CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > VIEW SLICE: CWE-900: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors (4.16)  
ID

CWE VIEW: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors

View ID: 900
Vulnerability Mapping: PROHIBITED This CWE ID must not be used to map to real-world vulnerabilities
Type: Graph
Downloads: Booklet | CSV | XML
+ Objective
CWE entries in this view (graph) are listed in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors.
+ Audience
Stakeholder Description
Software Developers By following the Top 25, developers will be able to significantly reduce the number of weaknesses that occur in their software.
Product Customers If a software developer claims to be following the Top 25, then customers can use the weaknesses in this view in order to formulate independent evidence of that claim.
Educators Educators can use this view in multiple ways. For example, if there is a focus on teaching weaknesses, the educator could focus on the Top 25.
+ Relationships
The following graph shows the tree-like relationships between weaknesses that exist at different levels of abstraction. At the highest level, categories and pillars exist to group weaknesses. Categories (which are not technically weaknesses) are special CWE entries used to group weaknesses that share a common characteristic. Pillars are weaknesses that are described in the most abstract fashion. Below these top-level entries are weaknesses are varying levels of abstraction. Classes are still very abstract, typically independent of any specific language or technology. Base level weaknesses are used to present a more specific type of weakness. A variant is a weakness that is described at a very low level of detail, typically limited to a specific language or technology. A chain is a set of weaknesses that must be reachable consecutively in order to produce an exploitable vulnerability. While a composite is a set of weaknesses that must all be present simultaneously in order to produce an exploitable vulnerability.
Show Details:
900 - Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 2011 Top 25 - Weaknesses On the Cusp - (867)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 867 (2011 Top 25 - Weaknesses On the Cusp)
Weaknesses in this category are not part of the general Top 25, but they were part of the original nominee list from which the Top 25 was drawn.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Improper Validation of Array Index - (129)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 867 (2011 Top 25 - Weaknesses On the Cusp) > 129 (Improper Validation of Array Index)
The product uses untrusted input when calculating or using an array index, but the product does not validate or incorrectly validates the index to ensure the index references a valid position within the array. out-of-bounds array index index-out-of-range array index underflow
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Generation of Error Message Containing Sensitive Information - (209)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 867 (2011 Top 25 - Weaknesses On the Cusp) > 209 (Generation of Error Message Containing Sensitive Information)
The product generates an error message that includes sensitive information about its environment, users, or associated data.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Improper Removal of Sensitive Information Before Storage or Transfer - (212)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 867 (2011 Top 25 - Weaknesses On the Cusp) > 212 (Improper Removal of Sensitive Information Before Storage or Transfer)
The product stores, transfers, or shares a resource that contains sensitive information, but it does not properly remove that information before the product makes the resource available to unauthorized actors.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Use of Insufficiently Random Values - (330)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 867 (2011 Top 25 - Weaknesses On the Cusp) > 330 (Use of Insufficiently Random Values)
The product uses insufficiently random numbers or values in a security context that depends on unpredictable numbers.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') - (362)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 867 (2011 Top 25 - Weaknesses On the Cusp) > 362 (Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition'))
The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently. Race Condition
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Missing Initialization of a Variable - (456)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 867 (2011 Top 25 - Weaknesses On the Cusp) > 456 (Missing Initialization of a Variable)
The product does not initialize critical variables, which causes the execution environment to use unexpected values.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. NULL Pointer Dereference - (476)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 867 (2011 Top 25 - Weaknesses On the Cusp) > 476 (NULL Pointer Dereference)
The product dereferences a pointer that it expects to be valid but is NULL. NPD null deref NPE nil pointer dereference
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Incorrect Conversion between Numeric Types - (681)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 867 (2011 Top 25 - Weaknesses On the Cusp) > 681 (Incorrect Conversion between Numeric Types)
When converting from one data type to another, such as long to integer, data can be omitted or translated in a way that produces unexpected values. If the resulting values are used in a sensitive context, then dangerous behaviors may occur.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Improper Check for Unusual or Exceptional Conditions - (754)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 867 (2011 Top 25 - Weaknesses On the Cusp) > 754 (Improper Check for Unusual or Exceptional Conditions)
The product does not check or incorrectly checks for unusual or exceptional conditions that are not expected to occur frequently during day to day operation of the product.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Allocation of Resources Without Limits or Throttling - (770)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 867 (2011 Top 25 - Weaknesses On the Cusp) > 770 (Allocation of Resources Without Limits or Throttling)
The product allocates a reusable resource or group of resources on behalf of an actor without imposing any restrictions on the size or number of resources that can be allocated, in violation of the intended security policy for that actor.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Missing Release of Resource after Effective Lifetime - (772)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 867 (2011 Top 25 - Weaknesses On the Cusp) > 772 (Missing Release of Resource after Effective Lifetime)
The product does not release a resource after its effective lifetime has ended, i.e., after the resource is no longer needed.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Buffer Access with Incorrect Length Value - (805)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 867 (2011 Top 25 - Weaknesses On the Cusp) > 805 (Buffer Access with Incorrect Length Value)
The product uses a sequential operation to read or write a buffer, but it uses an incorrect length value that causes it to access memory that is outside of the bounds of the buffer.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Untrusted Pointer Dereference - (822)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 867 (2011 Top 25 - Weaknesses On the Cusp) > 822 (Untrusted Pointer Dereference)
The product obtains a value from an untrusted source, converts this value to a pointer, and dereferences the resulting pointer.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Expired Pointer Dereference - (825)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 867 (2011 Top 25 - Weaknesses On the Cusp) > 825 (Expired Pointer Dereference)
The product dereferences a pointer that contains a location for memory that was previously valid, but is no longer valid. Dangling pointer
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Inappropriate Encoding for Output Context - (838)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 867 (2011 Top 25 - Weaknesses On the Cusp) > 838 (Inappropriate Encoding for Output Context)
The product uses or specifies an encoding when generating output to a downstream component, but the specified encoding is not the same as the encoding that is expected by the downstream component.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Improper Enforcement of Behavioral Workflow - (841)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 867 (2011 Top 25 - Weaknesses On the Cusp) > 841 (Improper Enforcement of Behavioral Workflow)
The product supports a session in which more than one behavior must be performed by an actor, but it does not properly ensure that the actor performs the behaviors in the required sequence.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 2011 Top 25 - Porous Defenses - (866)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 866 (2011 Top 25 - Porous Defenses)
Weaknesses in this category are listed in the "Porous Defenses" section of the 2011 CWE/SANS Top 25 Most Dangerous Software Errors.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Execution with Unnecessary Privileges - (250)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 866 (2011 Top 25 - Porous Defenses) > 250 (Execution with Unnecessary Privileges)
The product performs an operation at a privilege level that is higher than the minimum level required, which creates new weaknesses or amplifies the consequences of other weaknesses.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Missing Authentication for Critical Function - (306)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 866 (2011 Top 25 - Porous Defenses) > 306 (Missing Authentication for Critical Function)
The product does not perform any authentication for functionality that requires a provable user identity or consumes a significant amount of resources.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Improper Restriction of Excessive Authentication Attempts - (307)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 866 (2011 Top 25 - Porous Defenses) > 307 (Improper Restriction of Excessive Authentication Attempts)
The product does not implement sufficient measures to prevent multiple failed authentication attempts within a short time frame.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Missing Encryption of Sensitive Data - (311)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 866 (2011 Top 25 - Porous Defenses) > 311 (Missing Encryption of Sensitive Data)
The product does not encrypt sensitive or critical information before storage or transmission.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Use of a Broken or Risky Cryptographic Algorithm - (327)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 866 (2011 Top 25 - Porous Defenses) > 327 (Use of a Broken or Risky Cryptographic Algorithm)
The product uses a broken or risky cryptographic algorithm or protocol.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Incorrect Permission Assignment for Critical Resource - (732)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 866 (2011 Top 25 - Porous Defenses) > 732 (Incorrect Permission Assignment for Critical Resource)
The product specifies permissions for a security-critical resource in a way that allows that resource to be read or modified by unintended actors.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Use of a One-Way Hash without a Salt - (759)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 866 (2011 Top 25 - Porous Defenses) > 759 (Use of a One-Way Hash without a Salt)
The product uses a one-way cryptographic hash against an input that should not be reversible, such as a password, but the product does not also use a salt as part of the input.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Use of Hard-coded Credentials - (798)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 866 (2011 Top 25 - Porous Defenses) > 798 (Use of Hard-coded Credentials)
The product contains hard-coded credentials, such as a password or cryptographic key.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Reliance on Untrusted Inputs in a Security Decision - (807)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 866 (2011 Top 25 - Porous Defenses) > 807 (Reliance on Untrusted Inputs in a Security Decision)
The product uses a protection mechanism that relies on the existence or values of an input, but the input can be modified by an untrusted actor in a way that bypasses the protection mechanism.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Missing Authorization - (862)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 866 (2011 Top 25 - Porous Defenses) > 862 (Missing Authorization)
The product does not perform an authorization check when an actor attempts to access a resource or perform an action. AuthZ
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Incorrect Authorization - (863)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 866 (2011 Top 25 - Porous Defenses) > 863 (Incorrect Authorization)
The product performs an authorization check when an actor attempts to access a resource or perform an action, but it does not correctly perform the check. AuthZ
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 2011 Top 25 - Risky Resource Management - (865)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 865 (2011 Top 25 - Risky Resource Management)
Weaknesses in this category are listed in the "Risky Resource Management" section of the 2011 CWE/SANS Top 25 Most Dangerous Software Errors.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') - (120)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 865 (2011 Top 25 - Risky Resource Management) > 120 (Buffer Copy without Checking Size of Input ('Classic Buffer Overflow'))
The product copies an input buffer to an output buffer without verifying that the size of the input buffer is less than the size of the output buffer, leading to a buffer overflow. Classic Buffer Overflow Unbounded Transfer
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Incorrect Calculation of Buffer Size - (131)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 865 (2011 Top 25 - Risky Resource Management) > 131 (Incorrect Calculation of Buffer Size)
The product does not correctly calculate the size to be used when allocating a buffer, which could lead to a buffer overflow.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Use of Externally-Controlled Format String - (134)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 865 (2011 Top 25 - Risky Resource Management) > 134 (Use of Externally-Controlled Format String)
The product uses a function that accepts a format string as an argument, but the format string originates from an external source.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Integer Overflow or Wraparound - (190)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 865 (2011 Top 25 - Risky Resource Management) > 190 (Integer Overflow or Wraparound)
The product performs a calculation that can produce an integer overflow or wraparound when the logic assumes that the resulting value will always be larger than the original value. This occurs when an integer value is incremented to a value that is too large to store in the associated representation. When this occurs, the value may become a very small or negative number. Overflow Wraparound wrap, wrap-around, wrap around
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') - (22)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 865 (2011 Top 25 - Risky Resource Management) > 22 (Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal'))
The product uses external input to construct a pathname that is intended to identify a file or directory that is located underneath a restricted parent directory, but the product does not properly neutralize special elements within the pathname that can cause the pathname to resolve to a location that is outside of the restricted directory. Directory traversal Path traversal
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Download of Code Without Integrity Check - (494)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 865 (2011 Top 25 - Risky Resource Management) > 494 (Download of Code Without Integrity Check)
The product downloads source code or an executable from a remote location and executes the code without sufficiently verifying the origin and integrity of the code.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Use of Potentially Dangerous Function - (676)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 865 (2011 Top 25 - Risky Resource Management) > 676 (Use of Potentially Dangerous Function)
The product invokes a potentially dangerous function that could introduce a vulnerability if it is used incorrectly, but the function can also be used safely.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 2011 Top 25 - Insecure Interaction Between Components - (864)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 864 (2011 Top 25 - Insecure Interaction Between Components)
Weaknesses in this category are listed in the "Insecure Interaction Between Components" section of the 2011 CWE/SANS Top 25 Most Dangerous Software Errors.
* Composite Composite - a Compound Element that consists of two or more distinct weaknesses, in which all weaknesses must be present at the same time in order for a potential vulnerability to arise. Removing any of the weaknesses eliminates or sharply reduces the risk. One weakness, X, can be "broken down" into component weaknesses Y and Z. There can be cases in which one weakness might not be essential to a composite, but changes the nature of the composite when it becomes a vulnerability. Cross-Site Request Forgery (CSRF) - (352)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 864 (2011 Top 25 - Insecure Interaction Between Components) > 352 (Cross-Site Request Forgery (CSRF))
The web application does not, or can not, sufficiently verify whether a well-formed, valid, consistent request was intentionally provided by the user who submitted the request. Session Riding Cross Site Reference Forgery XSRF
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Unrestricted Upload of File with Dangerous Type - (434)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 864 (2011 Top 25 - Insecure Interaction Between Components) > 434 (Unrestricted Upload of File with Dangerous Type)
The product allows the upload or transfer of dangerous file types that are automatically processed within its environment. Unrestricted File Upload
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. URL Redirection to Untrusted Site ('Open Redirect') - (601)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 864 (2011 Top 25 - Insecure Interaction Between Components) > 601 (URL Redirection to Untrusted Site ('Open Redirect'))
The web application accepts a user-controlled input that specifies a link to an external site, and uses that link in a redirect. Open Redirect Cross-site Redirect Cross-domain Redirect Unvalidated Redirect
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') - (78)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 864 (2011 Top 25 - Insecure Interaction Between Components) > 78 (Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection'))
The product constructs all or part of an OS command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended OS command when it is sent to a downstream component. Shell injection Shell metacharacters OS Command Injection
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') - (79)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 864 (2011 Top 25 - Insecure Interaction Between Components) > 79 (Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting'))
The product does not neutralize or incorrectly neutralizes user-controllable input before it is placed in output that is used as a web page that is served to other users. XSS HTML Injection CSS
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Inclusion of Functionality from Untrusted Control Sphere - (829)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 864 (2011 Top 25 - Insecure Interaction Between Components) > 829 (Inclusion of Functionality from Untrusted Control Sphere)
The product imports, requires, or includes executable functionality (such as a library) from a source that is outside of the intended control sphere.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') - (89)
900 (Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors) > 864 (2011 Top 25 - Insecure Interaction Between Components) > 89 (Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection'))
The product constructs all or part of an SQL command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended SQL command when it is sent to a downstream component. Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated SQL query can cause those inputs to be interpreted as SQL instead of ordinary user data. SQL injection SQLi
+ Vulnerability Mapping Notes

