CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > VIEW SLICE: CWE-1133: Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java (4.18)  
ID

CWE VIEW: Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java

View ID: 1133
Vulnerability Mapping: PROHIBITED This CWE ID must not be used to map to real-world vulnerabilities
Type: Graph
Downloads: Booklet | CSV | XML
+ Objective
CWE entries in this view (graph) are fully or partially eliminated by following the guidance presented in the online wiki that reflects that current rules and recommendations of the SEI CERT Oracle Coding Standard for Java.
+ Audience
Stakeholder Description
Software Developers By following the SEI CERT Oracle Coding Standard for Java, developers will be able to fully or partially prevent the weaknesses that are identified in this view. In addition, developers can use a CWE coverage graph to determine which weaknesses are not directly addressed by the standard, which will help identify and resolve remaining gaps in training, tool acquisition, or other approaches for reducing weaknesses.
Product Customers If a software developer claims to be following the SEI CERT Oracle Secure Coding Standard for Java, then customers can search for the weaknesses in this view in order to formulate independent evidence of that claim.
Educators Educators can use this view in multiple ways. For example, if there is a focus on teaching weaknesses, the educator could link them to the relevant Secure Coding Standard.
+ Relationships
The following graph shows the tree-like relationships between weaknesses that exist at different levels of abstraction. At the highest level, categories and pillars exist to group weaknesses. Categories (which are not technically weaknesses) are special CWE entries used to group weaknesses that share a common characteristic. Pillars are weaknesses that are described in the most abstract fashion. Below these top-level entries are weaknesses are varying levels of abstraction. Classes are still very abstract, typically independent of any specific language or technology. Base level weaknesses are used to present a more specific type of weakness. A variant is a weakness that is described at a very low level of detail, typically limited to a specific language or technology. A chain is a set of weaknesses that must be reachable consecutively in order to produce an exploitable vulnerability. While a composite is a set of weaknesses that must all be present simultaneously in order to produce an exploitable vulnerability.
Show Details:
1133 - Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS) - (1134)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1134 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS))
Weaknesses in this category are related to the rules and recommendations in the Input Validation and Data Sanitization (IDS) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Improper Encoding or Escaping of Output - (116)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1134 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)) > 116 (Improper Encoding or Escaping of Output)
The product prepares a structured message for communication with another component, but encoding or escaping of the data is either missing or done incorrectly. As a result, the intended structure of the message is not preserved. Output Sanitization Output Validation Output Encoding
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Incorrect Behavior Order: Validate Before Canonicalize - (180)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1134 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)) > 180 (Incorrect Behavior Order: Validate Before Canonicalize)
The product validates input before it is canonicalized, which prevents the product from detecting data that becomes invalid after the canonicalization step.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Authentication Bypass by Alternate Name - (289)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1134 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)) > 289 (Authentication Bypass by Alternate Name)
The product performs authentication based on the name of a resource being accessed, or the name of the actor performing the access, but it does not properly check all possible names for that resource or actor.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Improper Output Neutralization for Logs - (117)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1134 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)) > 117 (Improper Output Neutralization for Logs)
The product constructs a log message from external input, but it does not neutralize or incorrectly neutralizes special elements when the message is written to a log file. Log forging
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Improper Neutralization of Line Delimiters - (144)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1134 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)) > 144 (Improper Neutralization of Line Delimiters)
The product receives input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could be interpreted as line delimiters when they are sent to a downstream component.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Improper Neutralization of Escape, Meta, or Control Sequences - (150)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1134 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)) > 150 (Improper Neutralization of Escape, Meta, or Control Sequences)
The product receives input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could be interpreted as escape, meta, or control character sequences when they are sent to a downstream component.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Improper Handling of Highly Compressed Data (Data Amplification) - (409)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1134 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)) > 409 (Improper Handling of Highly Compressed Data (Data Amplification))
The product does not handle or incorrectly handles a compressed input with a very high compression ratio that produces a large output.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Use of Externally-Controlled Format String - (134)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1134 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)) > 134 (Use of Externally-Controlled Format String)
The product uses a function that accepts a format string as an argument, but the format string originates from an external source.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') - (78)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1134 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)) > 78 (Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection'))
The product constructs all or part of an OS command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended OS command when it is sent to a downstream component. Shell injection Shell metacharacters OS Command Injection
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Collapse of Data into Unsafe Value - (182)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1134 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)) > 182 (Collapse of Data into Unsafe Value)
The product filters data in a way that causes it to be reduced or "collapsed" into an unsafe value that violates an expected security property.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 01. Declarations and Initialization (DCL) - (1135)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1135 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 01. Declarations and Initialization (DCL))
Weaknesses in this category are related to the rules and recommendations in the Declarations and Initialization (DCL) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Improper Initialization - (665)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1135 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 01. Declarations and Initialization (DCL)) > 665 (Improper Initialization)
The product does not initialize or incorrectly initializes a resource, which might leave the resource in an unexpected state when it is accessed or used.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 02. Expressions (EXP) - (1136)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1136 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 02. Expressions (EXP))
Weaknesses in this category are related to the rules and recommendations in the Expressions (EXP) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Unchecked Return Value - (252)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1136 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 02. Expressions (EXP)) > 252 (Unchecked Return Value)
The product does not check the return value from a method or function, which can prevent it from detecting unexpected states and conditions.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. NULL Pointer Dereference - (476)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1136 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 02. Expressions (EXP)) > 476 (NULL Pointer Dereference)
The product dereferences a pointer that it expects to be valid but is NULL. NPD null deref NPE nil pointer dereference
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Use of Wrong Operator in String Comparison - (597)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1136 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 02. Expressions (EXP)) > 597 (Use of Wrong Operator in String Comparison)
The product uses the wrong operator when comparing a string, such as using "==" when the .equals() method should be used instead.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Comparison of Object References Instead of Object Contents - (595)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1136 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 02. Expressions (EXP)) > 595 (Comparison of Object References Instead of Object Contents)
The product compares object references instead of the contents of the objects themselves, preventing it from detecting equivalent objects.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 03. Numeric Types and Operations (NUM) - (1137)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1137 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 03. Numeric Types and Operations (NUM))
Weaknesses in this category are related to the rules and recommendations in the Numeric Types and Operations (NUM) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Integer Overflow or Wraparound - (190)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1137 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 03. Numeric Types and Operations (NUM)) > 190 (Integer Overflow or Wraparound)
The product performs a calculation that can produce an integer overflow or wraparound when the logic assumes that the resulting value will always be larger than the original value. This occurs when an integer value is incremented to a value that is too large to store in the associated representation. When this occurs, the value may become a very small or negative number. Overflow Wraparound wrap, wrap-around, wrap around
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Integer Underflow (Wrap or Wraparound) - (191)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1137 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 03. Numeric Types and Operations (NUM)) > 191 (Integer Underflow (Wrap or Wraparound))
The product subtracts one value from another, such that the result is less than the minimum allowable integer value, which produces a value that is not equal to the correct result. Integer underflow
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Numeric Truncation Error - (197)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1137 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 03. Numeric Types and Operations (NUM)) > 197 (Numeric Truncation Error)
Truncation errors occur when a primitive is cast to a primitive of a smaller size and data is lost in the conversion.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Divide By Zero - (369)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1137 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 03. Numeric Types and Operations (NUM)) > 369 (Divide By Zero)
The product divides a value by zero.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Incorrect Conversion between Numeric Types - (681)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1137 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 03. Numeric Types and Operations (NUM)) > 681 (Incorrect Conversion between Numeric Types)
When converting from one data type to another, such as long to integer, data can be omitted or translated in a way that produces unexpected values. If the resulting values are used in a sensitive context, then dangerous behaviors may occur.
* Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. Incorrect Calculation - (682)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1137 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 03. Numeric Types and Operations (NUM)) > 682 (Incorrect Calculation)
The product performs a calculation that generates incorrect or unintended results that are later used in security-critical decisions or resource management.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 04. Characters and Strings (STR) - (1138)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1138 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 04. Characters and Strings (STR))
Weaknesses in this category are related to the rules and recommendations in the Characters and Strings (STR) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Inappropriate Encoding for Output Context - (838)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1138 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 04. Characters and Strings (STR)) > 838 (Inappropriate Encoding for Output Context)
The product uses or specifies an encoding when generating output to a downstream component, but the specified encoding is not the same as the encoding that is expected by the downstream component.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation (OBJ) - (1139)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1139 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation (OBJ))
Weaknesses in this category are related to the rules and recommendations in the Object Orientation (OBJ) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Passing Mutable Objects to an Untrusted Method - (374)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1139 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation (OBJ)) > 374 (Passing Mutable Objects to an Untrusted Method)
The product sends non-cloned mutable data as an argument to a method or function.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Returning a Mutable Object to an Untrusted Caller - (375)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1139 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation (OBJ)) > 375 (Returning a Mutable Object to an Untrusted Caller)
Sending non-cloned mutable data as a return value may result in that data being altered or deleted by the calling function.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Comparison of Classes by Name - (486)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1139 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation (OBJ)) > 486 (Comparison of Classes by Name)
The product compares classes by name, which can cause it to use the wrong class when multiple classes can have the same name.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Public cloneable() Method Without Final ('Object Hijack') - (491)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1139 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation (OBJ)) > 491 (Public cloneable() Method Without Final ('Object Hijack'))
A class has a cloneable() method that is not declared final, which allows an object to be created without calling the constructor. This can cause the object to be in an unexpected state.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Use of Inner Class Containing Sensitive Data - (492)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1139 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation (OBJ)) > 492 (Use of Inner Class Containing Sensitive Data)
Inner classes are translated into classes that are accessible at package scope and may expose code that the programmer intended to keep private to attackers.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Cloneable Class Containing Sensitive Information - (498)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1139 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation (OBJ)) > 498 (Cloneable Class Containing Sensitive Information)
