabled Microsoft.Keyvault True

In a scenario where both software and hardware layer encryption is required ("double encryption"), Azure's infrastructure encryption setting can be enabled via the CLI or Portal. An important note is that infrastructure hardware encryption cannot be enabled or disabled after a blob is created. Furthermore, the default value for infrastructure encryption is disabled in blob creations.


+ Observed Examples
Reference Description
Remote Terminal Unit (RTU) uses a driver that relies on a password stored in plaintext.
password and username stored in cleartext in a cookie
password stored in cleartext in a file with insecure permissions
chat program disables SSL in some circumstances even when the user says to use SSL.
Chain: product uses an incorrect public exponent when generating an RSA key, which effectively disables the encryption
storage of unencrypted passwords in a database
storage of unencrypted passwords in a database
product stores a password in cleartext in memory
storage of a secret key in cleartext in a temporary file
SCADA product uses HTTP Basic Authentication, which is not encrypted
login credentials stored unencrypted in a registry key
Plaintext credentials in world-readable file.
Password in cleartext in config file.
Password in cleartext in config file.
Decrypted copy of a message written to disk given a combination of options and when user replies to an encrypted message.
Plaintext storage of private key and passphrase in log file when user imports the key.
Admin password in plaintext in a cookie.
Default configuration has cleartext usernames/passwords in cookie.
Usernames/passwords in cleartext in cookies.
Authentication information stored in cleartext in a cookie.
+ Detection Methods

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 816 OWASP Top Ten 2010 Category A7 - Insecure Cryptographic Storage
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 934 OWASP Top Ten 2013 Category A6 - Sensitive Data Exposure
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 963 SFP Secondary Cluster: Exposed Data
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1029 OWASP Top Ten 2017 Category A3 - Sensitive Data Exposure
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure Design
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1366 ICS Communications: Frail Security in Protocols
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1368 ICS Dependencies (& Architecture): External Digital Systems
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1402 Comprehensive Categorization: Encryption
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Terminology

Different people use "cleartext" and "plaintext" to mean the same thing: the lack of encryption. However, within cryptography, these have more precise meanings. Plaintext is the information just before it is fed into a cryptographic algorithm, including already-encrypted text. Cleartext is any information that is unencrypted, although it might be in an encoded form that is not easily human-readable (such as base64 encoding).
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Plaintext Storage of Sensitive Information
Software Fault Patterns SFP23 Exposed Data
ISA/IEC 62443 Part 4-2 Req CR 4.1 a)
ISA/IEC 62443 Part 3-3 Req SR 4.1
+ References
[REF-7] Michael Howard and David LeBlanc. "Writing Secure Code". Chapter 9, "Protecting Secret Data" Page 299. 2nd Edition. Microsoft Press. 2002-12-04. <https://www.microsoftpressstore.com/store/writing-secure-code-9780735617223>.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 2, "Common Vulnerabilities of Encryption", Page 43. 1st Edition. Addison Wesley. 2006.
[REF-172] Chris Wysopal. "Mobile App Top 10 List". 2010-12-13. <https://www.veracode.com/blog/2010/12/mobile-app-top-10-list>. URL validated: 2023-04-07.
[REF-1283] Forescout Vedere Labs. "OT:ICEFALL: The legacy of "insecure by design" and its implications for certifications and risk management". 2022-06-20. <https://www.forescout.com/resources/ot-icefall-report/>.
[REF-1295] WizCase. "Over 80 US Municipalities' Sensitive Information, Including Resident's Personal Data, Left Vulnerable in Massive Data Breach". 2021-07-20. <https://www.wizcase.com/blog/us-municipality-breach-report/>.
[REF-1296] Jonathan Greig. "1,000 GB of local government data exposed by Massachusetts software company". 2021-07-22. <https://www.zdnet.com/article/1000-gb-of-local-government-data-exposed-by-massachusetts-software-company/>.
[REF-1297] Amazon. "AWS Foundational Security Best Practices controls". 2022. <https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html>. URL validated: 2023-04-07.
[REF-1299] Microsoft. "Azure encryption overview". 2022-08-18. <https://learn.microsoft.com/en-us/azure/security/fundamentals/encryption-overview>. URL validated: 2022-10-11.
[REF-1301] Google Cloud. "Default encryption at rest". 2022-10-11. <https://cloud.google.com/docs/security/encryption/default-encryption>. URL validated: 2022-10-11.
[REF-1307] Center for Internet Security. "CIS Microsoft Azure Foundations Benchmark version 1.5.0". Section 3.2. 2022-08-16. <https://www.cisecurity.org/benchmark/azure>. URL validated: 2023-01-19.
[REF-1310] Microsoft. "Enable infrastructure encryption for double encryption of data". 2022-07-14. <https://learn.microsoft.com/en-us/azure/storage/common/infrastructure-encryption-enable>. URL validated: 2023-01-24.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Contributions
Contribution Date Contributor Organization
2023-04-25 "Mapping CWE to 62443" Sub-Working Group CWE-CAPEC ICS/OT SIG
Suggested mappings to ISA/IEC 62443.
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-09-08 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2009-01-12 CWE Content Team MITRE
updated Description, Name
2010-02-16 CWE Content Team MITRE
updated References
2010-06-21 CWE Content Team MITRE
updated Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2012-05-11 CWE Content Team MITRE
updated Common_Consequences, Demonstrative_Examples, Observed_Examples, References, Related_Attack_Patterns, Relationships
2013-02-21 CWE Content Team MITRE
updated Applicable_Platforms, References
2013-07-17 CWE Content Team MITRE
updated Description, Relationships, Terminology_Notes
2014-07-30 CWE Content Team MITRE
updated Demonstrative_Examples, Relationships, Taxonomy_Mappings
2017-05-03 CWE Content Team MITRE
updated Related_Attack_Patterns
2017-11-08 CWE Content Team MITRE
updated Modes_of_Introduction, References, Relationships
2018-01-23 CWE Content Team MITRE
updated Abstraction, Relationships
2018-03-27 CWE Content Team MITRE
updated References, Relationships, Type
2019-06-20 CWE Content Team MITRE
updated Relationships, Type
2020-02-24 CWE Content Team MITRE
updated Applicable_Platforms, Relationships
2021-03-15 CWE Content Team MITRE
updated Demonstrative_Examples
2021-10-28 CWE Content Team MITRE
updated Relationships
2022-10-13 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Description, Observed_Examples, Potential_Mitigations, References
2023-01-31 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Description, References, Relationships
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, References, Relationships, Taxonomy_Mappings
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes, Relationships
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Taxonomy_Mappings
+ Previous Entry Names
Change Date Previous Entry Name
2009-01-12 Plaintext Storage of Sensitive Information

CWE-319: Cleartext Transmission of Sensitive Information

Weakness ID: 319
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product transmits sensitive or security-critical data in cleartext in a communication channel that can be sniffed by unauthorized actors.
+ Extended Description

Many communication channels can be "sniffed" (monitored) by adversaries during data transmission. For example, in networking, packets can traverse many intermediary nodes from the source to the destination, whether across the internet, an internal network, the cloud, etc. Some actors might have privileged access to a network interface or any link along the channel, such as a router, but they might not be authorized to collect the underlying data. As a result, network traffic could be sniffed by adversaries, spilling security-critical data.