Usage: PROHIBITED

(this CWE ID must not be used to map to real-world vulnerabilities)

Reason: View

Rationale:

This entry is a View. Views are not weaknesses and therefore inappropriate to describe the root causes of vulnerabilities.

Comments:

Use this View or other Views to search and navigate for the appropriate weakness.
+ References
[REF-843] "2011 CWE/SANS Top 25 Most Dangerous Software Errors". 2011-06-27. <https://cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.html>. URL validated: 2024-11-17.
+ View Metrics
CWEs in this view Total CWEs
Weaknesses 41 out of 940
Categories 4 out of 374
Views 0 out of 51
Total 45 out of 1365
+ Content History
+ Submissions
Submission Date Submitter Organization
2011-06-25
(CWE 2.0, 2011-06-27)
CWE Content Team MITRE
+ Modifications
Modification Date Modifier Organization
2017-11-08 CWE Content Team MITRE
updated References
2019-06-20 CWE Content Team MITRE
updated References
2020-02-24 CWE Content Team MITRE
updated View_Audience
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2024-11-19
(CWE 4.16, 2024-11-19)
CWE Content Team MITRE
updated References

View Components

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

CWE-770: Allocation of Resources Without Limits or Throttling

Weakness ID: 770
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product allocates a reusable resource or group of resources on behalf of an actor without imposing any restrictions on the size or number of resources that can be allocated, in violation of the intended security policy for that actor.
+ Extended Description

Code frequently has to work with limited resources, so programmers must be careful to ensure that resources are not consumed too quickly, or too easily. Without use of quotas, resource limits, or other protection mechanisms, it can be easy for an attacker to consume many resources by rapidly making many requests, or causing larger resources to be used than is needed. When too many resources are allocated, or if a single resource is too large, then it can prevent the code from working correctly, possibly leading to a denial of service.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Availability

Technical Impact: DoS: Resource Consumption (CPU); DoS: Resource Consumption (Memory); DoS: Resource Consumption (Other)

When allocating resources without limits, an attacker could prevent other systems, applications, or processes from accessing the same type of resource.
+ Potential Mitigations

Phase: Requirements

Clearly specify the minimum and maximum expectations for capabilities, and dictate which behaviors are acceptable when resource allocation reaches limits.

Phase: Architecture and Design

Limit the amount of resources that are accessible to unprivileged users. Set per-user limits for resources. Allow the system administrator to define these limits. Be careful to avoid CWE-410.

Phase: Architecture and Design

Design throttling mechanisms into the system architecture. The best protection is to limit the amount of resources that an unauthorized user can cause to be expended. A strong authentication and access control model will help prevent such attacks from occurring in the first place, and it will help the administrator to identify who is committing the abuse. The login application should be protected against DoS attacks as much as possible. Limiting the database access, perhaps by caching result sets, can help minimize the resources expended. To further limit the potential for a DoS attack, consider tracking the rate of requests received from users and blocking requests that exceed a defined rate threshold.

Phase: Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

Note: This will only be applicable to cases where user input can influence the size or frequency of resource allocations.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.

Phase: Architecture and Design

Mitigation of resource exhaustion attacks requires that the target system either:

  • recognizes the attack and denies that user further access for a given amount of time, typically by using increasing time delays
  • uniformly throttles all requests in order to make it more difficult to consume resources more quickly than they can again be freed.

The first of these solutions is an issue in itself though, since it may allow attackers to prevent the use of the system by a particular valid user. If the attacker impersonates the valid user, they may be able to prevent the user from accessing the server in question.

The second solution can be difficult to effectively institute -- and even when properly done, it does not provide a full solution. It simply requires more resources on the part of the attacker.

Phase: Architecture and Design

Ensure that protocols have specific limits of scale placed on them.

Phases: Architecture and Design; Implementation

If the program must fail, ensure that it fails gracefully (fails closed). There may be a temptation to simply let the program fail poorly in cases such as low memory conditions, but an attacker may be able to assert control before the software has fully exited. Alternately, an uncontrolled failure could cause cascading problems with other downstream components; for example, the program could send a signal to a downstream process so the process immediately knows that a problem has occurred and has a better chance of recovery.

Ensure that all failures in resource allocation place the system into a safe posture.

Phases: Operation; Architecture and Design

Strategy: Resource Limitation

Use resource-limiting settings provided by the operating system or environment. For example, when managing system resources in POSIX, setrlimit() can be used to set limits for certain types of resources, and getrlimit() can determine how many resources are available. However, these functions are not available on all operating systems.

When the current levels get close to the maximum that is defined for the application (see CWE-770), then limit the allocation of further resources to privileged users; alternately, begin releasing resources for less-privileged users. While this mitigation may protect the system from attack, it will not necessarily stop attackers from adversely impacting other users.

Ensure that the application performs the appropriate error checks and error handling in case resources become unavailable (CWE-703).

+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 400 Uncontrolled Resource Consumption
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 665 Improper Initialization
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 774 Allocation of File Descriptors or Handles Without Limits or Throttling
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 789 Memory Allocation with Excessive Size Value
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1325 Improperly Controlled Sequential Memory Allocation
CanFollow Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 20 Improper Input Validation
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 399 Resource Management Errors
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 840 Business Logic Errors
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 400 Uncontrolled Resource Consumption
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Architectural Concepts" (CWE-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1011 Authorize Actors
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design OMISSION: This weakness is caused by missing a security tactic during the architecture and design phase.
Implementation
Operation
System Configuration
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Often Prevalent)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

This code allocates a socket and forks each time it receives a new connection.

(bad code)
Example Language:
sock=socket(AF_INET, SOCK_STREAM, 0);
while (1) {
newsock=accept(sock, ...);
printf("A connection has been accepted\n");
pid = fork();
}

The program does not track how many connections have been made, and it does not limit the number of connections. Because forking is a relatively expensive operation, an attacker would be able to cause the system to run out of CPU, processes, or memory by making a large number of connections. Alternatively, an attacker could consume all available connections, preventing others from accessing the system remotely.


Example 2

In the following example a server socket connection is used to accept a request to store data on the local file system using a specified filename. The method openSocketConnection establishes a server socket to accept requests from a client. When a client establishes a connection to this service the getNextMessage method is first used to retrieve from the socket the name of the file to store the data, the openFileToWrite method will validate the filename and open a file to write to on the local file system. The getNextMessage is then used within a while loop to continuously read data from the socket and output the data to the file until there is no longer any data from the socket.

(bad code)
Example Language:
int writeDataFromSocketToFile(char *host, int port)
{

char filename[FILENAME_SIZE];
char buffer[BUFFER_SIZE];
int socket = openSocketConnection(host, port);

if (socket < 0) {
printf("Unable to open socket connection");
return(FAIL);
}
if (getNextMessage(socket, filename, FILENAME_SIZE) > 0) {
if (openFileToWrite(filename) > 0) {
while (getNextMessage(socket, buffer, BUFFER_SIZE) > 0){
if (!(writeToFile(buffer) > 0))
break;
}
}
closeFile();
}
closeSocket(socket);
}

This example creates a situation where data can be dumped to a file on the local file system without any limits on the size of the file. This could potentially exhaust file or disk resources and/or limit other clients' ability to access the service.


Example 3

In the following example, the processMessage method receives a two dimensional character array containing the message to be processed. The two-dimensional character array contains the length of the message in the first character array and the message body in the second character array. The getMessageLength method retrieves the integer value of the length from the first character array. After validating that the message length is greater than zero, the body character array pointer points to the start of the second character array of the two-dimensional character array and memory is allocated for the new body character array.

(bad code)
Example Language:

/* process message accepts a two-dimensional character array of the form [length][body] containing the message to be processed */
int processMessage(char **message)
{
char *body;

int length = getMessageLength(message[0]);

if (length > 0) {
body = &message[1][0];
processMessageBody(body);
return(SUCCESS);
}
else {
printf("Unable to process message; invalid message length");
return(FAIL);
}
}

This example creates a situation where the length of the body character array can be very large and will consume excessive memory, exhausting system resources. This can be avoided by restricting the length of the second character array with a maximum length check

Also, consider changing the type from 'int' to 'unsigned int', so that you are always guaranteed that the number is positive. This might not be possible if the protocol specifically requires allowing negative values, or if you cannot control the return value from getMessageLength(), but it could simplify the check to ensure the input is positive, and eliminate other errors such as signed-to-unsigned conversion errors (CWE-195) that may occur elsewhere in the code.

(good code)
Example Language:
unsigned int length = getMessageLength(message[0]);
if ((length > 0) && (length < MAX_LENGTH)) {...}

Example 4

In the following example, a server object creates a server socket and accepts client connections to the socket. For every client connection to the socket a separate thread object is generated using the ClientSocketThread class that handles request made by the client through the socket.

(bad code)
Example Language: Java 
public void acceptConnections() {
try {
ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0;
boolean hasConnections = true;
while (hasConnections) {
Socket client = serverSocket.accept();
Thread t = new Thread(new ClientSocketThread(client));
t.setName(client.getInetAddress().getHostName() + ":" + counter++);
t.start();
}
serverSocket.close();


} catch (IOException ex) {...}
}

In this example there is no limit to the number of client connections and client threads that are created. Allowing an unlimited number of client connections and threads could potentially overwhelm the system and system resources.

The server should limit the number of client connections and the client threads that are created. This can be easily done by creating a thread pool object that limits the number of threads that are generated.