The code contains a class with sensitive data, but the class is cloneable. The data can then be accessed by cloning the class.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Public Static Field Not Marked Final - (500)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1139 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation (OBJ)) > 500 (Public Static Field Not Marked Final)
An object contains a public static field that is not marked final, which might allow it to be modified in unexpected ways.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Critical Data Element Declared Public - (766)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1139 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation (OBJ)) > 766 (Critical Data Element Declared Public)
The product declares a critical variable, field, or member to be public when intended security policy requires it to be private.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET) - (1140)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1140 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET))
Weaknesses in this category are related to the rules and recommendations in the Methods (MET) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Reachable Assertion - (617)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1140 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)) > 617 (Reachable Assertion)
The product contains an assert() or similar statement that can be triggered by an attacker, which leads to an application exit or other behavior that is more severe than necessary. assertion failure
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Call to Non-ubiquitous API - (589)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1140 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)) > 589 (Call to Non-ubiquitous API)
The product uses an API function that does not exist on all versions of the target platform. This could cause portability problems or inconsistencies that allow denial of service or other consequences.
* Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. Incorrect Comparison - (697)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1140 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)) > 697 (Incorrect Comparison)
The product compares two entities in a security-relevant context, but the comparison is incorrect, which may lead to resultant weaknesses.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Object Model Violation: Just One of Equals and Hashcode Defined - (581)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1140 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)) > 581 (Object Model Violation: Just One of Equals and Hashcode Defined)
The product does not maintain equal hashcodes for equal objects.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Improper Following of Specification by Caller - (573)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1140 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)) > 573 (Improper Following of Specification by Caller)
The product does not follow or incorrectly follows the specifications as required by the implementation language, environment, framework, protocol, or platform.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Explicit Call to Finalize() - (586)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1140 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)) > 586 (Explicit Call to Finalize())
The product makes an explicit call to the finalize() method from outside the finalizer.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. finalize() Method Declared Public - (583)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1140 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)) > 583 (finalize() Method Declared Public)
The product violates secure coding principles for mobile code by declaring a finalize() method public.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. finalize() Method Without super.finalize() - (568)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1140 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)) > 568 (finalize() Method Without super.finalize())
The product contains a finalize() method that does not call super.finalize().
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior (ERR) - (1141)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1141 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior (ERR))
Weaknesses in this category are related to the rules and recommendations in the Exceptional Behavior (ERR) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Improper Cleanup on Thrown Exception - (460)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1141 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior (ERR)) > 460 (Improper Cleanup on Thrown Exception)
The product does not clean up its state or incorrectly cleans up its state when an exception is thrown, leading to unexpected state or control flow.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Return Inside Finally Block - (584)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1141 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior (ERR)) > 584 (Return Inside Finally Block)
The code has a return statement inside a finally block, which will cause any thrown exception in the try block to be discarded.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Incomplete Cleanup - (459)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1141 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior (ERR)) > 459 (Incomplete Cleanup)
The product does not properly "clean up" and remove temporary or supporting resources after they have been used. Insufficient Cleanup
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Uncaught Exception - (248)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1141 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior (ERR)) > 248 (Uncaught Exception)
An exception is thrown from a function, but it is not caught.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Incorrect Control Flow Scoping - (705)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1141 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior (ERR)) > 705 (Incorrect Control Flow Scoping)
The product does not properly return control flow to the proper location after it has completed a task or detected an unusual condition.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Improper Check for Unusual or Exceptional Conditions - (754)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1141 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior (ERR)) > 754 (Improper Check for Unusual or Exceptional Conditions)
The product does not check or incorrectly checks for unusual or exceptional conditions that are not expected to occur frequently during day to day operation of the product.
* Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. Improper Check or Handling of Exceptional Conditions - (703)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1141 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior (ERR)) > 703 (Improper Check or Handling of Exceptional Conditions)
The product does not properly anticipate or handle exceptional conditions that rarely occur during normal operation of the product.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Declaration of Throws for Generic Exception - (397)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1141 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior (ERR)) > 397 (Declaration of Throws for Generic Exception)
The product throws or raises an overly broad exceptions that can hide important details and produce inappropriate responses to certain conditions.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. J2EE Bad Practices: Use of System.exit() - (382)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1141 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior (ERR)) > 382 (J2EE Bad Practices: Use of System.exit())
A J2EE application uses System.exit(), which also shuts down its container.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity (VNA) - (1142)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1142 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity (VNA))
Weaknesses in this category are related to the rules and recommendations in the Visibility and Atomicity (VNA) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') - (362)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1142 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity (VNA)) > 362 (Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition'))
The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently. Race Condition
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Race Condition within a Thread - (366)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1142 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity (VNA)) > 366 (Race Condition within a Thread)
If two threads of execution use a resource simultaneously, there exists the possibility that resources may be used while invalid, in turn making the state of execution undefined.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Improper Resource Locking - (413)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1142 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity (VNA)) > 413 (Improper Resource Locking)
The product does not lock or does not correctly lock a resource when the product must have exclusive access to the resource.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Unsynchronized Access to Shared Data in a Multithreaded Context - (567)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1142 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity (VNA)) > 567 (Unsynchronized Access to Shared Data in a Multithreaded Context)
The product does not properly synchronize shared data, such as static variables across threads, which can lead to undefined behavior and unpredictable data changes.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Improper Synchronization - (662)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1142 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity (VNA)) > 662 (Improper Synchronization)
The product utilizes multiple threads or processes to allow temporary access to a shared resource that can only be exclusive to one process at a time, but it does not properly synchronize these actions, which might cause simultaneous accesses of this resource by multiple threads or processes.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Improper Locking - (667)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1142 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity (VNA)) > 667 (Improper Locking)
The product does not properly acquire or release a lock on a resource, leading to unexpected resource state changes and behaviors.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 09. Locking (LCK) - (1143)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1143 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 09. Locking (LCK))
Weaknesses in this category are related to the rules and recommendations in the Locking (LCK) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Unrestricted Externally Accessible Lock - (412)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1143 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 09. Locking (LCK)) > 412 (Unrestricted Externally Accessible Lock)
The product properly checks for the existence of a lock, but the lock can be externally controlled or influenced by an actor that is outside of the intended sphere of control.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Double-Checked Locking - (609)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1143 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 09. Locking (LCK)) > 609 (Double-Checked Locking)
The product uses double-checked locking to access a resource without the overhead of explicit synchronization, but the locking is insufficient.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Improper Locking - (667)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1143 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 09. Locking (LCK)) > 667 (Improper Locking)
The product does not properly acquire or release a lock on a resource, leading to unexpected resource state changes and behaviors.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Missing Synchronization - (820)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1143 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 09. Locking (LCK)) > 820 (Missing Synchronization)
The product utilizes a shared resource in a concurrent manner but does not attempt to synchronize access to the resource.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 10. Thread APIs (THI) - (1144)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1144 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 10. Thread APIs (THI))
Weaknesses in this category are related to the rules and recommendations in the Thread APIs (THI) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Call to Thread run() instead of start() - (572)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1144 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 10. Thread APIs (THI)) > 572 (Call to Thread run() instead of start())
The product calls a thread's run() method instead of calling start(), which causes the code to run in the thread of the caller instead of the callee.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 11. Thread Pools (TPS) - (1145)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1145 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 11. Thread Pools (TPS))
Weaknesses in this category are related to the rules and recommendations in the Thread Pools (TPS) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Missing Report of Error Condition - (392)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1145 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 11. Thread Pools (TPS)) > 392 (Missing Report of Error Condition)
The product encounters an error but does not provide a status code or return value to indicate that an error has occurred.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Asymmetric Resource Consumption (Amplification) - (405)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1145 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 11. Thread Pools (TPS)) > 405 (Asymmetric Resource Consumption (Amplification))
The product does not properly control situations in which an adversary can cause the product to consume or produce excessive resources without requiring the adversary to invest equivalent work or otherwise prove authorization, i.e., the adversary's influence is "asymmetric."
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Insufficient Resource Pool - (410)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1145 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 11. Thread Pools (TPS)) > 410 (Insufficient Resource Pool)
The product's resource pool is not large enough to handle peak demand, which allows an attacker to prevent others from accessing the resource by using a (relatively) large number of requests for resources.
* Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 12. Thread-Safety Miscellaneous (TSM) - (1146)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1146 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 12. Thread-Safety Miscellaneous (TSM))
Weaknesses in this category are related to the rules and recommendations in the Thread-Safety Miscellaneous (TSM) section of the SEI CERT Oracle Secure Coding Standard for Java.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO) - (1147)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1147 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO))
Weaknesses in this category are related to the rules and recommendations in the Input Output (FIO) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Improper Handling of Windows Device Names - (67)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1147 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)) > 67 (Improper Handling of Windows Device Names)
The product constructs pathnames from user input, but it does not handle or incorrectly handles a pathname containing a Windows device name such as AUX or CON. This typically leads to denial of service or an information exposure when the application attempts to process the pathname as a regular file.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Incorrect Behavior Order: Validate Before Canonicalize - (180)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1147 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)) > 180 (Incorrect Behavior Order: Validate Before Canonicalize)
The product validates input before it is canonicalized, which prevents the product from detecting data that becomes invalid after the canonicalization step.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Use of Incorrect Byte Ordering - (198)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1147 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)) > 198 (Use of Incorrect Byte Ordering)