Applicable communication channels are not limited to software products. Applicable channels include hardware-specific technologies such as internal hardware networks and external debug channels, supporting remote JTAG debugging. When mitigations are not applied to combat adversaries within the product's threat model, this weakness significantly lowers the difficulty of exploitation by such adversaries.

When full communications are recorded or logged, such as with a packet dump, an adversary could attempt to obtain the dump long after the transmission has occurred and try to "sniff" the cleartext from the recorded communications in the dump itself. Even if the information is encoded in a way that is not human-readable, certain techniques could determine which encoding is being used, then decode the information.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Integrity
Confidentiality

Technical Impact: Read Application Data; Modify Files or Directories

Anyone can read the information by gaining access to the channel being used for communication.
+ Potential Mitigations

Phase: Architecture and Design

Before transmitting, encrypt the data using reliable, confidentiality-protecting cryptographic protocols.

Phase: Implementation

When using web applications with SSL, use SSL for the entire session from login to logout, not just for the initial login page.

Phase: Implementation

When designing hardware platforms, ensure that approved encryption algorithms (such as those recommended by NIST) protect paths from security critical data to trusted user applications.

Phase: Testing

Use tools and techniques that require manual (human) analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester to record and modify an active session. These may be more effective than strictly automated techniques. This is especially the case with weaknesses that are related to design and business rules.

Phase: Operation

Configure servers to use encrypted channels for communication, which may include SSL or other secure protocols.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 311 Missing Encryption of Sensitive Data
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 5 J2EE Misconfiguration: Data Transmission Without Encryption
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 614 Sensitive Cookie in HTTPS Session Without 'Secure' Attribute
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 199 Information Management Errors
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 311 Missing Encryption of Sensitive Data
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Architectural Concepts" (CWE-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1013 Encrypt Data
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Hardware Design" (CWE-1194)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1207 Debug and Test Problems
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design OMISSION: This weakness is caused by missing a security tactic during the architecture and design phase.
Architecture and Design For hardware, this may be introduced when design does not plan for an attacker having physical access while a legitimate user is remotely operating the device.
Operation
System Configuration
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Technologies

Class: Cloud Computing (Undetermined Prevalence)

Class: Mobile (Undetermined Prevalence)

Class: ICS/OT (Often Prevalent)

Class: System on Chip (Undetermined Prevalence)

Test/Debug Hardware (Often Prevalent)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

The following code attempts to establish a connection to a site to communicate sensitive information.

(bad code)
Example Language: Java 
try {
URL u = new URL("http://www.secret.example.org/");
HttpURLConnection hu = (HttpURLConnection) u.openConnection();
hu.setRequestMethod("PUT");
hu.connect();
OutputStream os = hu.getOutputStream();
hu.disconnect();
}
catch (IOException e) {
//...
}

Though a connection is successfully made, the connection is unencrypted and it is possible that all sensitive data sent to or received from the server will be read by unintended actors.


Example 2

In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications.

Multiple vendors used cleartext transmission of sensitive information in their OT products.


Example 3

A TAP accessible register is read/written by a JTAG based tool, for internal use by authorized users. However, an adversary can connect a probing device and collect the values from the unencrypted channel connecting the JTAG interface to the authorized user, if no additional protections are employed.


Example 4

The following Azure CLI command lists the properties of a particular storage account:

(informative)
Example Language: Shell 
az storage account show -g {ResourceGroupName} -n {StorageAccountName}

The JSON result might be:

(bad code)
Example Language: JSON 
{
"name": "{StorageAccountName}",
"enableHttpsTrafficOnly": false,
"type": "Microsoft.Storage/storageAccounts"
}

The enableHttpsTrafficOnly value is set to false, because the default setting for Secure transfer is set to Disabled. This allows cloud storage resources to successfully connect and transfer data without the use of encryption (e.g., HTTP, SMB 2.1, SMB 3.0, etc.).

Azure's storage accounts can be configured to only accept requests from secure connections made over HTTPS. The secure transfer setting can be enabled using Azure's Portal (GUI) or programmatically by setting the enableHttpsTrafficOnly property to True on the storage account, such as:

(good code)
Example Language: Shell 
az storage account update -g {ResourceGroupName} -n {StorageAccountName} --https-only true

The change can be confirmed from the result by verifying that the enableHttpsTrafficOnly value is true:

(good code)
Example Language: JSON 
{
"name": "{StorageAccountName}",
"enableHttpsTrafficOnly": true,
"type": "Microsoft.Storage/storageAccounts"
}

Note: to enable secure transfer using Azure's Portal instead of the command line:

  1. Open the Create storage account pane in the Azure portal.
  2. In the Advanced page, select the Enable secure transfer checkbox.


+ Observed Examples
Reference Description
Programmable Logic Controller (PLC) sends sensitive information in plaintext, including passwords and session tokens.
Building Controller uses a protocol that transmits authentication credentials in plaintext.
Programmable Logic Controller (PLC) sends password in plaintext.
Passwords transmitted in cleartext.
Chain: Use of HTTPS cookie without "secure" flag causes it to be transmitted across unencrypted HTTP.
Product sends password hash in cleartext in violation of intended policy.
Remote management feature sends sensitive information including passwords in cleartext.
Backup routine sends password in cleartext in email.
Product transmits Blowfish encryption key in cleartext.
Printer sends configuration information, including administrative password, in cleartext.
Chain: cleartext transmission of the MD5 hash of password enables attacks against a server that is susceptible to replay (CWE-294).
Product sends passwords in cleartext to a log server.
Product sends file with cleartext passwords in e-mail message intended for diagnostic purposes.
+ Detection Methods

Black Box

Use monitoring tools that examine the software's process as it interacts with the operating system and the network. This technique is useful in cases when source code is unavailable, if the software was not developed by you, or if you want to verify that the build phase did not introduce any new weaknesses. Examples include debuggers that directly attach to the running process; system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and sniffers and protocol analyzers that monitor network traffic.

Attach the monitor to the process, trigger the feature that sends the data, and look for the presence or absence of common cryptographic functions in the call tree. Monitor the network and determine if the data packets contain readable commands. Tools exist for detecting if certain encodings are in use. If the traffic contains high entropy, this might indicate the usage of encryption.