(good code)
Example Language: Java 
public static final int SERVER_PORT = 4444;
public static final int MAX_CONNECTIONS = 10;
...

public void acceptConnections() {
try {
ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0;
boolean hasConnections = true;
while (hasConnections) {
hasConnections = checkForMoreConnections();
Socket client = serverSocket.accept();
Thread t = new Thread(new ClientSocketThread(client));
t.setName(client.getInetAddress().getHostName() + ":" + counter++);
ExecutorService pool = Executors.newFixedThreadPool(MAX_CONNECTIONS);
pool.execute(t);
}
serverSocket.close();


} catch (IOException ex) {...}
}

Example 5

An unnamed web site allowed a user to purchase tickets for an event. A menu option allowed the user to purchase up to 10 tickets, but the back end did not restrict the actual number of tickets that could be purchased.

Example 5 References:
[REF-667] Rafal Los. "Real-Life Example of a 'Business Logic Defect' (Screen Shots!)". 2011. <http://h30501.www3.hp.com/t5/Following-the-White-Rabbit-A/Real-Life-Example-of-a-Business-Logic-Defect-Screen-Shots/ba-p/22581>.

Example 6

Here the problem is that every time a connection is made, more memory is allocated. So if one just opened up more and more connections, eventually the machine would run out of memory.

(bad code)
Example Language:
bar connection() {
foo = malloc(1024);
return foo;
}

endConnection(bar foo) {
free(foo);
}

int main() {
while(1) {
foo=connection();
}

endConnection(foo)
}

+ Observed Examples
Reference Description
Chain: Python library does not limit the resources used to process images that specify a very large number of bands (CWE-1284), leading to excessive memory consumption (CWE-789) or an integer overflow (CWE-190).
Language interpreter does not restrict the number of temporary files being created when handling a MIME request with a large number of parts..
Driver does not use a maximum width when invoking sscanf style functions, causing stack consumption.
Large integer value for a length property in an object causes a large amount of memory allocation.
Product allows exhaustion of file descriptors when processing a large number of TCP packets.
Communication product allows memory consumption with a large number of SIP requests, which cause many sessions to be created.
Product allows attackers to cause a denial of service via a large number of directives, each of which opens a separate window.
CMS does not restrict the number of searches that can occur simultaneously, leading to resource exhaustion.
web application scanner attempts to read an excessively large file created by a user, causing process termination
Go-based workload orchestrator does not limit resource usage with unauthenticated connections, allowing a DoS by flooding the service
+ Detection Methods

Manual Static Analysis

Manual static analysis can be useful for finding this weakness, but it might not achieve desired code coverage within limited time constraints. If denial-of-service is not considered a significant risk, or if there is strong emphasis on consequences such as code execution, then manual analysis may not focus on this weakness at all.

Fuzzing

While fuzzing is typically geared toward finding low-level implementation bugs, it can inadvertently find uncontrolled resource allocation problems. This can occur when the fuzzer generates a large number of test cases but does not restart the targeted product in between test cases. If an individual test case produces a crash, but it does not do so reliably, then an inability to limit resource allocation may be the cause.

When the allocation is directly affected by numeric inputs, then fuzzing may produce indications of this weakness.

Effectiveness: Opportunistic

Automated Dynamic Analysis

Certain automated dynamic analysis techniques may be effective in producing side effects of uncontrolled resource allocation problems, especially with resources such as processes, memory, and connections. The technique may involve generating a large number of requests to the product within a short time frame. Manual analysis is likely required to interpret the results.

Automated Static Analysis

Specialized configuration or tuning may be required to train automated tools to recognize this weakness.

Automated static analysis typically has limited utility in recognizing unlimited allocation problems, except for the missing release of program-independent system resources such as files, sockets, and processes, or unchecked arguments to memory. For system resources, automated static analysis may be able to detect circumstances in which resources are not released after they have expired, or if too much of a resource is requested at once, as can occur with memory. Automated analysis of configuration files may be able to detect settings that do not specify a maximum value.

Automated static analysis tools will not be appropriate for detecting exhaustion of custom resources, such as an intended security policy in which a bulletin board user is only allowed to make a limited number of posts per day.

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 802 2010 Top 25 - Risky Resource Management
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 857 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 14 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 858 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 15 - Serialization (SER)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 861 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 18 - Miscellaneous (MSC)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 867 2011 Top 25 - Weaknesses On the Cusp
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 876 CERT C++ Secure Coding Section 08 - Memory Management (MEM)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 877 CERT C++ Secure Coding Section 09 - Input Output (FIO)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 985 SFP Secondary Cluster: Unrestricted Consumption
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1147 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1148 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1152 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous (MSC)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1416 Comprehensive Categorization: Resource Lifecycle Management
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Relationship

This entry is different from uncontrolled resource consumption (CWE-400) in that there are other weaknesses that are related to inability to control resource consumption, such as holding on to a resource too long after use, or not correctly keeping track of active resources so that they can be managed and released when they are finished (CWE-771).

Theoretical

Vulnerability theory is largely about how behaviors and resources interact. "Resource exhaustion" can be regarded as either a consequence or an attack, depending on the perspective. This entry is an attempt to reflect one of the underlying weaknesses that enable these attacks (or consequences) to take place.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure Coding Standard for Java (2011) FIO04-J Close resources when they are no longer needed
The CERT Oracle Secure Coding Standard for Java (2011) SER12-J Avoid memory and resource leaks during serialization
The CERT Oracle Secure Coding Standard for Java (2011) MSC05-J Do not exhaust heap space
ISA/IEC 62443 Part 4-2 Req CR 7.2
ISA/IEC 62443 Part 4-2 Req CR 2.7
ISA/IEC 62443 Part 4-1 Req SI-1
ISA/IEC 62443 Part 4-1 Req SI-2
ISA/IEC 62443 Part 3-3 Req SR 7.2
ISA/IEC 62443 Part 3-3 Req SR 2.7
+ References
[REF-386] Joao Antunes, Nuno Ferreira Neves and Paulo Verissimo. "Detection and Prediction of Resource-Exhaustion Vulnerabilities". Proceedings of the IEEE International Symposium on Software Reliability Engineering (ISSRE). 2008-11. <http://homepages.di.fc.ul.pt/~nuno/PAPERS/ISSRE08.pdf>.
[REF-387] D.J. Bernstein. "Resource exhaustion". <http://cr.yp.to/docs/resources.html>.
[REF-388] Pascal Meunier. "Resource exhaustion". Secure Programming Educational Material. 2004. <http://homes.cerias.purdue.edu/~pmeunier/secprog/sanitized/class1/6.resource%20exhaustion.ppt>.
[REF-7] Michael Howard and David LeBlanc. "Writing Secure Code". Chapter 17, "Protecting Against Denial of Service Attacks" Page 517. 2nd Edition. Microsoft Press. 2002-12-04. <https://www.microsoftpressstore.com/store/writing-secure-code-9780735617223>.
[REF-667] Rafal Los. "Real-Life Example of a 'Business Logic Defect' (Screen Shots!)". 2011. <http://h30501.www3.hp.com/t5/Following-the-White-Rabbit-A/Real-Life-Example-of-a-Business-Logic-Defect-Screen-Shots/ba-p/22581>.
[REF-672] Frank Kim. "Top 25 Series - Rank 22 - Allocation of Resources Without Limits or Throttling". SANS Software Security Institute. 2010-03-23. <https://web.archive.org/web/20170113055136/https://software-security.sans.org/blog/2010/03/23/top-25-series-rank-22-allocation-of-resources-without-limits-or-throttling/>. URL validated: 2023-04-07.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 10, "Resource Limits", Page 574. 1st Edition. Addison Wesley. 2006.
+ Content History
+ Submissions
Submission Date Submitter Organization
2009-05-13
(CWE 1.4, 2009-05-27)
CWE Content Team MITRE
+ Contributions
Contribution Date Contributor Organization
2023-11-14
(CWE 4.14, 2024-02-29)
participants in the CWE ICS/OT SIG 62443 Mapping Fall Workshop
Contributed or reviewed taxonomy mappings for ISA/IEC 62443
+ Modifications
Modification Date Modifier Organization
2009-07-27 CWE Content Team MITRE
updated Related_Attack_Patterns
2009-10-29 CWE Content Team MITRE
updated Relationships
2009-12-28 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Detection_Factors, Observed_Examples, References, Time_of_Introduction
2010-02-16 CWE Content Team MITRE
updated Common_Consequences, Detection_Factors, Potential_Mitigations, References, Related_Attack_Patterns, Relationships
2010-04-05 CWE Content Team MITRE
updated Common_Consequences, Demonstrative_Examples, Related_Attack_Patterns
2010-06-21 CWE Content Team MITRE
updated Common_Consequences, Potential_Mitigations, References
2010-09-27 CWE Content Team MITRE
updated Demonstrative_Examples, Potential_Mitigations
2011-03-29 CWE Content Team MITRE
updated Demonstrative_Examples, Detection_Factors, Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Relationships
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-05-11 CWE Content Team MITRE
updated Demonstrative_Examples, References, Related_Attack_Patterns, Relationships, Taxonomy_Mappings
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2014-02-18 CWE Content Team MITRE
updated Related_Attack_Patterns
2014-06-23 CWE Content Team MITRE
updated Related_Attack_Patterns
2014-07-30 CWE Content Team MITRE
updated Relationships
2015-12-07 CWE Content Team MITRE
updated Related_Attack_Patterns
2017-05-03 CWE Content Team MITRE
updated Related_Attack_Patterns
2017-11-08 CWE Content Team MITRE
updated Demonstrative_Examples, Likelihood_of_Exploit, Modes_of_Introduction, Potential_Mitigations, References, Relationships, Taxonomy_Mappings
2018-03-27 CWE Content Team MITRE
updated References
2019-01-03 CWE Content Team MITRE
updated Demonstrative_Examples, Description, Relationships, Taxonomy_Mappings
2019-06-20 CWE Content Team MITRE
updated Related_Attack_Patterns, Relationships
2020-02-24 CWE Content Team MITRE
updated Potential_Mitigations, Related_Attack_Patterns, Relationships
2020-06-25 CWE Content Team MITRE
updated Applicable_Platforms, Description, Maintenance_Notes, Potential_Mitigations, Relationship_Notes, Relationships
2020-12-10 CWE Content Team MITRE
updated Relationships
2021-07-20 CWE Content Team MITRE
updated Observed_Examples
2022-10-13 CWE Content Team MITRE
updated Observed_Examples, References
2023-01-31 CWE Content Team MITRE
updated Description, Detection_Factors
2023-04-27 CWE Content Team MITRE
updated References, Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Taxonomy_Mappings

CWE-805: Buffer Access with Incorrect Length Value

Weakness ID: 805
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product uses a sequential operation to read or write a buffer, but it uses an incorrect length value that causes it to access memory that is outside of the bounds of the buffer.
+ Extended Description
When the length value exceeds the size of the destination, a buffer overflow could occur.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Integrity
Confidentiality
Availability

Technical Impact: Read Memory; Modify Memory; Execute Unauthorized Code or Commands

Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope of a program's implicit security policy. This can often be used to subvert any other security service.
Availability

Technical Impact: Modify Memory; DoS: Crash, Exit, or Restart; DoS: Resource Consumption (CPU)

Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are possible, including putting the program into an infinite loop.
+ Potential Mitigations

Phase: Requirements

Strategy: Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

Phase: Architecture and Design

Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

Note: This is not a complete solution, since many buffer overflows are not related to strings.

Phases: Operation; Build and Compilation

Strategy: Environment Hardening

Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

Effectiveness: Defense in Depth

Note:

This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.

Phase: Implementation

Consider adhering to the following rules when allocating and managing an application's memory:

  • Double check that the buffer is as large as specified.
  • When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
  • Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
  • If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.

Phases: Operation; Build and Compilation

Strategy: Environment Hardening

Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

Effectiveness: Defense in Depth

Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333].

Phase: Operation

Strategy: Environment Hardening

Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

Effectiveness: Defense in Depth

Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.

Phases: Architecture and Design; Operation

Strategy: Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the product or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations.

Phases: Architecture and Design; Operation

Strategy: Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between the process and the operating system. This may effectively restrict which files can be accessed in a particular directory or which commands can be executed by the software.

OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some protection. For example, java.io.FilePermission in the Java SecurityManager allows the software to specify restrictions on file operations.

This may not be a feasible solution, and it only limits the impact to the operating system; the rest of the application may still be subject to compromise.

Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness: Limited

Note: The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox or jail being used and might only help to reduce the scope of an attack, such as restricting the attacker to certain system calls or limiting the portion of the file system that can be accessed.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 119 Improper Restriction of Operations within the Bounds of a Memory Buffer
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 806 Buffer Access Using Size of Source Buffer
CanFollow Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 130 Improper Handling of Length Parameter Inconsistency
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1218 Memory Buffer Errors
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 119 Improper Restriction of Operations within the Bounds of a Memory Buffer
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 119 Improper Restriction of Operations within the Bounds of a Memory Buffer
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

C (Often Prevalent)

C++ (Often Prevalent)

Class: Assembly (Undetermined Prevalence)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

This example takes an IP address from a user, verifies that it is well formed and then looks up the hostname and copies it into a buffer.

(bad code)
Example Language:
void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);

/*routine that ensures user_supplied_addr is in the right format for conversion */

validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr( addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);
}

This function allocates a buffer of 64 bytes to store the hostname under the assumption that the maximum length value of hostname is 64 bytes, however there is no guarantee that the hostname will not be larger than 64 bytes. If an attacker specifies an address which resolves to a very large hostname, then the function may overwrite sensitive data or even relinquish control flow to the attacker.

Note that this example also contains an unchecked return value (CWE-252) that can lead to a NULL pointer dereference (CWE-476).


Example 2

In the following example, it is possible to request that memcpy move a much larger segment of memory than assumed:

(bad code)
Example Language:
int returnChunkSize(void *) {

/* if chunk info is valid, return the size of usable memory,

* else, return -1 to indicate an error

*/
...
}
int main() {
...
memcpy(destBuf, srcBuf, (returnChunkSize(destBuf)-1));
...
}

If returnChunkSize() happens to encounter an error it will return -1. Notice that the return value is not checked before the memcpy operation (CWE-252), so -1 can be passed as the size argument to memcpy() (CWE-805). Because memcpy() assumes that the value is unsigned, it will be interpreted as MAXINT-1 (CWE-195), and therefore will copy far more memory than is likely available to the destination buffer (CWE-787, CWE-788).


Example 3

In the following example, the source character string is copied to the dest character string using the method strncpy.

(bad code)
Example Language:
...
char source[21] = "the character string";
char dest[12];
strncpy(dest, source, sizeof(source)-1);
...

However, in the call to strncpy the source character string is used within the sizeof call to determine the number of characters to copy. This will create a buffer overflow as the size of the source character string is greater than the dest character string. The dest character string should be used within the sizeof call to ensure that the correct number of characters are copied, as shown below.

(good code)
Example Language:
...
char source[21] = "the character string";
char dest[12];
strncpy(dest, source, sizeof(dest)-1);
...

Example 4

In this example, the method outputFilenameToLog outputs a filename to a log file. The method arguments include a pointer to a character string containing the file name and an integer for the number of characters in the string. The filename is copied to a buffer where the buffer size is set to a maximum size for inputs to the log file. The method then calls another method to save the contents of the buffer to the log file.

(bad code)
Example Language:
#define LOG_INPUT_SIZE 40

// saves the file name to a log file
int outputFilenameToLog(char *filename, int length) {
int success;

// buffer with size set to maximum size for input to log file
char buf[LOG_INPUT_SIZE];

// copy filename to buffer
strncpy(buf, filename, length);

// save to log file
success = saveToLogFile(buf);

return success;
}

However, in this case the string copy method, strncpy, mistakenly uses the length method argument to determine the number of characters to copy rather than using the size of the local character string, buf. This can lead to a buffer overflow if the number of characters contained in character string pointed to by filename is larger then the number of characters allowed for the local character string. The string copy method should use the buf character string within a sizeof call to ensure that only characters up to the size of the buf array are copied to avoid a buffer overflow, as shown below.

(good code)
Example Language:
...
// copy filename to buffer
strncpy(buf, filename, sizeof(buf)-1);
...

Example 5

Windows provides the MultiByteToWideChar(), WideCharToMultiByte(), UnicodeToBytes(), and BytesToUnicode() functions to convert between arbitrary multibyte (usually ANSI) character strings and Unicode (wide character) strings. The size arguments to these functions are specified in different units, (one in bytes, the other in characters) making their use prone to error.

In a multibyte character string, each character occupies a varying number of bytes, and therefore the size of such strings is most easily specified as a total number of bytes. In Unicode, however, characters are always a fixed size, and string lengths are typically given by the number of characters they contain. Mistakenly specifying the wrong units in a size argument can lead to a buffer overflow.

The following function takes a username specified as a multibyte string and a pointer to a structure for user information and populates the structure with information about the specified user. Since Windows authentication uses Unicode for usernames, the username argument is first converted from a multibyte string to a Unicode string.

(bad code)
Example Language:
void getUserInfo(char *username, struct _USER_INFO_2 info){
WCHAR unicodeUser[UNLEN+1];
MultiByteToWideChar(CP_ACP, 0, username, -1, unicodeUser, sizeof(unicodeUser));
NetUserGetInfo(NULL, unicodeUser, 2, (LPBYTE *)&info);
}

This function incorrectly passes the size of unicodeUser in bytes instead of characters. The call to MultiByteToWideChar() can therefore write up to (UNLEN+1)*sizeof(WCHAR) wide characters, or (UNLEN+1)*sizeof(WCHAR)*sizeof(WCHAR) bytes, to the unicodeUser array, which has only (UNLEN+1)*sizeof(WCHAR) bytes allocated.

If the username string contains more than UNLEN characters, the call to MultiByteToWideChar() will overflow the buffer unicodeUser.


+ Observed Examples
Reference Description
Chain: large length value causes buffer over-read (CWE-126)
Use of packet length field to make a calculation, then copy into a fixed-size buffer
Chain: retrieval of length value from an uninitialized memory location
Crafted length value in document reader leads to buffer overflow
SSL server overflow when the sum of multiple length fields exceeds a given value
Language interpreter API function doesn't validate length argument, leading to information exposure
+ Weakness Ordinalities
Ordinality Description
Resultant
(where the weakness is typically related to the presence of some other weaknesses)
Primary
(where the weakness exists independent of other weaknesses)
+ Detection Methods

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools use data flow analysis or constraint-based techniques to minimize the number of false positives.

Automated static analysis generally does not account for environmental considerations when reporting out-of-bounds memory operations. This can make it difficult for users to determine which warnings should be investigated first. For example, an analysis tool might report buffer overflows that originate from command line arguments in a program that is not expected to run with setuid or other special privileges.

Effectiveness: High

Note: Detection techniques for buffer-related errors are more mature than for most other weakness types.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the product using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The product's operation may slow down, but it should not become unstable, crash, or generate incorrect results.

Effectiveness: Moderate

Note: Without visibility into the code, black box methods may not be able to sufficiently distinguish this weakness from others, requiring manual methods to diagnose the underlying problem.

Manual Analysis

Manual analysis can be useful for finding this weakness, but it might not achieve desired code coverage within limited time constraints. This becomes difficult for weaknesses that must be considered for all inputs, since the attack surface can be too large.
+ Affected Resources
  • Memory
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 740 CERT C Secure Coding Standard (2008) Chapter 7 - Arrays (ARR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 802 2010 Top 25 - Risky Resource Management
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 867 2011 Top 25 - Weaknesses On the Cusp
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 874 CERT C++ Secure Coding Section 06 - Arrays and the STL (ARR)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1160 SEI CERT C Coding Standard - Guidelines 06. Arrays (ARR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1399 Comprehensive Categorization: Memory Safety
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding ARR38-C Imprecise Guarantee that library functions do not form invalid pointers
+ References
[REF-7] Michael Howard and David LeBlanc. "Writing Secure Code". Chapter 6, "Why ACLs Are Important" Page 171. 2nd Edition. Microsoft Press. 2002-12-04. <https://www.microsoftpressstore.com/store/writing-secure-code-9780735617223>.
[REF-58] Michael Howard. "Address Space Layout Randomization in Windows Vista". <https://learn.microsoft.com/en-us/archive/blogs/michael_howard/address-space-layout-randomization-in-windows-vista>. URL validated: 2023-04-07.
[REF-59] Arjan van de Ven. "Limiting buffer overflows with ExecShield". <https://archive.is/saAFo>. URL validated: 2023-04-07.
[REF-60] "PaX". <https://en.wikipedia.org/wiki/Executable_space_protection#PaX>. URL validated: 2023-04-07.
[REF-741] Jason Lam. "Top 25 Series - Rank 12 - Buffer Access with Incorrect Length Value". SANS Software Security Institute. 2010-03-11. <https://web.archive.org/web/20100316043717/http://blogs.sans.org:80/appsecstreetfighter/2010/03/11/top-25-series-rank-12-buffer-access-with-incorrect-length-value/>. URL validated: 2023-04-07.
[REF-57] Matt Messier and John Viega. "Safe C String Library v1.0.3". <http://www.gnu-darwin.org/www001/ports-1.5a-CURRENT/devel/safestr/work/safestr-1.0.3/doc/safestr.html>. URL validated: 2023-04-07.
[REF-56] Microsoft. "Using the Strsafe.h Functions". <https://learn.microsoft.com/en-us/windows/win32/menurc/strsafe-ovw?redirectedfrom=MSDN>. URL validated: 2023-04-07.
[REF-61] Microsoft. "Understanding DEP as a mitigation technology part 1". <https://msrc.microsoft.com/blog/2009/06/understanding-dep-as-a-mitigation-technology-part-1/>. URL validated: 2023-04-07.
[REF-76] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. <https://web.archive.org/web/20211209014121/https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/least-privilege>. URL validated: 2023-04-07.
[REF-64] Grant Murphy. "Position Independent Executables (PIE)". Red Hat. 2012-11-28. <https://www.redhat.com/en/blog/position-independent-executables-pie>. URL validated: 2023-04-07.
[REF-1332] John Richard Moser. "Prelink and address space randomization". 2006-07-05. <https://lwn.net/Articles/190139/>. URL validated: 2023-04-26.
[REF-1333] Dmitry Evtyushkin, Dmitry Ponomarev, Nael Abu-Ghazaleh. "Jump Over ASLR: Attacking Branch Predictors to Bypass ASLR". 2016. <http://www.cs.ucr.edu/~nael/pubs/micro16.pdf>. URL validated: 2023-04-26.
[REF-1334] D3FEND. "Stack Frame Canary Validation (D3-SFCV)". 2023. <https://d3fend.mitre.org/technique/d3f:StackFrameCanaryValidation/>. URL validated: 2023-04-26.
[REF-1335] D3FEND. "Segment Address Offset Randomization (D3-SAOR)". 2023. <https://d3fend.mitre.org/technique/d3f:SegmentAddressOffsetRandomization/>. URL validated: 2023-04-26.
[REF-1336] D3FEND. "Process Segment Execution Prevention (D3-PSEP)". 2023. <https://d3fend.mitre.org/technique/d3f:ProcessSegmentExecutionPrevention/>. URL validated: 2023-04-26.
[REF-1337] Alexander Sotirov and Mark Dowd. "Bypassing Browser Memory Protections: Setting back browser security by 10 years". Memory information leaks. 2008. <https://www.blackhat.com/presentations/bh-usa-08/Sotirov_Dowd/bh08-sotirov-dowd.pdf>. URL validated: 2023-04-26.
+ Content History
+ Submissions
Submission Date Submitter Organization
2010-01-15
(CWE 1.8, 2010-02-16)
CWE Content Team MITRE
+ Modifications
Modification Date Modifier Organization
2010-04-05 CWE Content Team MITRE
updated Related_Attack_Patterns
2010-06-21 CWE Content Team MITRE
updated Common_Consequences, Potential_Mitigations, References
2010-09-27 CWE Content Team MITRE
updated Potential_Mitigations
2010-12-13 CWE Content Team MITRE
updated Potential_Mitigations
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2011-06-27 CWE Content Team MITRE
updated Demonstrative_Examples, Observed_Examples, Relationships
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-05-11 CWE Content Team MITRE
updated Potential_Mitigations, References, Relationships
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2014-02-18 CWE Content Team MITRE
updated Potential_Mitigations, References
2014-06-23 CWE Content Team MITRE
updated Demonstrative_Examples
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Causal_Nature, Demonstrative_Examples, Likelihood_of_Exploit, References, Taxonomy_Mappings
2018-03-27 CWE Content Team MITRE
updated References
2019-01-03 CWE Content Team MITRE
updated Relationships
2019-06-20 CWE Content Team MITRE
updated Related_Attack_Patterns
2020-02-24 CWE Content Team MITRE
updated Relationships
2020-06-25 CWE Content Team MITRE
updated Common_Consequences
2020-08-20 CWE Content Team MITRE
updated Relationships
2020-12-10 CWE Content Team MITRE
updated Relationships
2021-07-20 CWE Content Team MITRE
updated Demonstrative_Examples, Potential_Mitigations
2022-10-13 CWE Content Team MITRE
updated References
2023-01-31 CWE Content Team MITRE
updated Description, Detection_Factors, Potential_Mitigations
2023-04-27 CWE Content Team MITRE
updated Potential_Mitigations, References, Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Demonstrative_Examples

CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

Weakness ID: 120
Vulnerability Mapping: ALLOWED This CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review (with careful review of mapping notes)
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product copies an input buffer to an output buffer without verifying that the size of the input buffer is less than the size of the output buffer, leading to a buffer overflow.
+ Extended Description
A buffer overflow condition exists when a product attempts to put more data in a buffer than it can hold, or when it attempts to put data in a memory area outside of the boundaries of a buffer. The simplest type of error, and the most common cause of buffer overflows, is the "classic" case in which the product copies the buffer without restricting how much is copied. Other variants exist, but the existence of a classic overflow strongly suggests that the programmer is not considering even the most basic of security protections.
+ Alternate Terms
Classic Buffer Overflow:
This term was frequently used by vulnerability researchers during approximately 1995 to 2005 to differentiate buffer copies without length checks (which had been known about for decades) from other emerging weaknesses that still involved invalid accesses of buffers, as vulnerability researchers began to develop advanced exploitation techniques.
Unbounded Transfer
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Integrity
Confidentiality
Availability

Technical Impact: Modify Memory; Execute Unauthorized Code or Commands

Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope of the product's implicit security policy. This can often be used to subvert any other security service.
Availability

Technical Impact: Modify Memory; DoS: Crash, Exit, or Restart; DoS: Resource Consumption (CPU)

Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are possible, including putting the product into an infinite loop.
+ Potential Mitigations

Phase: Requirements

Strategy: Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

Phase: Architecture and Design

Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

Note: This is not a complete solution, since many buffer overflows are not related to strings.

Phases: Operation; Build and Compilation

Strategy: Environment Hardening

Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

Effectiveness: Defense in Depth

Note:

This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.

Phase: Implementation

Consider adhering to the following rules when allocating and managing an application's memory:

  • Double check that your buffer is as large as you specify.
  • When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
  • Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
  • If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.

Phase: Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.

Phases: Operation; Build and Compilation

Strategy: Environment Hardening

Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

Effectiveness: Defense in Depth

Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]

Phase: Operation

Strategy: Environment Hardening

Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

Effectiveness: Defense in Depth

Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.

Phases: Build and Compilation; Operation

Most mitigating technologies at the compiler or OS level to date address only a subset of buffer overflow problems and rarely provide complete protection against even that subset. It is good practice to implement strategies to increase the workload of an attacker, such as leaving the attacker to guess an unknown value that changes every program execution.

Phase: Implementation

Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.

Effectiveness: Moderate

Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).

Phase: Architecture and Design

Strategy: Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs, and reject all other inputs.

Phases: Architecture and Design; Operation

Strategy: Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations.

Phases: Architecture and Design; Operation

Strategy: Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between the process and the operating system. This may effectively restrict which files can be accessed in a particular directory or which commands can be executed by the software.

OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some protection. For example, java.io.FilePermission in the Java SecurityManager allows the software to specify restrictions on file operations.

This may not be a feasible solution, and it only limits the impact to the operating system; the rest of the application may still be subject to compromise.

Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness: Limited

Note: The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox or jail being used and might only help to reduce the scope of an attack, such as restricting the attacker to certain system calls or limiting the portion of the file system that can be accessed.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 119 Improper Restriction of Operations within the Bounds of a Memory Buffer
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 785 Use of Path Manipulation Function without Maximum-sized Buffer
CanFollow Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 170 Improper Null Termination
CanFollow Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 231 Improper Handling of Extra Values
CanFollow Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 416 Use After Free
CanFollow Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 456 Missing Initialization of a Variable
CanPrecede Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 123 Write-what-where Condition
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1218 Memory Buffer Errors
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 119 Improper Restriction of Operations within the Bounds of a Memory Buffer
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 119 Improper Restriction of Operations within the Bounds of a Memory Buffer
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 119 Improper Restriction of Operations within the Bounds of a Memory Buffer
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 20 Improper Input Validation
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

C (Undetermined Prevalence)

C++ (Undetermined Prevalence)

Class: Assembly (Undetermined Prevalence)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

The following code asks the user to enter their last name and then attempts to store the value entered in the last_name array.

(bad code)
Example Language:
char last_name[20];
printf ("Enter your last name: ");
scanf ("%s", last_name);

The problem with the code above is that it does not restrict or limit the size of the name entered by the user. If the user enters "Very_very_long_last_name" which is 24 characters long, then a buffer overflow will occur since the array can only hold 20 characters total.


Example 2

The following code attempts to create a local copy of a buffer to perform some manipulations to the data.

(bad code)
Example Language:
void manipulate_string(char * string){
char buf[24];
strcpy(buf, string);
...
}

However, the programmer does not ensure that the size of the data pointed to by string will fit in the local buffer and copies the data with the potentially dangerous strcpy() function. This may result in a buffer overflow condition if an attacker can influence the contents of the string parameter.


Example 3

The code below calls the gets() function to read in data from the command line.

(bad code)
Example Language:
char buf[24];
printf("Please enter your name and press <Enter>\n");
gets(buf);
...
}

However, gets() is inherently unsafe, because it copies all input from STDIN to the buffer without checking size. This allows the user to provide a string that is larger than the buffer size, resulting in an overflow condition.


Example 4

In the following example, a server accepts connections from a client and processes the client request. After accepting a client connection, the program will obtain client information using the gethostbyaddr method, copy the hostname of the client that connected to a local variable and output the hostname of the client to a log file.

(bad code)
Example Language:
...
struct hostent *clienthp;
char hostname[MAX_LEN];

// create server socket, bind to server address and listen on socket
...

// accept client connections and process requests
int count = 0;
for (count = 0; count < MAX_CONNECTIONS; count++) {

int clientlen = sizeof(struct sockaddr_in);
int clientsocket = accept(serversocket, (struct sockaddr *)&clientaddr, &clientlen);

if (clientsocket >= 0) {
clienthp = gethostbyaddr((char*) &clientaddr.sin_addr.s_addr, sizeof(clientaddr.sin_addr.s_addr), AF_INET);
strcpy(hostname, clienthp->h_name);
logOutput("Accepted client connection from host ", hostname);

// process client request
...
close(clientsocket);
}
}
close(serversocket);

...

However, the hostname of the client that connected may be longer than the allocated size for the local hostname variable. This will result in a buffer overflow when copying the client hostname to the local variable using the strcpy method.


+ Observed Examples
Reference Description
buffer overflow using command with long argument
buffer overflow in local program using long environment variable
buffer overflow in comment characters, when product increments a counter for a ">" but does not decrement for "<"
By replacing a valid cookie value with an extremely long string of characters, an attacker may overflow the application's buffers.
By replacing a valid cookie value with an extremely long string of characters, an attacker may overflow the application's buffers.
+ Weakness Ordinalities
Ordinality Description
Resultant
(where the weakness is typically related to the presence of some other weaknesses)
Primary
(where the weakness exists independent of other weaknesses)
+ Detection Methods

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools use data flow analysis or constraint-based techniques to minimize the number of false positives.

Automated static analysis generally does not account for environmental considerations when reporting out-of-bounds memory operations. This can make it difficult for users to determine which warnings should be investigated first. For example, an analysis tool might report buffer overflows that originate from command line arguments in a program that is not expected to run with setuid or other special privileges.

Effectiveness: High

Note: Detection techniques for buffer-related errors are more mature than for most other weakness types.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the software using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The software's operation may slow down, but it should not become unstable, crash, or generate incorrect results.

Manual Analysis

Manual analysis can be useful for finding this weakness, but it might not achieve desired code coverage within limited time constraints. This becomes difficult for weaknesses that must be considered for all inputs, since the attack surface can be too large.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Bytecode Weakness Analysis - including disassembler + source code weakness analysis
  • Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness: High

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Binary / Bytecode disassembler - then use manual analysis for vulnerabilities & anomalies

Effectiveness: SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Web Application Scanner
  • Web Services Scanner
  • Database Scanners

Effectiveness: SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Fuzz Tester
  • Framework-based Fuzzer

Effectiveness: SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Focused Manual Spotcheck - Focused manual analysis of source
  • Manual Source Code Review (not inspections)

Effectiveness: SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Source code Weakness Analyzer
  • Context-configured Source Code Weakness Analyzer

Effectiveness: High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Formal Methods / Correct-By-Construction
Cost effective for partial coverage:
  • Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness: High

+ Functional Areas
  • Memory Management
+ Affected Resources
  • Memory
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 726 OWASP Top Ten 2004 Category A5 - Buffer Overflows
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 741 CERT C Secure Coding Standard (2008) Chapter 8 - Characters and Strings (STR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 802 2010 Top 25 - Risky Resource Management
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 865 2011 Top 25 - Risky Resource Management
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 875 CERT C++ Secure Coding Section 07 - Characters and Strings (STR)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 970 SFP Secondary Cluster: Faulty Buffer Access
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1129 CISQ Quality Measures (2016) - Reliability
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1131 CISQ Quality Measures (2016) - Security
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1161 SEI CERT C Coding Standard - Guidelines 07. Characters and Strings (STR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1399 Comprehensive Categorization: Memory Safety
+ Vulnerability Mapping Notes

Usage: ALLOWED-WITH-REVIEW

(this CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review)

Reason: Frequent Misuse

Rationale:

There are some indications that this CWE ID might be misused and selected simply because it mentions "buffer overflow" - an increasingly vague term. This CWE entry is only appropriate for "Buffer Copy" operations (not buffer reads), in which where there is no "Checking [the] Size of Input", and (by implication of the copy) writing past the end of the buffer.

Comments:

If the vulnerability being analyzed involves out-of-bounds reads, then consider CWE-125 or descendants. For root cause analysis: if there is any input validation, consider children of CWE-20 such as CWE-1284. If there is a calculation error for buffer sizes, consider CWE-131 or similar.
+ Notes

Relationship

At the code level, stack-based and heap-based overflows do not differ significantly, so there usually is not a need to distinguish them. From the attacker perspective, they can be quite different, since different techniques are required to exploit them.