The product receives input from an upstream component, but it does not account for byte ordering (e.g. big-endian and little-endian) when processing the input, causing an incorrect number or value to be used.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Incorrect Default Permissions - (276)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1147 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)) > 276 (Incorrect Default Permissions)
During installation, installed file permissions are set to allow anyone to modify those files.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Incorrect Execution-Assigned Permissions - (279)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1147 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)) > 279 (Incorrect Execution-Assigned Permissions)
While it is executing, the product sets the permissions of an object in a way that violates the intended permissions that have been specified by the user.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Exposure of Private Personal Information to an Unauthorized Actor - (359)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1147 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)) > 359 (Exposure of Private Personal Information to an Unauthorized Actor)
The product does not properly prevent a person's private, personal information from being accessed by actors who either (1) are not explicitly authorized to access the information or (2) do not have the implicit consent of the person about whom the information is collected. Privacy violation Privacy leak Privacy leakage
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Insecure Temporary File - (377)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1147 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)) > 377 (Insecure Temporary File)
Creating and using insecure temporary files can leave application and system data vulnerable to attack.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Improper Resource Shutdown or Release - (404)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1147 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)) > 404 (Improper Resource Shutdown or Release)
The product does not release or incorrectly releases a resource before it is made available for re-use.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Asymmetric Resource Consumption (Amplification) - (405)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1147 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)) > 405 (Asymmetric Resource Consumption (Amplification))
The product does not properly control situations in which an adversary can cause the product to consume or produce excessive resources without requiring the adversary to invest equivalent work or otherwise prove authorization, i.e., the adversary's influence is "asymmetric."
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Incomplete Cleanup - (459)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1147 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)) > 459 (Incomplete Cleanup)
The product does not properly "clean up" and remove temporary or supporting resources after they have been used. Insufficient Cleanup
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Insertion of Sensitive Information into Log File - (532)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1147 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)) > 532 (Insertion of Sensitive Information into Log File)
The product writes sensitive information to a log file.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Use of Non-Canonical URL Paths for Authorization Decisions - (647)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1147 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)) > 647 (Use of Non-Canonical URL Paths for Authorization Decisions)
The product defines policy namespaces and makes authorization decisions based on the assumption that a URL is canonical. This can allow a non-canonical URL to bypass the authorization.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Incorrect Control Flow Scoping - (705)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1147 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)) > 705 (Incorrect Control Flow Scoping)
The product does not properly return control flow to the proper location after it has completed a task or detected an unusual condition.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Incorrect Permission Assignment for Critical Resource - (732)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1147 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)) > 732 (Incorrect Permission Assignment for Critical Resource)
The product specifies permissions for a security-critical resource in a way that allows that resource to be read or modified by unintended actors.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Allocation of Resources Without Limits or Throttling - (770)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1147 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)) > 770 (Allocation of Resources Without Limits or Throttling)
The product allocates a reusable resource or group of resources on behalf of an actor without imposing any intended restrictions on the size or number of resources that can be allocated.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER) - (1148)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1148 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER))
Weaknesses in this category are related to the rules and recommendations in the Serialization (SER) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Cleartext Transmission of Sensitive Information - (319)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1148 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)) > 319 (Cleartext Transmission of Sensitive Information)
The product transmits sensitive or security-critical data in cleartext in a communication channel that can be sniffed by unauthorized actors.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Uncontrolled Resource Consumption - (400)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1148 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)) > 400 (Uncontrolled Resource Consumption)
The product does not properly control the allocation and maintenance of a limited resource. Resource Exhaustion
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Serializable Class Containing Sensitive Data - (499)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1148 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)) > 499 (Serializable Class Containing Sensitive Data)
The code contains a class with sensitive data, but the class does not explicitly deny serialization. The data can be accessed by serializing the class through another class.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Deserialization of Untrusted Data - (502)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1148 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)) > 502 (Deserialization of Untrusted Data)
The product deserializes untrusted data without sufficiently ensuring that the resulting data will be valid. Marshaling, Unmarshaling Pickling, Unpickling PHP Object Injection
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Allocation of Resources Without Limits or Throttling - (770)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1148 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)) > 770 (Allocation of Resources Without Limits or Throttling)
The product allocates a reusable resource or group of resources on behalf of an actor without imposing any intended restrictions on the size or number of resources that can be allocated.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 15. Platform Security (SEC) - (1149)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1149 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 15. Platform Security (SEC))
Weaknesses in this category are related to the rules and recommendations in the Platform Security (SEC) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Incorrect Privilege Assignment - (266)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1149 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 15. Platform Security (SEC)) > 266 (Incorrect Privilege Assignment)
A product incorrectly assigns a privilege to a particular actor, creating an unintended sphere of control for that actor.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Least Privilege Violation - (272)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1149 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 15. Platform Security (SEC)) > 272 (Least Privilege Violation)
The elevated privilege level required to perform operations such as chroot() should be dropped immediately after the operation is performed.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Incorrect Permission Assignment for Critical Resource - (732)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1149 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 15. Platform Security (SEC)) > 732 (Incorrect Permission Assignment for Critical Resource)
The product specifies permissions for a security-critical resource in a way that allows that resource to be read or modified by unintended actors.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 16. Runtime Environment (ENV) - (1150)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1150 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 16. Runtime Environment (ENV))
Weaknesses in this category are related to the rules and recommendations in the Runtime Environment (ENV) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Acceptance of Extraneous Untrusted Data With Trusted Data - (349)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1150 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 16. Runtime Environment (ENV)) > 349 (Acceptance of Extraneous Untrusted Data With Trusted Data)
The product, when processing trusted data, accepts any untrusted data that is also included with the trusted data, treating the untrusted data as if it were trusted.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Incorrect Permission Assignment for Critical Resource - (732)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1150 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 16. Runtime Environment (ENV)) > 732 (Incorrect Permission Assignment for Critical Resource)
The product specifies permissions for a security-critical resource in a way that allows that resource to be read or modified by unintended actors.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 17. Java Native Interface (JNI) - (1151)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1151 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 17. Java Native Interface (JNI))
Weaknesses in this category are related to the rules and recommendations in the Java Native Interface (JNI) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Direct Use of Unsafe JNI - (111)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1151 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 17. Java Native Interface (JNI)) > 111 (Direct Use of Unsafe JNI)
When a Java application uses the Java Native Interface (JNI) to call code written in another programming language, it can expose the application to weaknesses in that code, even if those weaknesses cannot occur in Java.
+ Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous (MSC) - (1152)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1152 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous (MSC))
Weaknesses in this category are related to the rules and recommendations in the Miscellaneous (MSC) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Use of Hard-coded Password - (259)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1152 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous (MSC)) > 259 (Use of Hard-coded Password)
The product contains a hard-coded password, which it uses for its own inbound authentication or for outbound communication to external components.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Missing Encryption of Sensitive Data - (311)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1152 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous (MSC)) > 311 (Missing Encryption of Sensitive Data)
The product does not encrypt sensitive or critical information before storage or transmission.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Use of a Broken or Risky Cryptographic Algorithm - (327)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1152 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous (MSC)) > 327 (Use of a Broken or Risky Cryptographic Algorithm)
The product uses a broken or risky cryptographic algorithm or protocol.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Use of Insufficiently Random Values - (330)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1152 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous (MSC)) > 330 (Use of Insufficiently Random Values)
The product uses insufficiently random numbers or values in a security context that depends on unpredictable numbers.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Insufficient Entropy in PRNG - (332)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1152 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous (MSC)) > 332 (Insufficient Entropy in PRNG)
The lack of entropy available for, or used by, a Pseudo-Random Number Generator (PRNG) can be a stability and security threat.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Same Seed in Pseudo-Random Number Generator (PRNG) - (336)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1152 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous (MSC)) > 336 (Same Seed in Pseudo-Random Number Generator (PRNG))
A Pseudo-Random Number Generator (PRNG) uses the same seed each time the product is initialized.
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Predictable Seed in Pseudo-Random Number Generator (PRNG) - (337)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1152 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous (MSC)) > 337 (Predictable Seed in Pseudo-Random Number Generator (PRNG))
A Pseudo-Random Number Generator (PRNG) is initialized from a predictable seed, such as the process ID or system time.
* Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. Uncontrolled Resource Consumption - (400)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1152 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous (MSC)) > 400 (Uncontrolled Resource Consumption)
The product does not properly control the allocation and maintenance of a limited resource. Resource Exhaustion
* Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. Missing Release of Memory after Effective Lifetime - (401)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1152 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous (MSC)) > 401 (Missing Release of Memory after Effective Lifetime)
The product does not sufficiently track and release allocated memory after it has been used, making the memory unavailable for reallocation and reuse. Memory Leak
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Allocation of Resources Without Limits or Throttling - (770)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1152 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous (MSC)) > 770 (Allocation of Resources Without Limits or Throttling)
The product allocates a reusable resource or group of resources on behalf of an actor without imposing any intended restrictions on the size or number of resources that can be allocated.
* Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. Use of Hard-coded Credentials - (798)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1152 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous (MSC)) > 798 (Use of Hard-coded Credentials)
The product contains hard-coded credentials, such as a password or cryptographic key.
* Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 50. Android (DRD) - (1153)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1153 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 50. Android (DRD))
Weaknesses in this category are related to the rules and recommendations in the Android (DRD) section of the SEI CERT Oracle Secure Coding Standard for Java.
* Category Category - a CWE entry that contains a set of other entries that share a common characteristic. SEI CERT Oracle Secure Coding Standard for Java - Guidelines 18. Concurrency (CON) - (1175)
1133 (Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java) > 1175 (SEI CERT Oracle Secure Coding Standard for Java - Guidelines 18. Concurrency (CON))
Weaknesses in this category are related to the rules and recommendations in the Concurrency (CON) section of the SEI CERT Oracle Secure Coding Standard for Java.
+ Vulnerability Mapping Notes