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 751 2009 Top 25 - Insecure Interaction Between Components
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 818 OWASP Top Ten 2010 Category A9 - Insufficient Transport Layer Protection
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 858 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 15 - Serialization (SER)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 859 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 16 - Platform Security (SEC)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 934 OWASP Top Ten 2013 Category A6 - Sensitive Data Exposure
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 963 SFP Secondary Cluster: Exposed Data
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1029 OWASP Top Ten 2017 Category A3 - Sensitive Data Exposure
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1148 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1346 OWASP Top Ten 2021 Category A02:2021 - Cryptographic Failures
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1366 ICS Communications: Frail Security in Protocols
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1402 Comprehensive Categorization: Encryption
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Maintenance

The Taxonomy_Mappings to ISA/IEC 62443 were added in CWE 4.10, but they are still under review and might change in future CWE versions. These draft mappings were performed by members of the "Mapping CWE to 62443" subgroup of the CWE-CAPEC ICS/OT Special Interest Group (SIG), and their work is incomplete as of CWE 4.10. The mappings are included to facilitate discussion and review by the broader ICS/OT community, and they are likely to change in future CWE versions.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Plaintext Transmission of Sensitive Information
The CERT Oracle Secure Coding Standard for Java (2011) SEC06-J Do not rely on the default automatic signature verification provided by URLClassLoader and java.util.jar
The CERT Oracle Secure Coding Standard for Java (2011) SER02-J Sign then seal sensitive objects before sending them outside a trust boundary
Software Fault Patterns SFP23 Exposed Data
ISA/IEC 62443 Part 3-3 Req SR 4.1
ISA/IEC 62443 Part 4-2 Req CR 4.1B
+ References
[REF-271] OWASP. "Top 10 2007-Insecure Communications". 2007. <http://www.owasp.org/index.php/Top_10_2007-A9>.
[REF-7] Michael Howard and David LeBlanc. "Writing Secure Code". Chapter 9, "Protecting Secret Data" Page 299. 2nd Edition. Microsoft Press. 2002-12-04. <https://www.microsoftpressstore.com/store/writing-secure-code-9780735617223>.
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 22: Failing to Protect Network Traffic." Page 337. McGraw-Hill. 2010.
[REF-172] Chris Wysopal. "Mobile App Top 10 List". 2010-12-13. <https://www.veracode.com/blog/2010/12/mobile-app-top-10-list>. URL validated: 2023-04-07.
[REF-1283] Forescout Vedere Labs. "OT:ICEFALL: The legacy of "insecure by design" and its implications for certifications and risk management". 2022-06-20. <https://www.forescout.com/resources/ot-icefall-report/>.
[REF-1307] Center for Internet Security. "CIS Microsoft Azure Foundations Benchmark version 1.5.0". Sections 3.1 and 3.10. 2022-08-16. <https://www.cisecurity.org/benchmark/azure>. URL validated: 2023-01-19.
[REF-1309] Microsoft. "Require secure transfer to ensure secure connections". 2022-07-24. <https://learn.microsoft.com/en-us/azure/storage/common/storage-require-secure-transfer>. URL validated: 2023-01-24.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Contributions
Contribution Date Contributor Organization
2023-01-24 Accellera IP Security Assurance (IPSA) Working Group Accellera Systems Initiative
Submitted original contents of CWE-1324 and reviewed its integration into this entry.
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-09-08 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2009-01-12 CWE Content Team MITRE
updated Common_Consequences, Description, Likelihood_of_Exploit, Name, Observed_Examples, Potential_Mitigations, References, Relationships
2009-03-10 CWE Content Team MITRE
updated Potential_Mitigations
2009-05-27 CWE Content Team MITRE
updated Related_Attack_Patterns
2010-02-16 CWE Content Team MITRE
updated References
2010-04-05 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Time_of_Introduction
2010-06-21 CWE Content Team MITRE
updated Detection_Factors, Relationships
2010-12-13 CWE Content Team MITRE
updated Observed_Examples, Related_Attack_Patterns
2011-03-29 CWE Content Team MITRE
updated Potential_Mitigations
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2012-05-11 CWE Content Team MITRE
updated Demonstrative_Examples, References, Related_Attack_Patterns, Relationships, Taxonomy_Mappings
2013-02-21 CWE Content Team MITRE
updated Applicable_Platforms, References
2013-07-17 CWE Content Team MITRE
updated Relationships
2014-02-18 CWE Content Team MITRE
updated Related_Attack_Patterns
2014-06-23 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-05-03 CWE Content Team MITRE
updated Related_Attack_Patterns
2017-11-08 CWE Content Team MITRE
updated Likelihood_of_Exploit, Modes_of_Introduction, References, Relationships
2018-01-23 CWE Content Team MITRE
updated Abstraction
2018-03-27 CWE Content Team MITRE
updated References, Relationships, Type
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2019-06-20 CWE Content Team MITRE
updated Relationships, Type
2020-02-24 CWE Content Team MITRE
updated Applicable_Platforms, Related_Attack_Patterns, Relationships
2021-10-28 CWE Content Team MITRE
updated Relationships
2022-06-28 CWE Content Team MITRE
updated Relationships
2022-10-13 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Observed_Examples, References
2023-01-31 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Description, Maintenance_Notes, Modes_of_Introduction, Potential_Mitigations, References, Relationships, Taxonomy_Mappings
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, References, Relationships
2023-06-29 CWE Content Team MITRE
updated Description, Mapping_Notes, Relationships
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Demonstrative_Examples
+ Previous Entry Names
Change Date Previous Entry Name
2009-01-12 Plaintext Transmission of Sensitive Information

CWE-1395: Dependency on Vulnerable Third-Party Component

Weakness ID: 1395
Vulnerability Mapping: ALLOWED This CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review (with careful review of mapping notes)
Abstraction: Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product has a dependency on a third-party component that contains one or more known vulnerabilities.
+ Extended Description

Many products are large enough or complex enough that part of their functionality uses libraries, modules, or other intellectual property developed by third parties who are not the product creator. For example, even an entire operating system might be from a third-party supplier in some hardware products. Whether open or closed source, these components may contain publicly known vulnerabilities that could be exploited by adversaries to compromise the product.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Confidentiality
Integrity
Availability

Technical Impact: Varies by Context

The consequences vary widely, depending on the vulnerabilities that exist in the component; how those vulnerabilities can be "reached" by adversaries, as the exploitation paths and attack surface will vary depending on how the component is used; and the criticality of the privilege levels and features for which the product relies on the component.
+ Potential Mitigations

Phases: Requirements; Policy

In some industries such as healthcare [REF-1320] [REF-1322] or technologies such as the cloud [REF-1321], it might be unclear about who is responsible for applying patches for third-party vulnerabilities: the vendor, the operator/customer, or a separate service. Clarifying roles and responsibilities can be important to minimize confusion or unnecessary delay when third-party vulnerabilities are disclosed.

Phase: Requirements

Require a Bill of Materials for all components and sub-components of the product. For software, require a Software Bill of Materials (SBOM) [REF-1247] [REF-1311].

Phases: Architecture and Design; Implementation; Integration; Manufacturing

Maintain a Bill of Materials for all components and sub-components of the product. For software, maintain a Software Bill of Materials (SBOM). According to [REF-1247], "An SBOM is a formal, machine-readable inventory of software components and dependencies, information about those components, and their hierarchical relationships."

Phases: Operation; Patching and Maintenance

Actively monitor when a third-party component vendor announces vulnerability patches; fix the third-party component as soon as possible; and make it easy for operators/customers to obtain and apply the patch.