Terminology

Many issues that are now called "buffer overflows" are substantively different than the "classic" overflow, including entirely different bug types that rely on overflow exploit techniques, such as integer signedness errors, integer overflows, and format string bugs. This imprecise terminology can make it difficult to determine which variant is being reported.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unbounded Transfer ('classic overflow')
7 Pernicious Kingdoms Buffer Overflow
CLASP Buffer overflow
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
OWASP Top Ten 2004 A5 CWE More Specific Buffer Overflows
CERT C Secure Coding STR31-C Exact Guarantee that storage for strings has sufficient space for character data and the null terminator
WASC 7 Buffer Overflow
Software Fault Patterns SFP8 Faulty Buffer Access
OMG ASCSM ASCSM-CWE-120
OMG ASCRM ASCRM-CWE-120
+ References
[REF-7] Michael Howard and David LeBlanc. "Writing Secure Code". Chapter 5, "Public Enemy #1: The Buffer Overrun" Page 127. 2nd Edition. Microsoft Press. 2002-12-04. <https://www.microsoftpressstore.com/store/writing-secure-code-9780735617223>.
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 5: Buffer Overruns." Page 89. McGraw-Hill. 2010.
[REF-56] Microsoft. "Using the Strsafe.h Functions". <https://learn.microsoft.com/en-us/windows/win32/menurc/strsafe-ovw?redirectedfrom=MSDN>. URL validated: 2023-04-07.
[REF-57] Matt Messier and John Viega. "Safe C String Library v1.0.3". <http://www.gnu-darwin.org/www001/ports-1.5a-CURRENT/devel/safestr/work/safestr-1.0.3/doc/safestr.html>. URL validated: 2023-04-07.
[REF-58] Michael Howard. "Address Space Layout Randomization in Windows Vista". <https://learn.microsoft.com/en-us/archive/blogs/michael_howard/address-space-layout-randomization-in-windows-vista>. URL validated: 2023-04-07.
[REF-59] Arjan van de Ven. "Limiting buffer overflows with ExecShield". <https://archive.is/saAFo>. URL validated: 2023-04-07.
[REF-60] "PaX". <https://en.wikipedia.org/wiki/Executable_space_protection#PaX>. URL validated: 2023-04-07.
[REF-74] Jason Lam. "Top 25 Series - Rank 3 - Classic Buffer Overflow". SANS Software Security Institute. 2010-03-02. <http://software-security.sans.org/blog/2010/03/02/top-25-series-rank-3-classic-buffer-overflow/>.
[REF-61] Microsoft. "Understanding DEP as a mitigation technology part 1". <https://msrc.microsoft.com/blog/2009/06/understanding-dep-as-a-mitigation-technology-part-1/>. URL validated: 2023-04-07.
[REF-76] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. <https://web.archive.org/web/20211209014121/https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/least-privilege>. URL validated: 2023-04-07.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 3, "Nonexecutable Stack", Page 76. 1st Edition. Addison Wesley. 2006.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 5, "Protection Mechanisms", Page 189. 1st Edition. Addison Wesley. 2006.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 8, "C String Handling", Page 388. 1st Edition. Addison Wesley. 2006.
[REF-64] Grant Murphy. "Position Independent Executables (PIE)". Red Hat. 2012-11-28. <https://www.redhat.com/en/blog/position-independent-executables-pie>. URL validated: 2023-04-07.
[REF-961] Object Management Group (OMG). "Automated Source Code Reliability Measure (ASCRM)". ASCRM-CWE-120. 2016-01. <http://www.omg.org/spec/ASCRM/1.0/>.
[REF-962] Object Management Group (OMG). "Automated Source Code Security Measure (ASCSM)". ASCSM-CWE-120. 2016-01. <http://www.omg.org/spec/ASCSM/1.0/>.
[REF-1332] John Richard Moser. "Prelink and address space randomization". 2006-07-05. <https://lwn.net/Articles/190139/>. URL validated: 2023-04-26.
[REF-1333] Dmitry Evtyushkin, Dmitry Ponomarev, Nael Abu-Ghazaleh. "Jump Over ASLR: Attacking Branch Predictors to Bypass ASLR". 2016. <http://www.cs.ucr.edu/~nael/pubs/micro16.pdf>. URL validated: 2023-04-26.
[REF-1334] D3FEND. "Stack Frame Canary Validation (D3-SFCV)". 2023. <https://d3fend.mitre.org/technique/d3f:StackFrameCanaryValidation/>. URL validated: 2023-04-26.
[REF-1335] D3FEND. "Segment Address Offset Randomization (D3-SAOR)". 2023. <https://d3fend.mitre.org/technique/d3f:SegmentAddressOffsetRandomization/>. URL validated: 2023-04-26.
[REF-1336] D3FEND. "Process Segment Execution Prevention (D3-PSEP)". 2023. <https://d3fend.mitre.org/technique/d3f:ProcessSegmentExecutionPrevention/>. URL validated: 2023-04-26.
[REF-1337] Alexander Sotirov and Mark Dowd. "Bypassing Browser Memory Protections: Setting back browser security by 10 years". Memory information leaks. 2008. <https://www.blackhat.com/presentations/bh-usa-08/Sotirov_Dowd/bh08-sotirov-dowd.pdf>. URL validated: 2023-04-26.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-08-01 KDM Analytics
added/updated white box definitions
2008-08-15 Veracode
Suggested OWASP Top Ten 2004 mapping
2008-09-08 CWE Content Team MITRE
updated Alternate_Terms, Applicable_Platforms, Common_Consequences, Relationships, Observed_Example, Other_Notes, Taxonomy_Mappings, Weakness_Ordinalities
2008-10-10 CWE Content Team MITRE
Changed name and description to more clearly emphasize the "classic" nature of the overflow.
2008-10-14 CWE Content Team MITRE
updated Alternate_Terms, Description, Name, Other_Notes, Terminology_Notes
2008-11-24 CWE Content Team MITRE
updated Other_Notes, Relationships, Taxonomy_Mappings
2009-01-12 CWE Content Team MITRE
updated Common_Consequences, Other_Notes, Potential_Mitigations, References, Relationship_Notes, Relationships
2009-07-27 CWE Content Team MITRE
updated Other_Notes, Potential_Mitigations, Relationships
2009-10-29 CWE Content Team MITRE
updated Common_Consequences, Relationships
2010-02-16 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Demonstrative_Examples, Detection_Factors, Potential_Mitigations, References, Related_Attack_Patterns, Relationships, Taxonomy_Mappings, Time_of_Introduction, Type
2010-04-05 CWE Content Team MITRE
updated Demonstrative_Examples, Related_Attack_Patterns
2010-06-21 CWE Content Team MITRE
updated Common_Consequences, Potential_Mitigations, References
2010-09-27 CWE Content Team MITRE
updated Potential_Mitigations
2010-12-13 CWE Content Team MITRE
updated Potential_Mitigations
2011-03-29 CWE Content Team MITRE
updated Demonstrative_Examples, Description
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2011-06-27 CWE Content Team MITRE
updated Relationships
2011-09-13 CWE Content Team MITRE
updated Potential_Mitigations, References, Relationships, Taxonomy_Mappings
2012-05-11 CWE Content Team MITRE
updated References, Relationships
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2014-02-18 CWE Content Team MITRE
updated Potential_Mitigations, References
2014-07-30 CWE Content Team MITRE
updated Detection_Factors, Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Causal_Nature, Demonstrative_Examples, Likelihood_of_Exploit, References, Relationships, Taxonomy_Mappings, White_Box_Definitions
2018-03-27 CWE Content Team MITRE
updated References
2019-01-03 CWE Content Team MITRE
updated References, Relationships, Taxonomy_Mappings
2019-06-20 CWE Content Team MITRE
updated Relationships
2020-02-24 CWE Content Team MITRE
updated Potential_Mitigations, Relationships
2020-06-25 CWE Content Team MITRE
updated Common_Consequences, Potential_Mitigations
2020-08-20 CWE Content Team MITRE
updated Alternate_Terms, Relationships
2020-12-10 CWE Content Team MITRE
updated Demonstrative_Examples, Relationships
2021-03-15 CWE Content Team MITRE
updated Demonstrative_Examples
2021-07-20 CWE Content Team MITRE
updated Potential_Mitigations
2022-10-13 CWE Content Team MITRE
updated References
2023-01-31 CWE Content Team MITRE
updated Common_Consequences, Description
2023-04-27 CWE Content Team MITRE
updated Potential_Mitigations, References, Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
+ Previous Entry Names
Change Date Previous Entry Name
2008-10-14 Unbounded Transfer ('Classic Buffer Overflow')

CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')

Weakness ID: 362
Vulnerability Mapping: ALLOWED This CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review (with careful review of mapping notes)
Abstraction: Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently. Diagram for CWE-362
+ Extended Description

A race condition occurs within concurrent environments, and it is effectively a property of a code sequence. Depending on the context, a code sequence may be in the form of a function call, a small number of instructions, a series of program invocations, etc.

A race condition violates these properties, which are closely related:

  • Exclusivity - the code sequence is given exclusive access to the shared resource, i.e., no other code sequence can modify properties of the shared resource before the original sequence has completed execution.
  • Atomicity - the code sequence is behaviorally atomic, i.e., no other thread or process can concurrently execute the same sequence of instructions (or a subset) against the same resource.

A race condition exists when an "interfering code sequence" can still access the shared resource, violating exclusivity.

The interfering code sequence could be "trusted" or "untrusted." A trusted interfering code sequence occurs within the product; it cannot be modified by the attacker, and it can only be invoked indirectly. An untrusted interfering code sequence can be authored directly by the attacker, and typically it is external to the vulnerable product.

+ Alternate Terms
Race Condition
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Availability

Technical Impact: DoS: Resource Consumption (CPU); DoS: Resource Consumption (Memory); DoS: Resource Consumption (Other)

When a race condition makes it possible to bypass a resource cleanup routine or trigger multiple initialization routines, it may lead to resource exhaustion.
Availability

Technical Impact: DoS: Crash, Exit, or Restart; DoS: Instability

When a race condition allows multiple control flows to access a resource simultaneously, it might lead the product(s) into unexpected states, possibly resulting in a crash.
Confidentiality
Integrity

Technical Impact: Read Files or Directories; Read Application Data

When a race condition is combined with predictable resource names and loose permissions, it may be possible for an attacker to overwrite or access confidential data (CWE-59).
Access Control

Technical Impact: Execute Unauthorized Code or Commands; Gain Privileges or Assume Identity; Bypass Protection Mechanism

This can have security implications when the expected synchronization is in security-critical code, such as recording whether a user is authenticated or modifying important state information that should not be influenced by an outsider.
+ Potential Mitigations

Phase: Architecture and Design

In languages that support it, use synchronization primitives. Only wrap these around critical code to minimize the impact on performance.

Phase: Architecture and Design

Use thread-safe capabilities such as the data access abstraction in Spring.

Phase: Architecture and Design

Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring.

Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400).

Phase: Implementation

When using multithreading and operating on shared variables, only use thread-safe functions.

Phase: Implementation

Use atomic operations on shared variables. Be wary of innocent-looking constructs such as "x++". This may appear atomic at the code layer, but it is actually non-atomic at the instruction layer, since it involves a read, followed by a computation, followed by a write.

Phase: Implementation

Use a mutex if available, but be sure to avoid related weaknesses such as CWE-412.

Phase: Implementation

Avoid double-checked locking (CWE-609) and other implementation errors that arise when trying to avoid the overhead of synchronization.

Phase: Implementation

Disable interrupts or signals over critical parts of the code, but also make sure that the code does not go into a large or infinite loop.

Phase: Implementation

Use the volatile type modifier for critical variables to avoid unexpected compiler optimization or reordering. This does not necessarily solve the synchronization problem, but it can help.

Phases: Architecture and Design; Operation

Strategy: Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 691 Insufficient Control Flow Management
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 364 Signal Handler Race Condition
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 366 Race Condition within a Thread
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 367 Time-of-check Time-of-use (TOCTOU) Race Condition
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 368 Context Switching Race Condition
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 421 Race Condition During Access to Alternate Channel
ParentOf Composite Composite - a Compound Element that consists of two or more distinct weaknesses, in which all weaknesses must be present at the same time in order for a potential vulnerability to arise. Removing any of the weaknesses eliminates or sharply reduces the risk. One weakness, X, can be "broken down" into component weaknesses Y and Z. There can be cases in which one weakness might not be essential to a composite, but changes the nature of the composite when it becomes a vulnerability. 689 Permission Race Condition During Resource Copy
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1223 Race Condition for Write-Once Attributes
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1298 Hardware Logic Contains Race Conditions
CanFollow Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 662 Improper Synchronization
CanPrecede Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 416 Use After Free
CanPrecede Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 476 NULL Pointer Dereference
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Nature Type ID Name
MemberOf View View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1003 Weaknesses for Simplified Mapping of Published Vulnerabilities
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 367 Time-of-check Time-of-use (TOCTOU) Race Condition
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design
Implementation Programmers may assume that certain code sequences execute too quickly to be affected by an interfering code sequence; when they are not, this violates atomicity. For example, the single "x++" statement may appear atomic at the code layer, but it is actually non-atomic at the instruction layer, since it involves a read (the original value of x), followed by a computation (x+1), followed by a write (save the result to x).
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

C (Sometimes Prevalent)

C++ (Sometimes Prevalent)

Java (Sometimes Prevalent)

Technologies

Class: Mobile (Undetermined Prevalence)

Class: ICS/OT (Undetermined Prevalence)

+ Likelihood Of Exploit
Medium
+ Demonstrative Examples

Example 1

This code could be used in an e-commerce application that supports transfers between accounts. It takes the total amount of the transfer, sends it to the new account, and deducts the amount from the original account.