Usage: PROHIBITED

(this CWE ID must not be used to map to real-world vulnerabilities)

Reason: View

Rationale:

This entry is a View. Views are not weaknesses and therefore inappropriate to describe the root causes of vulnerabilities.

Comments:

Use this View or other Views to search and navigate for the appropriate weakness.
+ Notes

Relationship

The relationships in this view were determined based on specific statements within the rules from the standard. Not all rules have direct relationships to individual weaknesses, although they likely have chaining relationships in specific circumstances.
+ References
[REF-970] The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java". <https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java>.
+ View Metrics
CWEs in this view Total CWEs
Weaknesses 88 out of 944
Categories 21 out of 375
Views 0 out of 52
Total 109 out of 1371
+ Content History
+ Submissions
Submission Date Submitter Organization
2018-12-11
(CWE 3.2, 2019-01-03)
CWE Content Team MITRE
+ Modifications
Modification Date Modifier Organization
2020-02-24 CWE Content Team MITRE
updated View_Audience
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes

View Components

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data

Weakness ID: 349
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product, when processing trusted data, accepts any untrusted data that is also included with the trusted data, treating the untrusted data as if it were trusted.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Bypass Protection Mechanism; Modify Application Data

Scope: Access Control, Integrity

An attacker could package untrusted data with trusted data to bypass protection mechanisms to gain access to and possibly modify sensitive data.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 345 Insufficient Verification of Data Authenticity
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1214 Data Integrity Issues
+ Relevant to the view "Architectural Concepts" (View-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1019 Validate Inputs
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Does not verify that trusted entity is authoritative for all entities in its response.
use of extra data in a signature allows certificate signature forging
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 860 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 17 - Runtime Environment (ENV)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 977 SFP Secondary Cluster: Design
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1150 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 16. Runtime Environment (ENV)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1365 ICS Communications: Unreliability
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1366 ICS Communications: Frail Security in Protocols
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1373 ICS Engineering (Construction/Deployment): Trust Model Problems
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1411 Comprehensive Categorization: Insufficient Verification of Data Authenticity
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Untrusted Data Appended with Trusted Data
The CERT Oracle Secure Coding Standard for Java (2011) ENV01-J Place all security-sensitive code in a single JAR and sign and seal it
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Modifications
Modification Date Modifier Organization
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes, Relationships
2023-04-27 CWE Content Team MITRE
updated Modes_of_Introduction, Relationships, Time_of_Introduction
2023-01-31 CWE Content Team MITRE
updated Description
2022-04-28 CWE Content Team MITRE
updated Relationships
2020-06-25 CWE Content Team MITRE
updated Observed_Examples, Relationships
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Modes_of_Introduction, Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships
2012-05-11 CWE Content Team MITRE
updated Common_Consequences, Related_Attack_Patterns, Relationships, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2008-09-08 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Untrusted Data Appended with Trusted Data

CWE-770: Allocation of Resources Without Limits or Throttling

Weakness ID: 770
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product allocates a reusable resource or group of resources on behalf of an actor without imposing any intended restrictions on the size or number of resources that can be allocated. Diagram for CWE-770
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

DoS: Resource Consumption (CPU); DoS: Resource Consumption (Memory); DoS: Resource Consumption (Other)

Scope: Availability

When allocating resources without limits, an attacker could prevent other systems, applications, or processes from accessing the same type of resource. It can be easy for an attacker to consume many resources by rapidly making many requests or causing larger resources to be used than is needed.
+ Potential Mitigations
Phase(s) Mitigation

Requirements

Clearly specify the minimum and maximum expectations for capabilities, and dictate which behaviors are acceptable when resource allocation reaches limits.

Architecture and Design

Limit the amount of resources that are accessible to unprivileged users. Set per-user limits for resources. Allow the system administrator to define these limits. Be careful to avoid CWE-410.

Architecture and Design

Design throttling mechanisms into the system architecture. The best protection is to limit the amount of resources that an unauthorized user can cause to be expended. A strong authentication and access control model will help prevent such attacks from occurring in the first place, and it will help the administrator to identify who is committing the abuse. The login application should be protected against DoS attacks as much as possible. Limiting the database access, perhaps by caching result sets, can help minimize the resources expended. To further limit the potential for a DoS attack, consider tracking the rate of requests received from users and blocking requests that exceed a defined rate threshold.

Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

Note: This will only be applicable to cases where user input can influence the size or frequency of resource allocations.

Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.

Architecture and Design

Mitigation of resource exhaustion attacks requires that the target system either:

  • recognizes the attack and denies that user further access for a given amount of time, typically by using increasing time delays
  • uniformly throttles all requests in order to make it more difficult to consume resources more quickly than they can again be freed.

The first of these solutions is an issue in itself though, since it may allow attackers to prevent the use of the system by a particular valid user. If the attacker impersonates the valid user, they may be able to prevent the user from accessing the server in question.

The second solution can be difficult to effectively institute -- and even when properly done, it does not provide a full solution. It simply requires more resources on the part of the attacker.

Architecture and Design

Ensure that protocols have specific limits of scale placed on them.

Architecture and Design; Implementation

If the program must fail, ensure that it fails gracefully (fails closed). There may be a temptation to simply let the program fail poorly in cases such as low memory conditions, but an attacker may be able to assert control before the software has fully exited. Alternately, an uncontrolled failure could cause cascading problems with other downstream components; for example, the program could send a signal to a downstream process so the process immediately knows that a problem has occurred and has a better chance of recovery.

Ensure that all failures in resource allocation place the system into a safe posture.

Operation; Architecture and Design

Strategy: Resource Limitation

Use quotas or other resource-limiting settings provided by the operating system or environment. For example, when managing system resources in POSIX, setrlimit() can be used to set limits for certain types of resources, and getrlimit() can determine how many resources are available. However, these functions are not available on all operating systems.