Phases: Operation; Patching and Maintenance

Continuously monitor changes in each of the product's components, especially when the changes indicate new vulnerabilities, end-of-life (EOL) plans, etc.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 657 Violation of Secure Design Principles
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design The product architect or designer might choose a component that is already known to contain vulnerabilities or has a high likelihood of containing vulnerabilities in the future.
Implementation For reasons of compatibility or stability, developers might choose a third-party component, such as a library, that is already known to contain vulnerabilities.
Patching and Maintenance Since all products contain vulnerabilities, over time, a third-party component will be discovered to have a vulnerability.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Operating Systems

Class: Not OS-Specific (Undetermined Prevalence)

Architectures

Class: Not Architecture-Specific (Undetermined Prevalence)

Technologies

Class: Not Technology-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

The "SweynTooth" vulnerabilities in Bluetooth Low Energy (BLE) software development kits (SDK) were found to affect multiple Bluetooth System-on-Chip (SoC) manufacturers. These SoCs were used by many products such as medical devices, Smart Home devices, wearables, and other IoT devices. [REF-1314] [REF-1315]


Example 2

log4j, a Java-based logging framework, is used in a large number of products, with estimates in the range of 3 billion affected devices [REF-1317]. When the "log4shell" (CVE-2021-44228) vulnerability was initially announced, it was actively exploited for remote code execution, requiring urgent mitigation in many organizations. However, it was unclear how many products were affected, as Log4j would sometimes be part of a long sequence of transitive dependencies. [REF-1316]


+ Detection Methods

Automated Analysis

For software, use Software Composition Analysis (SCA) tools, which automatically analyze products to identify third-party dependencies. Often, SCA tools can be used to link with known vulnerabilities in the dependencies that they detect. There are commercial and open-source alternatives, such as OWASP Dependency-Check [REF-1312]. Many languages or frameworks have package managers with similar capabilities, such as npm audit for JavaScript, pip-audit for Python, govulncheck for Go, and many others. Dynamic methods can detect loading of third-party components.

Effectiveness: High

Note: Software Composition Analysis (SCA) tools face a number of technical challenges that can lead to false positives and false negatives. Dynamic methods have other technical challenges.
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1418 Comprehensive Categorization: Violation of Secure Design Principles
+ Vulnerability Mapping Notes

Usage: ALLOWED-WITH-REVIEW

(this CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review)

Reason: Abstraction

Rationale:

This CWE entry is a Class and might have Base-level children that would be more appropriate

Comments:

Examine children of this entry to see if there is a better fit
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
ISA/IEC 62443 Part 4-2 Req CR 2.4
ISA/IEC 62443 Part 4-2 Req CR 6.2
ISA/IEC 62443 Part 4-2 Req CR 7.2
ISA/IEC 62443 Part 4-1 Req SM-9
ISA/IEC 62443 Part 4-1 Req SM-10
ISA/IEC 62443 Part 4-1 Req SR-2
ISA/IEC 62443 Part 4-1 Req DM-1
ISA/IEC 62443 Part 4-1 Req DM-3
ISA/IEC 62443 Part 4-1 Req DM-4
ISA/IEC 62443 Part 4-1 Req SVV-1
ISA/IEC 62443 Part 4-1 Req SVV-3
+ References
[REF-1313] Jeff Williams, Arshan Dabirsiaghi. "The Unfortunate Reality of Insecure Libraries". 2014. <https://owasp.org/www-project-dependency-check/>. URL validated: 2023-01-25.
[REF-1212] "A06:2021 - Vulnerable and Outdated Components". OWASP. 2021-09-24. <https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/>.
[REF-1247] NTIA Multistakeholder Process on Software Component Transparency Framing Working Group. "Framing Software Component Transparency: Establishing a Common Software Bill of Materials (SBOM)". 2021-10-21. <https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf>.
[REF-1311] Amélie Koran, Wendy Nather, Stewart Scott, Sara Ann Brackett. "The Cases for Using the SBOMs We Build". 2022-11. <https://www.atlanticcouncil.org/wp-content/uploads/2022/11/AC_SBOM_IB_v2-002.pdf>. URL validated: 2023-01-25.
[REF-1312] OWASP. "OWASP Dependency-Check". <https://owasp.org/www-project-dependency-check/>. URL validated: 2023-01-25.
[REF-1314] ICS-CERT. "ICS Alert (ICS-ALERT-20-063-01): SweynTooth Vulnerabilities". 2020-03-04. <https://www.cisa.gov/news-events/ics-alerts/ics-alert-20-063-01>. URL validated: 2023-04-07.
[REF-1315] Matheus E. Garbelini, Sudipta Chattopadhyay, Chundong Wang, Singapore University of Technology and Design. "Unleashing Mayhem over Bluetooth Low Energy". 2020-03-04. <https://asset-group.github.io/disclosures/sweyntooth/>. URL validated: 2023-01-25.
[REF-1316] CISA. "Alert (AA21-356A): Mitigating Log4Shell and Other Log4j-Related Vulnerabilities". 2021-12-22. <https://www.cisa.gov/news-events/cybersecurity-advisories/aa21-356a>. URL validated: 2023-04-07.
[REF-1317] SC Media. "What Log4Shell taught us about application security, and how to respond now". 2022-07-05. <https://www.scmagazine.com/resource/application-security/what-log4shell-taught-us-about-appsec-and-how-to-respond>. URL validated: 2023-01-26.
[REF-1320] Ali Youssef. "A Framework for a Medical Device Security Program at a Healthcare Delivery Organization". 2022-08-08. <https://array.aami.org/content/news/framework-medical-device-security-program-healthcare-delivery-organization>. URL validated: 2023-04-07.
[REF-1321] Cloud Security Alliance. "Shared Responsibility Model Explained". 2020-08-26. <https://cloudsecurityalliance.org/blog/2020/08/26/shared-responsibility-model-explained/>. URL validated: 2023-01-28.
[REF-1322] Melissa Chase, Steven Christey Coley, Julie Connolly, Ronnie Daldos, Margie Zuk. "Medical Device Cybersecurity Regional Incident Preparedness and Response Playbook". Section 6.1: Medical Device Procurement. 2022-11-14. <https://www.mitre.org/news-insights/publication/medical-device-cybersecurity-regional-incident-preparedness-and-response>. URL validated: 2023-01-28.
+ Content History
+ Submissions
Submission Date Submitter Organization
2023-01-25
(CWE 4.10, 2023-01-31)
CWE Content Team MITRE
+ Contributions
Contribution Date Contributor Organization
2022-04-18 Samreen Arshad Balochistan University of Information Technology, Engineering and Management Sciences
Submitted a request for coverage of "Vulnerable and Outdated Components"
2023-06-29
(CWE 4.12, 2023-06-29)
"Mapping CWE to 62443" Sub-Working Group CWE-CAPEC ICS/OT SIG
Suggested mappings to ISA/IEC 62443.
+ Modifications
Modification Date Modifier Organization
2023-04-27 CWE Content Team MITRE
updated References, Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes, Taxonomy_Mappings
2023-10-26 CWE Content Team MITRE
updated Demonstrative_Examples

CWE-250: Execution with Unnecessary Privileges

Weakness ID: 250
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product performs an operation at a privilege level that is higher than the minimum level required, which creates new weaknesses or amplifies the consequences of other weaknesses.
+ Extended Description

New weaknesses can be exposed because running with extra privileges, such as root or Administrator, can disable the normal security checks being performed by the operating system or surrounding environment. Other pre-existing weaknesses can turn into security vulnerabilities if they occur while operating at raised privileges.