(bad code)
Example Language: Perl 
$transfer_amount = GetTransferAmount();
$balance = GetBalanceFromDatabase();

if ($transfer_amount < 0) {
FatalError("Bad Transfer Amount");
}
$newbalance = $balance - $transfer_amount;
if (($balance - $transfer_amount) < 0) {
FatalError("Insufficient Funds");
}
SendNewBalanceToDatabase($newbalance);
NotifyUser("Transfer of $transfer_amount succeeded.");
NotifyUser("New balance: $newbalance");

A race condition could occur between the calls to GetBalanceFromDatabase() and SendNewBalanceToDatabase().

Suppose the balance is initially 100.00. An attack could be constructed as follows:

(attack code)
Example Language: Other 
In the following pseudocode, the attacker makes two simultaneous calls of the program, CALLER-1 and CALLER-2. Both callers are for the same user account.
CALLER-1 (the attacker) is associated with PROGRAM-1 (the instance that handles CALLER-1). CALLER-2 is associated with PROGRAM-2.
CALLER-1 makes a transfer request of 80.00.
PROGRAM-1 calls GetBalanceFromDatabase and sets $balance to 100.00
PROGRAM-1 calculates $newbalance as 20.00, then calls SendNewBalanceToDatabase().
Due to high server load, the PROGRAM-1 call to SendNewBalanceToDatabase() encounters a delay.
CALLER-2 makes a transfer request of 1.00.
PROGRAM-2 calls GetBalanceFromDatabase() and sets $balance to 100.00. This happens because the previous PROGRAM-1 request was not processed yet.
PROGRAM-2 determines the new balance as 99.00.
After the initial delay, PROGRAM-1 commits its balance to the database, setting it to 20.00.
PROGRAM-2 sends a request to update the database, setting the balance to 99.00

At this stage, the attacker should have a balance of 19.00 (due to 81.00 worth of transfers), but the balance is 99.00, as recorded in the database.

To prevent this weakness, the programmer has several options, including using a lock to prevent multiple simultaneous requests to the web application, or using a synchronization mechanism that includes all the code between GetBalanceFromDatabase() and SendNewBalanceToDatabase().


Example 2

The following function attempts to acquire a lock in order to perform operations on a shared resource.

(bad code)
Example Language:
void f(pthread_mutex_t *mutex) {
pthread_mutex_lock(mutex);

/* access shared resource */


pthread_mutex_unlock(mutex);
}

However, the code does not check the value returned by pthread_mutex_lock() for errors. If pthread_mutex_lock() cannot acquire the mutex for any reason, the function may introduce a race condition into the program and result in undefined behavior.

In order to avoid data races, correctly written programs must check the result of thread synchronization functions and appropriately handle all errors, either by attempting to recover from them or reporting them to higher levels.

(good code)
Example Language:
int f(pthread_mutex_t *mutex) {
int result;

result = pthread_mutex_lock(mutex);
if (0 != result)
return result;


/* access shared resource */


return pthread_mutex_unlock(mutex);
}

Example 3

Suppose a processor's Memory Management Unit (MMU) has 5 other shadow MMUs to distribute its workload for its various cores. Each MMU has the start address and end address of "accessible" memory. Any time this accessible range changes (as per the processor's boot status), the main MMU sends an update message to all the shadow MMUs.

Suppose the interconnect fabric does not prioritize such "update" packets over other general traffic packets. This introduces a race condition. If an attacker can flood the target with enough messages so that some of those attack packets reach the target before the new access ranges gets updated, then the attacker can leverage this scenario.


+ Observed Examples
Reference Description
Go application for cloud management creates a world-writable sudoers file that allows local attackers to inject sudo rules and escalate privileges to root by winning a race condition.
Chain: improper locking (CWE-667) leads to race condition (CWE-362), as exploited in the wild per CISA KEV.
Chain: mobile platform race condition (CWE-362) leading to use-after-free (CWE-416), as exploited in the wild per CISA KEV.
Chain: race condition (CWE-362) leads to use-after-free (CWE-416), as exploited in the wild per CISA KEV.
chain: JTAG interface is not disabled (CWE-1191) during ROM code execution, introducing a race condition (CWE-362) to extract encryption keys
Chain: race condition (CWE-362) in anti-malware product allows deletion of files by creating a junction (CWE-1386) and using hard links during the time window in which a temporary file is created and deleted.
TOCTOU in sandbox process allows installation of untrusted browser add-ons by replacing a file after it has been verified, but before it is executed
Chain: chipset has a race condition (CWE-362) between when an interrupt handler detects an attempt to write-enable the BIOS (in violation of the lock bit), and when the handler resets the write-enable bit back to 0, allowing attackers to issue BIOS writes during the timing window [REF-1237].
Race condition leading to a crash by calling a hook removal procedure while other activities are occurring at the same time.
chain: time-of-check time-of-use (TOCTOU) race condition in program allows bypass of protection mechanism that was designed to prevent symlink attacks.
chain: time-of-check time-of-use (TOCTOU) race condition in program allows bypass of protection mechanism that was designed to prevent symlink attacks.
Unsynchronized caching operation enables a race condition that causes messages to be sent to a deallocated object.
Race condition during initialization triggers a buffer overflow.
Daemon crash by quickly performing operations and undoing them, which eventually leads to an operation that does not acquire a lock.
chain: race condition triggers NULL pointer dereference
Race condition in library function could cause data to be sent to the wrong process.
Race condition in file parser leads to heap corruption.
chain: race condition allows attacker to access an object while it is still being initialized, causing software to access uninitialized memory.
chain: race condition for an argument value, possibly resulting in NULL dereference
chain: race condition might allow resource to be released before operating on it, leading to NULL dereference
Chain: Signal handler contains too much functionality (CWE-828), introducing a race condition (CWE-362) that leads to a double free (CWE-415).
+ Detection Methods

Black Box

Black box methods may be able to identify evidence of race conditions via methods such as multiple simultaneous connections, which may cause the software to become instable or crash. However, race conditions with very narrow timing windows would not be detectable.

White Box

Common idioms are detectable in white box analysis, such as time-of-check-time-of-use (TOCTOU) file operations (CWE-367), or double-checked locking (CWE-609).

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the software using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The software's operation may slow down, but it should not become unstable, crash, or generate incorrect results.

Race conditions may be detected with a stress-test by calling the software simultaneously from a large number of threads or processes, and look for evidence of any unexpected behavior.

Insert breakpoints or delays in between relevant code statements to artificially expand the race window so that it will be easier to detect.

Effectiveness: Moderate

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Bytecode Weakness Analysis - including disassembler + source code weakness analysis
Cost effective for partial coverage:
  • Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness: High

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Web Application Scanner
  • Web Services Scanner
  • Database Scanners

Effectiveness: SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Framework-based Fuzzer
Cost effective for partial coverage:
  • Fuzz Tester
  • Monitored Virtual Environment - run potentially malicious code in sandbox / wrapper / virtual machine, see if it does anything suspicious

Effectiveness: High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Manual Source Code Review (not inspections)
Cost effective for partial coverage:
  • Focused Manual Spotcheck - Focused manual analysis of source

Effectiveness: High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Source code Weakness Analyzer
  • Context-configured Source Code Weakness Analyzer

Effectiveness: High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Formal Methods / Correct-By-Construction
Cost effective for partial coverage:
  • Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 635 Weaknesses Originally Used by NVD from 2008 to 2016
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 743 CERT C Secure Coding Standard (2008) Chapter 10 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 751 2009 Top 25 - Insecure Interaction Between Components
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 801 2010 Top 25 - Insecure Interaction Between Components
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 852 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 9 - Visibility and Atomicity (VNA)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 867 2011 Top 25 - Weaknesses On the Cusp
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 877 CERT C++ Secure Coding Section 09 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 882 CERT C++ Secure Coding Section 14 - Concurrency (CON)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 988 SFP Secondary Cluster: Race Condition Window
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1142 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity (VNA)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1364 ICS Communications: Zone Boundary Failures
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1365 ICS Communications: Unreliability
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1366 ICS Communications: Frail Security in Protocols
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1376 ICS Engineering (Construction/Deployment): Security Gaps in Commissioning
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous Software Weaknesses
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1401 Comprehensive Categorization: Concurrency
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1425 Weaknesses in the 2023 CWE Top 25 Most Dangerous Software Weaknesses
+ Vulnerability Mapping Notes

Usage: ALLOWED-WITH-REVIEW

(this CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review)

Reason: Abstraction

Rationale:

This CWE entry is a Class and might have Base-level children that would be more appropriate

Comments:

Examine children of this entry to see if there is a better fit
+ Notes

Research Gap

Race conditions in web applications are under-studied and probably under-reported. However, in 2008 there has been growing interest in this area.

Research Gap

Much of the focus of race condition research has been in Time-of-check Time-of-use (TOCTOU) variants (CWE-367), but many race conditions are related to synchronization problems that do not necessarily require a time-of-check.

Research Gap

From a classification/taxonomy perspective, the relationships between concurrency and program state need closer investigation and may be useful in organizing related issues.