When the current levels get close to the maximum that is defined for the application (see CWE-770), then limit the allocation of further resources to privileged users; alternately, begin releasing resources for less-privileged users. While this mitigation may protect the system from attack, it will not necessarily stop attackers from adversely impacting other users.

Ensure that the application performs the appropriate error checks and error handling in case resources become unavailable (CWE-703).

+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 400 Uncontrolled Resource Consumption
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 665 Improper Initialization
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 774 Allocation of File Descriptors or Handles Without Limits or Throttling
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 789 Memory Allocation with Excessive Size Value
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1325 Improperly Controlled Sequential Memory Allocation
CanFollow Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 20 Improper Input Validation
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 399 Resource Management Errors
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 840 Business Logic Errors
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 400 Uncontrolled Resource Consumption
+ Relevant to the view "Architectural Concepts" (View-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1011 Authorize Actors
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design OMISSION: This weakness is caused by missing a security tactic during the architecture and design phase.
Implementation
Operation
System Configuration
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Often Prevalent)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1


This code allocates a socket and forks each time it receives a new connection.

(bad code)
Example Language:
sock=socket(AF_INET, SOCK_STREAM, 0);
while (1) {
newsock=accept(sock, ...);
printf("A connection has been accepted\n");
pid = fork();
}

The program does not track how many connections have been made, and it does not limit the number of connections. Because forking is a relatively expensive operation, an attacker would be able to cause the system to run out of CPU, processes, or memory by making a large number of connections. Alternatively, an attacker could consume all available connections, preventing others from accessing the system remotely.



Example 2


In the following example a server socket connection is used to accept a request to store data on the local file system using a specified filename. The method openSocketConnection establishes a server socket to accept requests from a client. When a client establishes a connection to this service the getNextMessage method is first used to retrieve from the socket the name of the file to store the data, the openFileToWrite method will validate the filename and open a file to write to on the local file system. The getNextMessage is then used within a while loop to continuously read data from the socket and output the data to the file until there is no longer any data from the socket.

(bad code)
Example Language:
int writeDataFromSocketToFile(char *host, int port)
{

char filename[FILENAME_SIZE];
char buffer[BUFFER_SIZE];
int socket = openSocketConnection(host, port);

if (socket < 0) {
printf("Unable to open socket connection");
return(FAIL);
}
if (getNextMessage(socket, filename, FILENAME_SIZE) > 0) {
if (openFileToWrite(filename) > 0) {
while (getNextMessage(socket, buffer, BUFFER_SIZE) > 0){
if (!(writeToFile(buffer) > 0))
break;
}
}
closeFile();
}
closeSocket(socket);
}

This example creates a situation where data can be dumped to a file on the local file system without any limits on the size of the file. This could potentially exhaust file or disk resources and/or limit other clients' ability to access the service.



Example 3


In the following example, the processMessage method receives a two dimensional character array containing the message to be processed. The two-dimensional character array contains the length of the message in the first character array and the message body in the second character array. The getMessageLength method retrieves the integer value of the length from the first character array. After validating that the message length is greater than zero, the body character array pointer points to the start of the second character array of the two-dimensional character array and memory is allocated for the new body character array.

(bad code)
Example Language:

/* process message accepts a two-dimensional character array of the form [length][body] containing the message to be processed */
int processMessage(char **message)
{
char *body;

int length = getMessageLength(message[0]);

if (length > 0) {
body = &message[1][0];
processMessageBody(body);
return(SUCCESS);
}
else {
printf("Unable to process message; invalid message length");
return(FAIL);
}
}

This example creates a situation where the length of the body character array can be very large and will consume excessive memory, exhausting system resources. This can be avoided by restricting the length of the second character array with a maximum length check

Also, consider changing the type from 'int' to 'unsigned int', so that you are always guaranteed that the number is positive. This might not be possible if the protocol specifically requires allowing negative values, or if you cannot control the return value from getMessageLength(), but it could simplify the check to ensure the input is positive, and eliminate other errors such as signed-to-unsigned conversion errors (CWE-195) that may occur elsewhere in the code.

(good code)
Example Language:
unsigned int length = getMessageLength(message[0]);
if ((length > 0) && (length < MAX_LENGTH)) {...}


Example 4


In the following example, a server object creates a server socket and accepts client connections to the socket. For every client connection to the socket a separate thread object is generated using the ClientSocketThread class that handles request made by the client through the socket.

(bad code)
Example Language: Java 
public void acceptConnections() {
try {
ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0;
boolean hasConnections = true;
while (hasConnections) {
Socket client = serverSocket.accept();
Thread t = new Thread(new ClientSocketThread(client));
t.setName(client.getInetAddress().getHostName() + ":" + counter++);
t.start();
}
serverSocket.close();


} catch (IOException ex) {...}
}

In this example there is no limit to the number of client connections and client threads that are created. Allowing an unlimited number of client connections and threads could potentially overwhelm the system and system resources.

The server should limit the number of client connections and the client threads that are created. This can be easily done by creating a thread pool object that limits the number of threads that are generated.

(good code)
Example Language: Java 
public static final int SERVER_PORT = 4444;
public static final int MAX_CONNECTIONS = 10;
...

public void acceptConnections() {
try {
ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0;
boolean hasConnections = true;
while (hasConnections) {
hasConnections = checkForMoreConnections();
Socket client = serverSocket.accept();
Thread t = new Thread(new ClientSocketThread(client));
t.setName(client.getInetAddress().getHostName() + ":" + counter++);
ExecutorService pool = Executors.newFixedThreadPool(MAX_CONNECTIONS);
pool.execute(t);
}
serverSocket.close();


} catch (IOException ex) {...}
}


Example 5


An unnamed web site allowed a user to purchase tickets for an event. A menu option allowed the user to purchase up to 10 tickets, but the back end did not restrict the actual number of tickets that could be purchased.

Example 5 References:
[REF-667] Rafal Los. "Real-Life Example of a 'Business Logic Defect' (Screen Shots!)". 2011. <http://h30501.www3.hp.com/t5/Following-the-White-Rabbit-A/Real-Life-Example-of-a-Business-Logic-Defect-Screen-Shots/ba-p/22581>.


Example 6


Here the problem is that every time a connection is made, more memory is allocated. So if one just opened up more and more connections, eventually the machine would run out of memory.

(bad code)
Example Language:
bar connection() {
foo = malloc(1024);
return foo;
}

endConnection(bar foo) {
free(foo);
}

int main() {
while(1) {
foo=connection();
}

endConnection(foo)
}


+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Chain: Python library does not limit the resources used to process images that specify a very large number of bands (CWE-1284), leading to excessive memory consumption (CWE-789) or an integer overflow (CWE-190).
Language interpreter does not restrict the number of temporary files being created when handling a MIME request with a large number of parts..
Driver does not use a maximum width when invoking sscanf style functions, causing stack consumption.
Large integer value for a length property in an object causes a large amount of memory allocation.
Product allows exhaustion of file descriptors when processing a large number of TCP packets.
Communication product allows memory consumption with a large number of SIP requests, which cause many sessions to be created.
Product allows attackers to cause a denial of service via a large number of directives, each of which opens a separate window.
CMS does not restrict the number of searches that can occur simultaneously, leading to resource exhaustion.
web application scanner attempts to read an excessively large file created by a user, causing process termination
Go-based workload orchestrator does not limit resource usage with unauthenticated connections, allowing a DoS by flooding the service
+ Detection Methods
Method Details

Manual Static Analysis

Manual static analysis can be useful for finding this weakness, but it might not achieve desired code coverage within limited time constraints. If denial-of-service is not considered a significant risk, or if there is strong emphasis on consequences such as code execution, then manual analysis may not focus on this weakness at all.

Fuzzing

While fuzzing is typically geared toward finding low-level implementation bugs, it can inadvertently find uncontrolled resource allocation problems. This can occur when the fuzzer generates a large number of test cases but does not restart the targeted product in between test cases. If an individual test case produces a crash, but it does not do so reliably, then an inability to limit resource allocation may be the cause.

When the allocation is directly affected by numeric inputs, then fuzzing may produce indications of this weakness.

Effectiveness: Opportunistic

Automated Dynamic Analysis

Certain automated dynamic analysis techniques may be effective in producing side effects of uncontrolled resource allocation problems, especially with resources such as processes, memory, and connections. The technique may involve generating a large number of requests to the product within a short time frame. Manual analysis is likely required to interpret the results.

Automated Static Analysis

Specialized configuration or tuning may be required to train automated tools to recognize this weakness.