Privilege management functions can behave in some less-than-obvious ways, and they have different quirks on different platforms. These inconsistencies are particularly pronounced if you are transitioning from one non-root user to another. Signal handlers and spawned processes run at the privilege of the owning process, so if a process is running as root when a signal fires or a sub-process is executed, the signal handler or sub-process will operate with root privileges.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Technical Impact: Gain Privileges or Assume Identity; Execute Unauthorized Code or Commands; Read Application Data; DoS: Crash, Exit, or Restart

An attacker will be able to gain access to any resources that are allowed by the extra privileges. Common results include executing code, disabling services, and reading restricted data.
+ Potential Mitigations

Phases: Architecture and Design; Operation

Strategy: Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations.

Phase: Architecture and Design

Strategy: Separation of Privilege

Identify the functionality that requires additional privileges, such as access to privileged operating system resources. Wrap and centralize this functionality if possible, and isolate the privileged code as much as possible from other code [REF-76]. Raise privileges as late as possible, and drop them as soon as possible to avoid CWE-271. Avoid weaknesses such as CWE-288 and CWE-420 by protecting all possible communication channels that could interact with the privileged code, such as a secondary socket that is only intended to be accessed by administrators.

Phase: Architecture and Design

Strategy: Attack Surface Reduction

Identify the functionality that requires additional privileges, such as access to privileged operating system resources. Wrap and centralize this functionality if possible, and isolate the privileged code as much as possible from other code [REF-76]. Raise privileges as late as possible, and drop them as soon as possible to avoid CWE-271. Avoid weaknesses such as CWE-288 and CWE-420 by protecting all possible communication channels that could interact with the privileged code, such as a secondary socket that is only intended to be accessed by administrators.

Phase: Implementation

Perform extensive input validation for any privileged code that must be exposed to the user and reject anything that does not fit your strict requirements.

Phase: Implementation

When dropping privileges, ensure that they have been dropped successfully to avoid CWE-273. As protection mechanisms in the environment get stronger, privilege-dropping calls may fail even if it seems like they would always succeed.

Phase: Implementation

If circumstances force you to run with extra privileges, then determine the minimum access level necessary. First identify the different permissions that the software and its users will need to perform their actions, such as file read and write permissions, network socket permissions, and so forth. Then explicitly allow those actions while denying all else [REF-76]. Perform extensive input validation and canonicalization to minimize the chances of introducing a separate vulnerability. This mitigation is much more prone to error than dropping the privileges in the first place.

Phases: Operation; System Configuration

Strategy: Environment Hardening

Ensure that the software runs properly under the United States Government Configuration Baseline (USGCB) [REF-199] or an equivalent hardening configuration guide, which many organizations use to limit the attack surface and potential risk of deployed software.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 269 Improper Privilege Management
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 657 Violation of Secure Design Principles
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 265 Privilege Issues
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Architectural Concepts" (CWE-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1015 Limit Access
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation

REALIZATION: This weakness is caused during implementation of an architectural security tactic.

Installation
Architecture and Design

If an application has this design problem, then it can be easier for the developer to make implementation-related errors such as CWE-271 (Privilege Dropping / Lowering Errors). In addition, the consequences of Privilege Chaining (CWE-268) can become more severe.

Operation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Technologies

Class: Mobile (Undetermined Prevalence)

+ Likelihood Of Exploit
Medium
+ Demonstrative Examples

Example 1

This code temporarily raises the program's privileges to allow creation of a new user folder.

(bad code)
Example Language: Python 
def makeNewUserDir(username):
if invalidUsername(username):

#avoid CWE-22 and CWE-78
print('Usernames cannot contain invalid characters')
return False

try:
raisePrivileges()
os.mkdir('/home/' + username)
lowerPrivileges()

except OSError:
print('Unable to create new user directory for user:' + username)
return False

return True

While the program only raises its privilege level to create the folder and immediately lowers it again, if the call to os.mkdir() throws an exception, the call to lowerPrivileges() will not occur. As a result, the program is indefinitely operating in a raised privilege state, possibly allowing further exploitation to occur.


Example 2

The following code calls chroot() to restrict the application to a subset of the filesystem below APP_HOME in order to prevent an attacker from using the program to gain unauthorized access to files located elsewhere. The code then opens a file specified by the user and processes the contents of the file.

(bad code)
Example Language:
chroot(APP_HOME);
chdir("/");
FILE* data = fopen(argv[1], "r+");
...

Constraining the process inside the application's home directory before opening any files is a valuable security measure. However, the absence of a call to setuid() with some non-zero value means the application is continuing to operate with unnecessary root privileges. Any successful exploit carried out by an attacker against the application can now result in a privilege escalation attack because any malicious operations will be performed with the privileges of the superuser. If the application drops to the privilege level of a non-root user, the potential for damage is substantially reduced.


Example 3

This application intends to use a user's location to determine the timezone the user is in:

(bad code)
Example Language: Java 
locationClient = new LocationClient(this, this, this);
locationClient.connect();
Location userCurrLocation;
userCurrLocation = locationClient.getLastLocation();
setTimeZone(userCurrLocation);

This is unnecessary use of the location API, as this information is already available using the Android Time API. Always be sure there is not another way to obtain needed information before resorting to using the location API.


Example 4

This code uses location to determine the user's current US State location.

First the application must declare that it requires the ACCESS_FINE_LOCATION permission in the application's manifest.xml:

(bad code)
Example Language: XML 
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

During execution, a call to getLastLocation() will return a location based on the application's location permissions. In this case the application has permission for the most accurate location possible:

(bad code)
Example Language: Java 
locationClient = new LocationClient(this, this, this);
locationClient.connect();
Location userCurrLocation;
userCurrLocation = locationClient.getLastLocation();
deriveStateFromCoords(userCurrLocation);

While the application needs this information, it does not need to use the ACCESS_FINE_LOCATION permission, as the ACCESS_COARSE_LOCATION permission will be sufficient to identify which US state the user is in.


+ Observed Examples
Reference Description
FTP client program on a certain OS runs with setuid privileges and has a buffer overflow. Most clients do not need extra privileges, so an overflow is not a vulnerability for those clients.
Program runs with privileges and calls another program with the same privileges, which allows read of arbitrary files.
OS incorrectly installs a program with setuid privileges, allowing users to gain privileges.
Composite: application running with high privileges (CWE-250) allows user to specify a restricted file to process, which generates a parsing error that leaks the contents of the file (CWE-209).
Program does not drop privileges before calling another program, allowing code execution.
setuid root program allows creation of arbitrary files through command line argument.
Installation script installs some programs as setuid when they shouldn't be.
mail program runs as root but does not drop its privileges before attempting to access a file. Attacker can use a symlink from their home directory to a directory only readable by root, then determine whether the file exists based on the response.
Product launches Help functionality while running with raised privileges, allowing command execution using Windows message to access "open file" dialog.
+ Detection Methods

Manual Analysis

This weakness can be detected using tools and techniques that require manual (human) analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester to record and modify an active session.
Note: These may be more effective than strictly automated techniques. This is especially the case with weaknesses that are related to design and business rules.