Maintenance

The relationship between race conditions and synchronization problems (CWE-662) needs to be further developed. They are not necessarily two perspectives of the same core concept, since synchronization is only one technique for avoiding race conditions, and synchronization can be used for other purposes besides race condition prevention.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Race Conditions
The CERT Oracle Secure Coding Standard for Java (2011) VNA03-J Do not assume that a group of calls to independently atomic methods is atomic
+ References
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 13: Race Conditions." Page 205. McGraw-Hill. 2010.
[REF-349] Andrei Alexandrescu. "volatile - Multithreaded Programmer's Best Friend". Dr. Dobb's. 2008-02-01. <https://drdobbs.com/cpp/volatile-the-multithreaded-programmers-b/184403766>. URL validated: 2023-04-07.
[REF-350] Steven Devijver. "Thread-safe webapps using Spring". <https://web.archive.org/web/20170609174845/http://www.javalobby.org/articles/thread-safe/index.jsp>. URL validated: 2023-04-07.
[REF-351] David Wheeler. "Prevent race conditions". 2007-10-04. <https://www.ida.liu.se/~TDDC90/literature/papers/SP-race-conditions.pdf>. URL validated: 2023-04-07.
[REF-352] Matt Bishop. "Race Conditions, Files, and Security Flaws; or the Tortoise and the Hare Redux". 1995-09. <https://seclab.cs.ucdavis.edu/projects/vulnerabilities/scriv/ucd-ecs-95-08.pdf>. URL validated: 2023-04-07.
[REF-353] David Wheeler. "Secure Programming for Linux and Unix HOWTO". 2003-03-03. <https://dwheeler.com/secure-programs/Secure-Programs-HOWTO/avoid-race.html>. URL validated: 2023-04-07.
[REF-354] Blake Watts. "Discovering and Exploiting Named Pipe Security Flaws for Fun and Profit". 2002-04. <https://www.blakewatts.com/blog/discovering-and-exploiting-named-pipe-security-flaws-for-fun-and-profit>. URL validated: 2023-04-07.
[REF-355] Roberto Paleari, Davide Marrone, Danilo Bruschi and Mattia Monga. "On Race Vulnerabilities in Web Applications". <http://security.dico.unimi.it/~roberto/pubs/dimva08-web.pdf>.
[REF-356] "Avoiding Race Conditions and Insecure File Operations". Apple Developer Connection. <https://web.archive.org/web/20081010155022/http://developer.apple.com/documentation/Security/Conceptual/SecureCodingGuide/Articles/RaceConditions.html>. URL validated: 2023-04-07.
[REF-357] Johannes Ullrich. "Top 25 Series - Rank 25 - Race Conditions". SANS Software Security Institute. 2010-03-26. <https://web.archive.org/web/20100530231203/http://blogs.sans.org:80/appsecstreetfighter/2010/03/26/top-25-series-rank-25-race-conditions/>. URL validated: 2023-04-07.
[REF-76] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. <https://web.archive.org/web/20211209014121/https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/least-privilege>. URL validated: 2023-04-07.
[REF-1237] CERT Coordination Center. "Intel BIOS locking mechanism contains race condition that enables write protection bypass". 2015-01-05. <https://www.kb.cert.org/vuls/id/766164/>.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Contributions
Contribution Date Contributor Organization
2010-04-30 Martin Sebor Cisco Systems, Inc.
Provided Demonstrative Example
2024-02-29
(CWE 4.16, 2024-11-19)
Abhi Balakrishnan
Provided diagram to improve CWE usability
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-09-08 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2008-10-14 CWE Content Team MITRE
updated Relationships
2008-11-24 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2009-01-12 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Demonstrative_Examples, Description, Likelihood_of_Exploit, Maintenance_Notes, Observed_Examples, Potential_Mitigations, References, Relationships, Research_Gaps
2009-03-10 CWE Content Team MITRE
updated Demonstrative_Examples, Potential_Mitigations
2009-05-27 CWE Content Team MITRE
updated Relationships
2010-02-16 CWE Content Team MITRE
updated Detection_Factors, References, Relationships
2010-06-21 CWE Content Team MITRE
updated Common_Consequences, Demonstrative_Examples, Detection_Factors, Potential_Mitigations, References
2010-09-27 CWE Content Team MITRE
updated Observed_Examples, Potential_Mitigations, Relationships
2010-12-13 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Description, Name, Potential_Mitigations, Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Relationships
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-05-11 CWE Content Team MITRE
updated Potential_Mitigations, References, Relationships
2014-07-30 CWE Content Team MITRE
updated Detection_Factors, Relationships
2015-12-07 CWE Content Team MITRE
updated Relationships
2017-11-08 CWE Content Team MITRE
updated Demonstrative_Examples, References, Research_Gaps, Taxonomy_Mappings
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2019-06-20 CWE Content Team MITRE
updated Relationships
2020-02-24 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Observed_Examples, Relationships
2020-08-20 CWE Content Team MITRE
updated Relationships
2021-03-15 CWE Content Team MITRE
updated Demonstrative_Examples
2021-10-28 CWE Content Team MITRE
updated Observed_Examples, References
2022-04-28 CWE Content Team MITRE
updated Observed_Examples, Relationships
2022-06-28 CWE Content Team MITRE
updated Observed_Examples, Relationships
2022-10-13 CWE Content Team MITRE
updated Observed_Examples, References
2023-01-31 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Description
2023-04-27 CWE Content Team MITRE
updated References, Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes, Relationships
2024-07-16
(CWE 4.15, 2024-07-16)
CWE Content Team MITRE
updated Relationships
2024-11-19
(CWE 4.16, 2024-11-19)
CWE Content Team MITRE
updated Alternate_Terms, Common_Consequences, Description, Diagram, Modes_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Race Conditions
2010-12-13 Race Condition

CWE-352: Cross-Site Request Forgery (CSRF)

Weakness ID: 352 (Structure: Composite) Composite - a Compound Element that consists of two or more distinct weaknesses, in which all weaknesses must be present at the same time in order for a potential vulnerability to arise. Removing any of the weaknesses eliminates or sharply reduces the risk. One weakness, X, can be "broken down" into component weaknesses Y and Z. There can be cases in which one weakness might not be essential to a composite, but changes the nature of the composite when it becomes a vulnerability.
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The web application does not, or can not, sufficiently verify whether a well-formed, valid, consistent request was intentionally provided by the user who submitted the request.
+ Extended Description
When a web server is designed to receive a request from a client without any mechanism for verifying that it was intentionally sent, then it might be possible for an attacker to trick a client into making an unintentional request to the web server which will be treated as an authentic request. This can be done via a URL, image load, XMLHttpRequest, etc. and can result in exposure of data or unintended code execution.
+ Alternate Terms
Session Riding
Cross Site Reference Forgery
XSRF
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Confidentiality
Integrity
Availability
Non-Repudiation
Access Control

Technical Impact: Gain Privileges or Assume Identity; Bypass Protection Mechanism; Read Application Data; Modify Application Data; DoS: Crash, Exit, or Restart

The consequences will vary depending on the nature of the functionality that is vulnerable to CSRF. An attacker could effectively perform any operations as the victim. If the victim is an administrator or privileged user, the consequences may include obtaining complete control over the web application - deleting or stealing data, uninstalling the product, or using it to launch other attacks against all of the product's users. Because the attacker has the identity of the victim, the scope of CSRF is limited only by the victim's privileges.
+ Potential Mitigations

Phase: Architecture and Design

Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

For example, use anti-CSRF packages such as the OWASP CSRFGuard. [REF-330]

Another example is the ESAPI Session Management control, which includes a component for CSRF. [REF-45]

Phase: Implementation

Ensure that the application is free of cross-site scripting issues (CWE-79), because most CSRF defenses can be bypassed using attacker-controlled script.

Phase: Architecture and Design

Generate a unique nonce for each form, place the nonce into the form, and verify the nonce upon receipt of the form. Be sure that the nonce is not predictable (CWE-330). [REF-332]
Note: Note that this can be bypassed using XSS (CWE-79).

Phase: Architecture and Design

Identify especially dangerous operations. When the user performs a dangerous operation, send a separate confirmation request to ensure that the user intended to perform that operation.
Note: Note that this can be bypassed using XSS (CWE-79).

Phase: Architecture and Design

Use the "double-submitted cookie" method as described by Felten and Zeller:

When a user visits a site, the site should generate a pseudorandom value and set it as a cookie on the user's machine. The site should require every form submission to include this value as a form value and also as a cookie value. When a POST request is sent to the site, the request should only be considered valid if the form value and the cookie value are the same.

Because of the same-origin policy, an attacker cannot read or modify the value stored in the cookie. To successfully submit a form on behalf of the user, the attacker would have to correctly guess the pseudorandom value. If the pseudorandom value is cryptographically strong, this will be prohibitively difficult.

This technique requires Javascript, so it may not work for browsers that have Javascript disabled. [REF-331]

Note: Note that this can probably be bypassed using XSS (CWE-79), or when using web technologies that enable the attacker to read raw headers from HTTP requests.

Phase: Architecture and Design

Do not use the GET method for any request that triggers a state change.

Phase: Implementation

Check the HTTP Referer header to see if the request originated from an expected page. This could break legitimate functionality, because users or proxies may have disabled sending the Referer for privacy reasons.
Note: Note that this can be bypassed using XSS (CWE-79). An attacker could use XSS to generate a spoofed Referer, or to generate a malicious request from a page whose Referer would be allowed.
+ Composite Components
Nature Type ID Name
Requires ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 346 Origin Validation Error
Requires ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 441 Unintended Proxy or Intermediary ('Confused Deputy')
Requires BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 613 Insufficient Session Expiration
Requires ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 642 External Control of Critical State Data
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 345 Insufficient Verification of Data Authenticity
PeerOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
CanFollow Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 1275 Sensitive Cookie with Improper SameSite Attribute
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 345 Insufficient Verification of Data Authenticity
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Architectural Concepts" (CWE-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1019 Validate Inputs
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design REALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Technologies

Web Server (Undetermined Prevalence)

+ Likelihood Of Exploit
Medium
+ Demonstrative Examples

Example 1

This example PHP code attempts to secure the form submission process by validating that the user submitting the form has a valid session. A CSRF attack would not be prevented by this countermeasure because the attacker forges a request through the user's web browser in which a valid session already exists.

The following HTML is intended to allow a user to update a profile.

(bad code)
Example Language: HTML 
<form action="/url/profile.php" method="post">
<input type="text" name="firstname"/>
<input type="text" name="lastname"/>
<br/>
<input type="text" name="email"/>
<input type="submit" name="submit" value="Update"/>
</form>

profile.php contains the following code.

(bad code)
Example Language: PHP 
// initiate the session in order to validate sessions

session_start();

//if the session is registered to a valid user then allow update

if (! session_is_registered("username")) {

echo "invalid session detected!";

// Redirect user to login page
[...]

exit;
}

// The user session is valid, so process the request

// and update the information

update_profile();

function update_profile {

// read in the data from $POST and send an update

// to the database
SendUpdateToDatabase($_SESSION['username'], $_POST['email']);
[...]
echo "Your profile has been successfully updated.";
}

This code may look protected since it checks for a valid session. However, CSRF attacks can be staged from virtually any tag or HTML construct, including image tags, links, embed or object tags, or other attributes that load background images.

The attacker can then host code that will silently change the username and email address of any user that visits the page while remaining logged in to the target web application. The code might be an innocent-looking web page such as:

(attack code)
Example Language: HTML 
<SCRIPT>
function SendAttack () {
form.email = "attacker@example.com";
// send to profile.php
form.submit();
}
</SCRIPT>

<BODY onload="javascript:SendAttack();">

<form action="http://victim.example.com/profile.php" id="form" method="post">
<input type="hidden" name="firstname" value="Funny">
<input type="hidden" name="lastname" value="Joke">
<br/>
<input type="hidden" name="email">
</form>

Notice how the form contains hidden fields, so when it is loaded into the browser, the user will not notice it. Because SendAttack() is defined in the body's onload attribute, it will be automatically called when the victim loads the web page.

Assuming that the user is already logged in to victim.example.com, profile.php will see that a valid user session has been established, then update the email address to the attacker's own address. At this stage, the user's identity has been compromised, and messages sent through this profile could be sent to the attacker's address.


+ Observed Examples
Reference Description
Add user accounts via a URL in an img tag
Add user accounts via a URL in an img tag
Arbitrary code execution by specifying the code in a crafted img tag or URL
Gain administrative privileges via a URL in an img tag
Delete a victim's information via a URL or an img tag
Change another user's settings via a URL or an img tag
Perform actions as administrator via a URL or an img tag
modify password for the administrator
CMS allows modification of configuration via CSRF attack against the administrator
web interface allows password changes or stopping a virtual machine via CSRF
+ Detection Methods

Manual Analysis

This weakness can be detected using tools and techniques that require manual (human) analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester to record and modify an active session.

Specifically, manual analysis can be useful for finding this weakness, and for minimizing false positives assuming an understanding of business logic. However, it might not achieve desired code coverage within limited time constraints. For black-box analysis, if credentials are not known for privileged accounts, then the most security-critical portions of the application may not receive sufficient attention.

Consider using OWASP CSRFTester to identify potential issues and aid in manual analysis.

Effectiveness: High

Note: These may be more effective than strictly automated techniques. This is especially the case with weaknesses that are related to design and business rules.

Automated Static Analysis

CSRF is currently difficult to detect reliably using automated techniques. This is because each application has its own implicit security policy that dictates which requests can be influenced by an outsider and automatically performed on behalf of a user, versus which requests require strong confidence that the user intends to make the request. For example, a keyword search of the public portion of a web site is typically expected to be encoded within a link that can be launched automatically when the user clicks on the link.

Effectiveness: Limited

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Bytecode Weakness Analysis - including disassembler + source code weakness analysis
  • Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness: SOAR Partial

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Binary / Bytecode disassembler - then use manual analysis for vulnerabilities & anomalies

Effectiveness: SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Web Application Scanner

Effectiveness: High

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Fuzz Tester
  • Framework-based Fuzzer

Effectiveness: High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Focused Manual Spotcheck - Focused manual analysis of source
  • Manual Source Code Review (not inspections)

Effectiveness: SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Source code Weakness Analyzer
  • Context-configured Source Code Weakness Analyzer

Effectiveness: SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)
  • Formal Methods / Correct-By-Construction

Effectiveness: SOAR Partial

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships betw