Automated static analysis typically has limited utility in recognizing unlimited allocation problems, except for the missing release of program-independent system resources such as files, sockets, and processes, or unchecked arguments to memory. For system resources, automated static analysis may be able to detect circumstances in which resources are not released after they have expired, or if too much of a resource is requested at once, as can occur with memory. Automated analysis of configuration files may be able to detect settings that do not specify a maximum value.

Automated static analysis tools will not be appropriate for detecting exhaustion of custom resources, such as an intended security policy in which a bulletin board user is only allowed to make a limited number of posts per day.

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 802 2010 Top 25 - Risky Resource Management
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 857 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 14 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 858 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 15 - Serialization (SER)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 861 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 18 - Miscellaneous (MSC)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 867 2011 Top 25 - Weaknesses On the Cusp
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 876 CERT C++ Secure Coding Section 08 - Memory Management (MEM)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 877 CERT C++ Secure Coding Section 09 - Input Output (FIO)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 985 SFP Secondary Cluster: Unrestricted Consumption
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1147 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1148 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1152 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous (MSC)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1416 Comprehensive Categorization: Resource Lifecycle Management
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Relationship

This entry is different from uncontrolled resource consumption (CWE-400) in that there are other weaknesses that are related to inability to control resource consumption, such as holding on to a resource too long after use, or not correctly keeping track of active resources so that they can be managed and released when they are finished (CWE-771).

Theoretical

Vulnerability theory is largely about how behaviors and resources interact. "Resource exhaustion" can be regarded as either a consequence or an attack, depending on the perspective. This entry is an attempt to reflect one of the underlying weaknesses that enable these attacks (or consequences) to take place.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure Coding Standard for Java (2011) FIO04-J Close resources when they are no longer needed
The CERT Oracle Secure Coding Standard for Java (2011) SER12-J Avoid memory and resource leaks during serialization
The CERT Oracle Secure Coding Standard for Java (2011) MSC05-J Do not exhaust heap space
ISA/IEC 62443 Part 4-2 Req CR 7.2
ISA/IEC 62443 Part 4-2 Req CR 2.7
ISA/IEC 62443 Part 4-1 Req SI-1
ISA/IEC 62443 Part 4-1 Req SI-2
ISA/IEC 62443 Part 3-3 Req SR 7.2
ISA/IEC 62443 Part 3-3 Req SR 2.7
+ References
[REF-386] Joao Antunes, Nuno Ferreira Neves and Paulo Verissimo. "Detection and Prediction of Resource-Exhaustion Vulnerabilities". Proceedings of the IEEE International Symposium on Software Reliability Engineering (ISSRE). 2008-11.
<https://www.di.fc.ul.pt/~nuno/PAPERS/ISSRE08.pdf>. (URL validated: 2025-07-24)
[REF-387] D.J. Bernstein. "Resource exhaustion".
<http://cr.yp.to/docs/resources.html>.
[REF-388] Pascal Meunier. "Resource exhaustion". Secure Programming Educational Material. 2004.
<http://homes.cerias.purdue.edu/~pmeunier/secprog/sanitized/class1/6.resource%20exhaustion.ppt>.
[REF-7] Michael Howard and David LeBlanc. "Writing Secure Code". Chapter 17, "Protecting Against Denial of Service Attacks" Page 517. 2nd Edition. Microsoft Press. 2002-12-04.
<https://www.microsoftpressstore.com/store/writing-secure-code-9780735617223>.
[REF-667] Rafal Los. "Real-Life Example of a 'Business Logic Defect' (Screen Shots!)". 2011.
<http://h30501.www3.hp.com/t5/Following-the-White-Rabbit-A/Real-Life-Example-of-a-Business-Logic-Defect-Screen-Shots/ba-p/22581>.
[REF-672] Frank Kim. "Top 25 Series - Rank 22 - Allocation of Resources Without Limits or Throttling". SANS Software Security Institute. 2010-03-23.
<https://web.archive.org/web/20170113055136/https://software-security.sans.org/blog/2010/03/23/top-25-series-rank-22-allocation-of-resources-without-limits-or-throttling/>. (URL validated: 2023-04-07)
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 10, "Resource Limits", Page 574. 1st Edition. Addison Wesley. 2006.
+ Content History
+ Submissions
Submission Date Submitter Organization
2009-05-13
(CWE 1.4, 2009-05-27)
CWE Content Team MITRE
+ Contributions
Contribution Date Contributor Organization
2023-11-14
(CWE 4.14, 2024-02-29)
participants in the CWE ICS/OT SIG 62443 Mapping Fall Workshop
Contributed or reviewed taxonomy mappings for ISA/IEC 62443
+ Modifications
Modification Date Modifier Organization
2025-09-09
(CWE 4.18, 2025-09-09)
CWE Content Team MITRE
updated Common_Consequences, Description, Diagram, Observed_Examples, Potential_Mitigations, References
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Taxonomy_Mappings
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated References, Relationships
2023-01-31 CWE Content Team MITRE
updated Description, Detection_Factors
2022-10-13 CWE Content Team MITRE
updated Observed_Examples, References
2021-07-20 CWE Content Team MITRE
updated Observed_Examples
2020-12-10 CWE Content Team MITRE
updated Relationships
2020-06-25 CWE Content Team MITRE
updated Applicable_Platforms, Description, Maintenance_Notes, Potential_Mitigations, Relationship_Notes, Relationships
2020-02-24 CWE Content Team MITRE
updated Potential_Mitigations, Related_Attack_Patterns, Relationships
2019-06-20 CWE Content Team MITRE
updated Related_Attack_Patterns, Relationships
2019-01-03 CWE Content Team MITRE
updated Demonstrative_Examples, Description, Relationships, Taxonomy_Mappings
2018-03-27 CWE Content Team MITRE
updated References
2017-11-08 CWE Content Team MITRE
updated Demonstrative_Examples, Likelihood_of_Exploit, Modes_of_Introduction, Potential_Mitigations, References, Relationships, Taxonomy_Mappings
2017-05-03 CWE Content Team MITRE
updated Related_Attack_Patterns
2015-12-07 CWE Content Team MITRE
updated Related_Attack_Patterns
2014-07-30 CWE Content Team MITRE
updated Relationships
2014-06-23 CWE Content Team MITRE
updated Related_Attack_Patterns
2014-02-18 CWE Content Team MITRE
updated Related_Attack_Patterns
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Demonstrative_Examples, References, Related_Attack_Patterns, Relationships, Taxonomy_Mappings
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-03-29 CWE Content Team MITRE
updated Demonstrative_Examples, Detection_Factors, Relationships
2010-09-27 CWE Content Team MITRE
updated Demonstrative_Examples, Potential_Mitigations
2010-06-21 CWE Content Team MITRE
updated Common_Consequences, Potential_Mitigations, References
2010-04-05 CWE Content Team MITRE
updated Common_Consequences, Demonstrative_Examples, Related_Attack_Patterns
2010-02-16 CWE Content Team MITRE
updated Common_Consequences, Detection_Factors, Potential_Mitigations, References, Related_Attack_Patterns, Relationships
2009-12-28 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Detection_Factors, Observed_Examples, References, Time_of_Introduction
2009-10-29 CWE Content Team MITRE
updated Relationships
2009-07-27 CWE Content Team MITRE
updated Related_Attack_Patterns

CWE-405: Asymmetric Resource Consumption (Amplification)

Weakness ID: 405
Vulnerability Mapping: ALLOWED This CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review (with careful review of mapping notes)
Abstraction: Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product does not properly control situations in which an adversary can cause the product to consume or produce excessive resources without requiring the adversary to invest equivalent work or otherwise prove authorization, i.e., the adversary's influence is "asymmetric."
+ Extended Description
This can lead to poor performance due to "amplification" of resource consumption, typically in a non-linear fashion. This situation is worsened if the product allows malicious users or attackers to consume more resources than their access level permits.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

DoS: Amplification; DoS: Resource Consumption (CPU); DoS: Resource Consumption (Memory); DoS: Resource Consumption (Other)

Scope: Availability

Likelihood: High

Sometimes this is a factor in "flood" attacks, but other types of amplification exist.
+ Potential Mitigations
Phase(s) Mitigation

Architecture and Design

An application must make resources available to a client commensurate with the client's access level.

Architecture and Design

An application must, at all times, keep track of allocated resources and meter their usage appropriately.

System Configuration

Consider disabling resource-intensive algorithms on the server side, such as Diffie-Hellman key exchange.