Black Box

Use monitoring tools that examine the software's process as it interacts with the operating system and the network. This technique is useful in cases when source code is unavailable, if the software was not developed by you, or if you want to verify that the build phase did not introduce any new weaknesses. Examples include debuggers that directly attach to the running process; system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and sniffers and protocol analyzers that monitor network traffic.

Attach the monitor to the process and perform a login. Look for library functions and system calls that indicate when privileges are being raised or dropped. Look for accesses of resources that are restricted to normal users.

Note: Note that this technique is only useful for privilege issues related to system resources. It is not likely to detect application-level business rules that are related to privileges, such as if a blog system allows a user to delete a blog entry without first checking that the user has administrator privileges.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Compare binary / bytecode to application permission manifest
Cost effective for partial coverage:
  • Bytecode Weakness Analysis - including disassembler + source code weakness analysis
  • Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness: High

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Binary / Bytecode disassembler - then use manual analysis for vulnerabilities & anomalies

Effectiveness: SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Host-based Vulnerability Scanners - Examine configuration for flaws, verifying that audit mechanisms work, ensure host configuration meets certain predefined criteria

Effectiveness: SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Host Application Interface Scanner

Effectiveness: SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Manual Source Code Review (not inspections)
Cost effective for partial coverage:
  • Focused Manual Spotcheck - Focused manual analysis of source

Effectiveness: High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Source code Weakness Analyzer
  • Context-configured Source Code Weakness Analyzer

Effectiveness: SOAR Partial

Automated Static Analysis

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Configuration Checker
  • Permission Manifest Analysis

Effectiveness: SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)
  • Formal Methods / Correct-By-Construction
Cost effective for partial coverage:
  • Attack Modeling

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 227 7PK - API Abuse
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 753 2009 Top 25 - Porous Defenses
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 815 OWASP Top Ten 2010 Category A6 - Security Misconfiguration
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 858 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 15 - Serialization (SER)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 866 2011 Top 25 - Porous Defenses
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 901 SFP Primary Cluster: Privilege
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1418 Comprehensive Categorization: Violation of Secure Design Principles
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Relationship

There is a close association with CWE-653 (Insufficient Separation of Privileges). CWE-653 is about providing separate components for each privilege; CWE-250 is about ensuring that each component has the least amount of privileges possible.

Maintenance

CWE-271, CWE-272, and CWE-250 are all closely related and possibly overlapping. CWE-271 is probably better suited as a category. Both CWE-272 and CWE-250 are in active use by the community. The "least privilege" phrase has multiple interpretations.

Maintenance

The Taxonomy_Mappings to ISA/IEC 62443 were added in CWE 4.10, but they are still under review and might change in future CWE versions. These draft mappings were performed by members of the "Mapping CWE to 62443" subgroup of the CWE-CAPEC ICS/OT Special Interest Group (SIG), and their work is incomplete as of CWE 4.10. The mappings are included to facilitate discussion and review by the broader ICS/OT community, and they are likely to change in future CWE versions.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Often Misused: Privilege Management
The CERT Oracle Secure Coding Standard for Java (2011) SER09-J Minimize privileges before deserializing from a privilege context
ISA/IEC 62443 Part 2-4 Req SP.03.05 BR
ISA/IEC 62443 Part 2-4 Req SP.03.08 BR
ISA/IEC 62443 Part 2-4 Req SP.03.08 RE(1)
ISA/IEC 62443 Part 2-4 Req SP.05.07 BR
ISA/IEC 62443 Part 2-4 Req SP.09.02 RE(4)
ISA/IEC 62443 Part 2-4 Req SP.09.03 BR
ISA/IEC 62443 Part 2-4 Req SP.09.04 BR
ISA/IEC 62443 Part 3-3 Req SR 1.1
ISA/IEC 62443 Part 3-3 Req SR 1.2
ISA/IEC 62443 Part 3-3 Req SR 2.1
ISA/IEC 62443 Part 3-3 Req SR 2.1 RE 1
ISA/IEC 62443 Part 4-1 Req SD-4
ISA/IEC 62443 Part 4-2 Req CCSC 3
ISA/IEC 62443 Part 4-2 Req CR 1.1
+ References
[REF-6] Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools Techniques and Metrics. NIST. 2005-11-07. <https://samate.nist.gov/SSATTM_Content/papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf>.
[REF-196] Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer Systems". Proceedings of the IEEE 63. 1975-09. <http://web.mit.edu/Saltzer/www/publications/protection/>.
[REF-76] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. <https://web.archive.org/web/20211209014121/https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/least-privilege>. URL validated: 2023-04-07.
[REF-7] Michael Howard and David LeBlanc. "Writing Secure Code". Chapter 7, "Running with Least Privilege" Page 207. 2nd Edition. Microsoft Press. 2002-12-04. <https://www.microsoftpressstore.com/store/writing-secure-code-9780735617223>.
[REF-199] NIST. "United States Government Configuration Baseline (USGCB)". <https://csrc.nist.gov/Projects/United-States-Government-Configuration-Baseline>. URL validated: 2023-03-28.
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 16: Executing Code With Too Much Privilege." Page 243. McGraw-Hill. 2010.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 9, "Privilege Vulnerabilities", Page 477. 1st Edition. Addison Wesley. 2006.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
7 Pernicious Kingdoms
+ Contributions
Contribution Date Contributor Organization
2023-01-24
(CWE 4.10, 2023-01-31)
"Mapping CWE to 62443" Sub-Working Group CWE-CAPEC ICS/OT SIG
Suggested mappings to ISA/IEC 62443.
2023-04-25 "Mapping CWE to 62443" Sub-Working Group CWE-CAPEC ICS/OT SIG
Suggested mappings to ISA/IEC 62443.
+ Modifications
Modification Date Modifier Organization
2008-09-08 CWE Content Team MITRE
updated Description, Modes_of_Introduction, Relationships, Other_Notes, Relationship_Notes, Taxonomy_Mappings
2008-10-14 CWE Content Team MITRE
updated Description, Maintenance_Notes
2009-01-12 CWE Content Team MITRE
updated Common_Consequences, Description, Likelihood_of_Exploit, Maintenance_Notes, Name, Observed_Examples, Other_Notes, Potential_Mitigations, Relationships, Time_of_Introduction
2009-03-10 CWE Content Team MITRE
updated Potential_Mitigations
2009-05-27 CWE Content Team MITRE
updated Related_Attack_Patterns
2010-02-16 CWE Content Team MITRE
updated Detection_Factors, Potential_Mitigations, References
2010-06-21 CWE Content Team MITRE
updated Detection_Factors, Potential_Mitigations
2011-03-29 CWE Content Team MITRE
updated Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Demonstrative_Examples, Relationships
2011-09-13 CWE Content Team MITRE
updated Potential_Mitigations, References, Relationships
2012-05-11 CWE Content Team MITRE
updated References, Related_Attack_Patterns, Relationships
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2013-07-17 CWE Content Team MITRE
updated Applicable_Platforms
2014-02-18 CWE Content Team MITRE
updated Demonstrative_Examples
2014-07-30 CWE Content Team MITRE
updated Detection_Factors
2017-11-08 CWE Content Team MITRE
updated Modes_of_Introduction, References, Relationships
2018-03-27 CWE Content Team MITRE
updated References
2019-01-03 CWE Content Team MITRE
updated Taxonomy_Mappings
2019-09-19 CWE Content Team MITRE
updated Demonstrative_Examples
2020-02-24 CWE Content Team MITRE
updated Applicable_Platforms, Detection_Factors, Observed_Examples, References, Relationships, Type
2022-04-28 CWE Content Team MITRE
updated Observed_Examples
2022-10-13 CWE Content Team MITRE
updated References
2023-01-31 CWE Content Team MITRE
updated Description, Maintenance_Notes, Taxonomy_Mappings
2023-04-27 CWE Content Team MITRE
updated Potential_Mitigations, References, Relationships, Taxonomy_Mappings
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-10-26 CWE Content Team MITRE
updated Observed_Examples
+ Previous Entry Names
Change Date Previous Entry Name
2008-01-30 Often Misused: Privilege Management
2009-01-12 Design Principle Violation: Failure to Use Least Privilege

CWE-122: Heap-based Buffer Overflow

Weakness ID: 122
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as malloc().
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Availability

Technical Impact: DoS: Crash, Exit, or Restart; DoS: Resource Consumption (CPU); DoS: Resource Consumption (Memory)

Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are possible, including putting the program into an infinite loop.
Integrity
Confidentiality
Availability
Access Control

Technical Impact: Execute Unauthorized Code or Commands; Bypass Protection Mechanism; Modify Memory

Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope of a program's implicit security policy. Besides important user data, heap-based overflows can be used to overwrite function pointers that may be living in memory, pointing it to the attacker's code. Even in applications that do not explicitly use function pointers, the run-time will usually leave many in memory. For example, object methods in C++ are generally implemented using function pointers. Even in C programs, there is often a global offset table used by the underlying runtime.
Integrity
Confidentiality
Availability
Access Control
Other

Technical Impact: Execute Unauthorized Code or Commands; Bypass Protection Mechanism; Other

When the consequence is arbitrary code execution, this can often be used to subvert any other security service.
+ Potential Mitigations
Pre-design: Use a language or compiler that performs automatic bounds checking.

Phase: Architecture and Design

Use an abstraction library to abstract away risky APIs. Not a complete solution.

Phases: Operation; Build and Compilation

Strategy: Environment Hardening

Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

Effectiveness: Defense in Depth

Note:

This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.

Phases: Operation; Build and Compilation

Strategy: Environment Hardening

Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

Effectiveness: Defense in Depth

Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]

Phase: Implementation

Implement and perform bounds checking on input.

Phase: Implementation

Strategy: Libraries or Frameworks

Do not use dangerous functions such as gets. Look for their safe equivalent, which checks for the boundary.

Phase: Operation

Use OS-level preventative functionality. This is not a complete solution, but it provides some defense in depth.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 787 Out-of-bounds Write
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 788 Access of Memory Location After End of Buffer
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

C (Undetermined Prevalence)

C++ (Undetermined Prevalence)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

While buffer overflow examples can be rather complex, it is possible to have very simple, yet still exploitable, heap-based buffer overflows:

(bad code)
Example Language:
#define BUFSIZE 256
int main(int argc, char **argv) {
char *buf;
buf = (char *)malloc(sizeof(char)*BUFSIZE);
strcpy(buf, argv[1]);
}

The buffer is allocated heap memory with a fixed size, but there is no guarantee the string in argv[1] will not exceed this size and cause an overflow.


Example 2

This example applies an encoding procedure to an input string and stores it into a buffer.

(bad code)
Example Language:
char * copy_input(char *user_supplied_string){
int i, dst_index;
char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE);
if ( MAX_SIZE <= strlen(user_supplied_string) ){
die("user string too long, die evil hacker!");
}
dst_index = 0;
for ( i = 0; i < strlen(user_supplied_string); i++ ){
if( '&' == user_supplied_string[i] ){
dst_buf[dst_index++] = '&';
dst_buf[dst_index++] = 'a';
dst_buf[dst_index++] = 'm';
dst_buf[dst_index++] = 'p';
dst_buf[dst_index++] = ';';
}
else if ('<' == user_supplied_string[i] ){

/* encode to &lt; */
}
else dst_buf[dst_index++] = user_supplied_string[i];
}
return dst_buf;
}

The programmer attempts to encode the ampersand character in the user-controlled string, however the length of the string is validated before the encoding procedure is applied. Furthermore, the programmer assumes encoding expansion will only expand a given character by a factor of 4, while the encoding of the ampersand expands by 5. As a result, when the encoding procedure expands the string it is possible to overflow the destination buffer if the attacker provides a string of many ampersands.


+ Observed Examples
Reference Description
Chain: in a web browser, an unsigned 64-bit integer is forcibly cast to a 32-bit integer (CWE-681) and potentially leading to an integer overflow (CWE-190). If an integer overflow occurs, this can cause heap memory corruption (CWE-122)
Chain: integer signedness error (CWE-195) passes signed comparison, leading to heap overflow (CWE-122)
Chain: product does not handle when an input string is not NULL terminated (CWE-170), leading to buffer over-read (CWE-125) or heap-based buffer overflow (CWE-122).
Chain: machine-learning product can have a heap-based buffer overflow (CWE-122) when some integer-oriented bounds are calculated by using ceiling() and floor() on floating point values (CWE-1339)
Chain: integer overflow (CWE-190) causes a negative signed value, which later bypasses a maximum-only check (CWE-839), leading to heap-based buffer overflow (CWE-122).
+ Weakness Ordinalities
Ordinality Description
Primary
(where the weakness exists independent of other weaknesses)
+ Detection Methods

Fuzzing

Fuzz testing (fuzzing) is a powerful technique for generating large numbers of diverse inputs - either randomly or algorithmically - and dynamically invoking the code with those inputs. Even with random inputs, it is often capable of generating unexpected results such as crashes, memory corruption, or resource consumption. Fuzzing effectively produces repeatable test cases that clearly indicate bugs, which helps developers to diagnose the issues.