Effectiveness: High

Note: Business requirements may prevent disabling resource-intensive algorithms.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 400 Uncontrolled Resource Consumption
ParentOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 406 Insufficient Control of Network Message Volume (Network Amplification)
ParentOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 407 Inefficient Algorithmic Complexity
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 408 Incorrect Behavior Order: Early Amplification
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 409 Improper Handling of Highly Compressed Data (Data Amplification)
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 776 Improper Restriction of Recursive Entity References in DTDs ('XML Entity Expansion')
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1050 Excessive Platform Resource Consumption within a Loop
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1072 Data Resource Access without Use of Connection Pooling
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1073 Non-SQL Invokable Control Element with Excessive Number of Data Resource Accesses
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1084 Invokable Control Element with Excessive File or Data Access Operations
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1089 Large Data Table with Excessive Number of Indices
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1094 Excessive Index Range Scan for a Data Resource
ParentOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 1176 Inefficient CPU Computation
PeerOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 404 Improper Resource Shutdown or Release
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design
Implementation
Operation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

Operating Systems

Class: Not OS-Specific (Undetermined Prevalence)

Architectures

Class: Not Architecture-Specific (Undetermined Prevalence)

Technologies

Class: Not Technology-Specific (Undetermined Prevalence)

Class: Client Server (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


This code listens on a port for DNS requests and sends the result to the requesting address.

(bad code)
Example Language: Python 
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind( (UDP_IP,UDP_PORT) )
while true:
data = sock.recvfrom(1024)
if not data:
break

(requestIP, nameToResolve) = parseUDPpacket(data)
record = resolveName(nameToResolve)
sendResponse(requestIP,record)

This code sends a DNS record to a requesting IP address. UDP allows the source IP address to be easily changed ('spoofed'), thus allowing an attacker to redirect responses to a target, which may be then be overwhelmed by the network traffic.



Example 2


This function prints the contents of a specified file requested by a user.

(bad code)
Example Language: PHP 
function printFile($username,$filename){

//read file into string
$file = file_get_contents($filename);
if ($file && isOwnerOf($username,$filename)){
echo $file;
return true;
}
else{
echo 'You are not authorized to view this file';
}
return false;
}

This code first reads a specified file into memory, then prints the file if the user is authorized to see its contents. The read of the file into memory may be resource intensive and is unnecessary if the user is not allowed to see the file anyway.



Example 3


The DTD and the very brief XML below illustrate what is meant by an XML bomb. The ZERO entity contains one character, the letter A. The choice of entity name ZERO is being used to indicate length equivalent to that exponent on two, that is, the length of ZERO is 2^0. Similarly, ONE refers to ZERO twice, therefore the XML parser will expand ONE to a length of 2, or 2^1. Ultimately, we reach entity THIRTYTWO, which will expand to 2^32 characters in length, or 4 GB, probably consuming far more data than expected.

(attack code)
Example Language: XML 
<?xml version="1.0"?>
<!DOCTYPE MaliciousDTD [
<!ENTITY ZERO "A">
<!ENTITY ONE "&ZERO;&ZERO;">
<!ENTITY TWO "&ONE;&ONE;">
...
<!ENTITY THIRTYTWO "&THIRTYONE;&THIRTYONE;">
]>
<data>&THIRTYTWO;</data>


Example 4


This example attempts to check if an input string is a "sentence" [REF-1164].

(bad code)
Example Language: JavaScript 
var test_string = "Bad characters: $@#";
var bad_pattern = /^(\w+\s?)*$/i;
var result = test_string.search(bad_pattern);

The regular expression has a vulnerable backtracking clause inside (\w+\s?)*$ which can be triggered to cause a Denial of Service by processing particular phrases.

To fix the backtracking problem, backtracking is removed with the ?= portion of the expression which changes it to a lookahead and the \2 which prevents the backtracking. The modified example is:

(good code)
Example Language: JavaScript 
var test_string = "Bad characters: $@#";
var good_pattern = /^((?=(\w+))\2\s?)*$/i;
var result = test_string.search(good_pattern);

Note that [REF-1164] has a more thorough (and lengthy) explanation of everything going on within the RegEx.



Example 5


An adversary can cause significant resource consumption on a server by filtering the cryptographic algorithms offered by the client to the ones that are the most resource-intensive on the server side. After discovering which cryptographic algorithms are supported by the server, a malicious client can send the initial cryptographic handshake messages that contains only the resource-intensive algorithms. For some cryptographic protocols, these messages can be completely prefabricated, as the resource-intensive part of the handshake happens on the server-side first (such as TLS), rather than on the client side. In the case of cryptographic protocols where the resource-intensive part should happen on the client-side first (such as SSH), a malicious client can send a forged/precalculated computation result, which seems correct to the server, so the resource-intensive part of the handshake is going to happen on the server side. A malicious client is required to send only the initial messages of a cryptographic handshake to initiate the resource-consuming part of the cryptographic handshake. These messages are usually small, and generating them requires minimal computational effort, enabling a denial-of-service attack. An additional risk is the fact that higher key size increases the effectiveness of the attack. Cryptographic protocols where the clients have influence over the size of the used key (such as TLS 1.3 or SSH) are most at risk, as the client can enforce the highest key size supported by the server.



+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Classic "Smurf" attack, using spoofed ICMP packets to broadcast addresses.
Parsing library allows XML bomb
Tool creates directories before authenticating user.
Python has "quadratic complexity" issue when converting string to int with many digits in unexpected bases
server allows ReDOS with crafted User-Agent strings, due to overlapping capture groups that cause excessive backtracking.
composite: NTP feature generates large responses (high amplification factor) with spoofed UDP source addresses.
Diffie-Hellman (DHE) Key Agreement Protocol allows attackers to send arbitrary numbers that are not public keys, which causes the server to perform expensive, unnecessary computation of modular exponentiation.
The Diffie-Hellman Key Agreement Protocol allows use of long exponents, which are more computationally expensive than using certain "short exponents" with particular properties.
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 730 OWASP Top Ten 2004 Category A9 - Denial of Service
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 855 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 12 - Thread Pools (TPS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 857 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 14 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 977 SFP Secondary Cluster: Design
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1145 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 11. Thread Pools (TPS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1147 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1416 Comprehensive Categorization: Resource Lifecycle Management
+ Vulnerability Mapping Notes
Usage ALLOWED-WITH-REVIEW
(this CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review)
Reason Abstraction

Rationale

This CWE entry is a Class and might have Base-level children that would be more appropriate

Comments

Examine children of this entry to see if there is a better fit
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Asymmetric resource consumption (amplification)
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
WASC 41 XML Attribute Blowup
The CERT Oracle Secure Coding Standard for Java (2011) TPS00-J Use thread pools to enable graceful degradation of service during traffic bursts
The CERT Oracle Secure Coding Standard for Java (2011) FIO04-J Release resources when they are no longer needed
+ References
[REF-1164] Ilya Kantor. "Catastrophic backtracking". 2020-12-13.
<https://javascript.info/regexp-catastrophic-backtracking>.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Contributions
Contribution Date Contributor Organization
2021-11-11 Szilárd Pfeiffer Balasys IT Security
Submitted content that led to modifications in applicable platforms, common consequences, potential mitigations, demonstrative examples, observed examples.
+ Modifications
Modification Date Modifier Organization
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Demonstrative_Examples
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes, Relationships
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-01-31 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Demonstrative_Examples, Description, Observed_Examples, Potential_Mitigations, References, Time_of_Introduction
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-06-20 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Functional_Areas
2015-12-07 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Common_Consequences
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2010-12-13 CWE Content Team MITRE
updated Description
2010-02-16 CWE Content Team MITRE
updated Taxonomy_Mappings
2009-07-27 CWE Content Team MITRE
updated Common_Consequences, Other_Notes
2008-10-14 CWE Content Team MITRE
updated Description
2008-09-08 CWE Content Team MITRE
updated Relationships, Other_Notes, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction

CWE-289: Authentication Bypass by Alternate Name

Weakness ID: 289
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product performs authentication based on the name of a resource being accessed, or the name of the actor performing the access, but it does not properly check all possible names for that resource or actor.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Bypass Protection Mechanism

Scope: Access Control

+ Potential Mitigations
Phase(s) Mitigation

Architecture and Design

Strategy: Input Validation

Avoid making decisions based on names of resources (e.g. files) if those resources can have alternate names.

Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

Implementation

Strategy: Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180). Make sure that the application does not decode the same input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by introducing dangerous inputs after they have been checked.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 1390 Weak Authentication
CanFollow Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 46 Path Equivalence: 'filename ' (Trailing Space)
CanFollow Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 52 Path Equivalence: '/multiple/trailing/slash//'
CanFollow Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 173 Improper Handling of Alternate Encoding
CanFollow Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 178 Improper Handling of Case Sensitivity
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1211 Authentication Errors
+ Relevant to the view "Architectural Concepts" (View-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1010 Authenticate Actors
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design COMMISSION: This weakness refers to an incorrect design related to an architectural security tactic.
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Protection mechanism that restricts URL access can be bypassed using URL encoding.
Bypass of authentication for files using "\" (backslash) or "%5C" (encoded backslash).
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 845 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 2 - Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 947 SFP Secondary Cluster: Authentication Bypass
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1134 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1396 Comprehensive Categorization: Access Control
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Relationship

Overlaps equivalent encodings, canonicalization, authorization, multiple trailing slash, trailing space, mixed case, and other equivalence issues.