Effectiveness: High

+ Affected Resources
  • Memory
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 970 SFP Secondary Cluster: Faulty Buffer Access
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1161 SEI CERT C Coding Standard - Guidelines 07. Characters and Strings (STR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1399 Comprehensive Categorization: Memory Safety
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Relationship

Heap-based buffer overflows are usually just as dangerous as stack-based buffer overflows.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Heap overflow
Software Fault Patterns SFP8 Faulty Buffer Access
CERT C Secure Coding STR31-C CWE More Specific Guarantee that storage for strings has sufficient space for character data and the null terminator
ISA/IEC 62443 Part 4-2 Req CR 3.5
ISA/IEC 62443 Part 3-3 Req SR 3.5
ISA/IEC 62443 Part 4-1 Req SI-1
ISA/IEC 62443 Part 4-1 Req SI-2
ISA/IEC 62443 Part 4-1 Req SVV-1
ISA/IEC 62443 Part 4-1 Req SVV-3
+ References
[REF-7] Michael Howard and David LeBlanc. "Writing Secure Code". Chapter 5, "Heap Overruns" Page 138. 2nd Edition. Microsoft Press. 2002-12-04. <https://www.microsoftpressstore.com/store/writing-secure-code-9780735617223>.
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 5: Buffer Overruns." Page 89. McGraw-Hill. 2010.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 3, "Nonexecutable Stack", Page 76. 1st Edition. Addison Wesley. 2006.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 5, "Protection Mechanisms", Page 189. 1st Edition. Addison Wesley. 2006.
[REF-58] Michael Howard. "Address Space Layout Randomization in Windows Vista". <https://learn.microsoft.com/en-us/archive/blogs/michael_howard/address-space-layout-randomization-in-windows-vista>. URL validated: 2023-04-07.
[REF-60] "PaX". <https://en.wikipedia.org/wiki/Executable_space_protection#PaX>. URL validated: 2023-04-07.
[REF-64] Grant Murphy. "Position Independent Executables (PIE)". Red Hat. 2012-11-28. <https://www.redhat.com/en/blog/position-independent-executables-pie>. URL validated: 2023-04-07.
[REF-18] Secure Software, Inc.. "The CLASP Application Security Process". 2005. <https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf>. URL validated: 2024-11-17.
[REF-1337] Alexander Sotirov and Mark Dowd. "Bypassing Browser Memory Protections: Setting back browser security by 10 years". Memory information leaks. 2008. <https://www.blackhat.com/presentations/bh-usa-08/Sotirov_Dowd/bh08-sotirov-dowd.pdf>. URL validated: 2023-04-26.
[REF-1332] John Richard Moser. "Prelink and address space randomization". 2006-07-05. <https://lwn.net/Articles/190139/>. URL validated: 2023-04-26.
[REF-1333] Dmitry Evtyushkin, Dmitry Ponomarev, Nael Abu-Ghazaleh. "Jump Over ASLR: Attacking Branch Predictors to Bypass ASLR". 2016. <http://www.cs.ucr.edu/~nael/pubs/micro16.pdf>. URL validated: 2023-04-26.
[REF-1334] D3FEND. "Stack Frame Canary Validation (D3-SFCV)". 2023. <https://d3fend.mitre.org/technique/d3f:StackFrameCanaryValidation/>. URL validated: 2023-04-26.
[REF-1335] D3FEND. "Segment Address Offset Randomization (D3-SAOR)". 2023. <https://d3fend.mitre.org/technique/d3f:SegmentAddressOffsetRandomization/>. URL validated: 2023-04-26.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
CLASP
+ Contributions
Contribution Date Contributor Organization
2023-11-14
(CWE 4.14, 2024-02-29)
participants in the CWE ICS/OT SIG 62443 Mapping Fall Workshop
Contributed or reviewed taxonomy mappings for ISA/IEC 62443
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Potential_Mitigations, Time_of_Introduction
2008-08-01 KDM Analytics
added/updated white box definitions
2008-09-08 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Relationships, Other_Notes, Taxonomy_Mappings, Weakness_Ordinalities
2008-11-24 CWE Content Team MITRE
updated Common_Consequences, Other_Notes, Relationship_Notes
2009-01-12 CWE Content Team MITRE
updated Common_Consequences, Relationships
2009-10-29 CWE Content Team MITRE
updated Relationships
2010-02-16 CWE Content Team MITRE
updated References
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2012-05-11 CWE Content Team MITRE
updated Demonstrative_Examples, References, Relationships
2012-10-30 CWE Content Team MITRE
updated Demonstrative_Examples
2013-02-21 CWE Content Team MITRE
updated Demonstrative_Examples, Potential_Mitigations
2014-06-23 CWE Content Team MITRE
updated Observed_Examples
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Causal_Nature, Likelihood_of_Exploit, Observed_Examples, References, Relationships, Taxonomy_Mappings, White_Box_Definitions
2018-03-27 CWE Content Team MITRE
updated References
2019-01-03 CWE Content Team MITRE
updated Relationships
2020-02-24 CWE Content Team MITRE
updated Relationships
2021-03-15 CWE Content Team MITRE
updated References
2021-07-20 CWE Content Team MITRE
updated Observed_Examples
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Potential_Mitigations, References, Relationships, Time_of_Introduction
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-10-26 CWE Content Team MITRE
updated Observed_Examples
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Observed_Examples, Taxonomy_Mappings

CWE-287: Improper Authentication

Weakness ID: 287
Vulnerability Mapping: DISCOURAGED This CWE ID should not be used to map to real-world vulnerabilities
Abstraction: Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
When an actor claims to have a given identity, the product does not prove or insufficiently proves that the claim is correct. Diagram for CWE-287
+ Alternate Terms
authentification:
An alternate term is "authentification", which appears to be most commonly used by people from non-English-speaking countries.
AuthN:
"AuthN" is typically used as an abbreviation of "authentication" within the web application security community. It is also distinct from "AuthZ," which is an abbreviation of "authorization." The use of "Auth" as an abbreviation is discouraged, since it could be used for either authentication or authorization.
AuthC:
"AuthC" is used as an abbreviation of "authentication," but it appears to used less frequently than "AuthN."
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Integrity
Confidentiality
Availability
Access Control

Technical Impact: Read Application Data; Gain Privileges or Assume Identity; Execute Unauthorized Code or Commands

This weakness can lead to the exposure of resources or functionality to unintended actors, possibly providing attackers with sensitive information or even execute arbitrary code.
+ Potential Mitigations

Phase: Architecture and Design

Strategy: Libraries or Frameworks

Use an authentication framework or library such as the OWASP ESAPI Authentication feature.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 284 Improper Access Control
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 295 Improper Certificate Validation
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 306 Missing Authentication for Critical Function
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 645 Overly Restrictive Account Lockout Mechanism
ParentOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 1390 Weak Authentication
CanFollow Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 613 Insufficient Session Expiration
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Nature Type ID Name
MemberOf View View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1003 Weaknesses for Simplified Mapping of Published Vulnerabilities
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 290 Authentication Bypass by Spoofing
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 294 Authentication Bypass by Capture-replay
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 295 Improper Certificate Validation
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 306 Missing Authentication for Critical Function
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 307 Improper Restriction of Excessive Authentication Attempts
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 521 Weak Password Requirements
ParentOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 522 Insufficiently Protected Credentials
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 640 Weak Password Recovery Mechanism for Forgotten Password
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 798 Use of Hard-coded Credentials
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Architectural Concepts" (CWE-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1010 Authenticate Actors
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 284 Improper Access Control
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design
Implementation REALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Technologies

Class: ICS/OT (Often Prevalent)