Theoretical

Alternate names are useful in data driven manipulation attacks, not just for authentication.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Authentication bypass by alternate name
The CERT Oracle Secure Coding Standard for Java (2011) IDS01-J CWE More Specific Normalize strings before validating them
SEI CERT Oracle Coding Standard for Java IDS01-J CWE More Specific Normalize strings before validating them
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Modifications
Modification Date Modifier Organization
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-01-31 CWE Content Team MITRE
updated Description, Type
2022-10-13 CWE Content Team MITRE
updated Relationships
2020-06-25 CWE Content Team MITRE
updated Potential_Mitigations
2020-02-24 CWE Content Team MITRE
updated Potential_Mitigations, Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Modes_of_Introduction, Relationships
2017-05-03 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-03-29 CWE Content Team MITRE
updated Potential_Mitigations
2009-07-27 CWE Content Team MITRE
updated Other_Notes, Potential_Mitigations, Theoretical_Notes
2008-11-24 CWE Content Team MITRE
updated Observed_Examples
2008-09-08 CWE Content Team MITRE
updated Description, Relationships, Other_Notes, Relationship_Notes, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Potential_Mitigations, Time_of_Introduction

CWE-589: Call to Non-ubiquitous API

Weakness ID: 589
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product uses an API function that does not exist on all versions of the target platform. This could cause portability problems or inconsistencies that allow denial of service or other consequences.
+ Extended Description
Some functions that offer security features supported by the OS are not available on all versions of the OS in common use. Likewise, functions are often deprecated or made obsolete for security reasons and should not be used.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Quality Degradation

Scope: Other

+ Potential Mitigations
Phase(s) Mitigation

Implementation

Always test your code on any platform on which it is targeted to run on.

Testing

Test your code on the newest and oldest platform on which it is targeted to run on.

Testing

Develop a system to test for API functions that are not portable.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 474 Use of Function with Inconsistent Implementations
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design
Implementation
+ Weakness Ordinalities
Ordinality Description
Indirect
(where the weakness is a quality issue that might indirectly make it easier to introduce security-relevant weaknesses or make them more difficult to detect)
+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 850 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 7 - Methods (MET)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 858 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 15 - Serialization (SER)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1001 SFP Secondary Cluster: Use of an Improper API
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1140 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1412 Comprehensive Categorization: Poor Coding Practices
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure Coding Standard for Java (2011) MET02-J Do not use deprecated or obsolete classes or methods
The CERT Oracle Secure Coding Standard for Java (2011) SER00-J Maintain serialization compatibility during class evolution
Software Fault Patterns SFP3 Use of an improper API
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-12-15
(CWE Draft 5, 2006-12-15)
CWE Content Team MITRE
+ Modifications
Modification Date Modifier Organization
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings, Weakness_Ordinalities
2017-11-08 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Common_Consequences
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2009-07-27 CWE Content Team MITRE
updated Other_Notes, Potential_Mitigations
2008-10-14 CWE Content Team MITRE
updated Description
2008-09-08 CWE Content Team MITRE
updated Relationships, Other_Notes
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Call to Limited API

CWE-572: Call to Thread run() instead of start()

Weakness ID: 572
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product calls a thread's run() method instead of calling start(), which causes the code to run in the thread of the caller instead of the callee.
+ Extended Description
In most cases a direct call to a Thread object's run() method is a bug. The programmer intended to begin a new thread of control, but accidentally called run() instead of start(), so the run() method will execute in the caller's thread of control.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Quality Degradation; Varies by Context

Scope: Other

+ Potential Mitigations
Phase(s) Mitigation

Implementation

Use the start() method instead of the run() method.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 821 Incorrect Synchronization
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Java (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


The following excerpt from a Java program mistakenly calls run() instead of start().

(bad code)
Example Language: Java 
Thread thr = new Thread() {
public void run() {
...
}
};

thr.run();


+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Affected Resources
  • System Process
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 854 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 11 - Thread APIs (THI)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1001 SFP Secondary Cluster: Use of an Improper API
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1144 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 10. Thread APIs (THI)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1401 Comprehensive Categorization: Concurrency
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure Coding Standard for Java (2011) THI00-J Do not invoke Thread.run()
Software Fault Patterns SFP3 Use of an improper API
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-12-15
(CWE Draft 5, 2006-12-15)
CWE Community
Submitted by members of the CWE community to extend early CWE versions
+ Modifications
Modification Date Modifier Organization
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Common_Consequences
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2010-09-27 CWE Content Team MITRE
updated Relationships
2009-07-27 CWE Content Team MITRE
updated Description, Other_Notes
2009-05-27 CWE Content Team MITRE
updated Demonstrative_Examples
2008-09-08 CWE Content Team MITRE
updated Relationships, Other_Notes
2008-07-01 Eric Dalci Cigital
updated Potential_Mitigations, Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Call to Thread.run()

CWE-319: Cleartext Transmission of Sensitive Information

Weakness ID: 319
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product transmits sensitive or security-critical data in cleartext in a communication channel that can be sniffed by unauthorized actors. Diagram for CWE-319
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Read Application Data; Modify Files or Directories

Scope: Integrity, Confidentiality

Anyone can read the information by gaining access to the channel being used for communication. Many communication channels can be "sniffed" (monitored) by adversaries during data transmission. For example, in networking, packets can traverse many intermediary nodes from the source to the destination, whether across the internet, an internal network, the cloud, etc. Some actors might have privileged access to a network interface or any link along the channel, such as a router, but they might not be authorized to collect the underlying data. As a result, network traffic could be sniffed by adversaries, spilling security-critical data.

Read Application Data; Modify Files or Directories; Other

Scope: Integrity, Confidentiality

When full communications are recorded or logged, such as with a packet dump, an adversary could attempt to obtain the dump long after the transmission has occurred and try to "sniff" the cleartext from the recorded communications in the dump itself. Even if the information is encoded in a way that is not human-readable, certain techniques could determine which encoding is being used, then decode the information.
+ Potential Mitigations
Phase(s) Mitigation

Architecture and Design

Before transmitting, encrypt the data using reliable, confidentiality-protecting cryptographic protocols.

Implementation

When using web applications with SSL, use SSL for the entire session from login to logout, not just for the initial login page.

Implementation

When designing hardware platforms, ensure that approved encryption algorithms (such as those recommended by NIST) protect paths from security critical data to trusted user applications.

Testing

Use tools and techniques that require manual (human) analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester to record and modify an active session. These may be more effective than strictly automated techniques. This is especially the case with weaknesses that are related to design and business rules.

Operation

Configure servers to use encrypted channels for communication, which may include SSL or other secure protocols.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 311 Missing Encryption of Sensitive Data
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 5 J2EE Misconfiguration: Data Transmission Without Encryption
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 614 Sensitive Cookie in HTTPS Session Without 'Secure' Attribute
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1428 Reliance on HTTP instead of HTTPS
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 199 Information Management Errors
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 311 Missing Encryption of Sensitive Data
+ Relevant to the view "Architectural Concepts" (View-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1013 Encrypt Data
+ Relevant to the view "Hardware Design" (View-1194)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1207 Debug and Test Problems
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design OMISSION: This weakness is caused by missing a security tactic during the architecture and design phase.
Architecture and Design For hardware, this may be introduced when design does not plan for an attacker having physical access while a legitimate user is remotely operating the device.
Operation
System Configuration
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

Technologies

Class: Cloud Computing (Undetermined Prevalence)

Class: Mobile (Undetermined Prevalence)

Class: ICS/OT (Often Prevalent)

Class: System on Chip (Undetermined Prevalence)

Test/Debug Hardware (Often Prevalent)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1


The following code attempts to establish a connection to a site to communicate sensitive information.

(bad code)
Example Language: Java 
try {
URL u = new URL("http://www.secret.example.org/");
HttpURLConnection hu = (HttpURLConnection) u.openConnection();
hu.setRequestMethod("PUT");
hu.connect();
OutputStream os = hu.getOutputStream();
hu.disconnect();
}
catch (IOException e) {
//...
}

Though a connection is successfully made, the connection is unencrypted and it is possible that all sensitive data sent to or received from the server will be read by unintended actors.



Example 2


In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications.

Multiple vendors used cleartext transmission of sensitive information in their OT products.



Example 3


A TAP accessible register is read/written by a JTAG based tool, for internal use by authorized users. However, an adversary can connect a probing device and collect the values from the unencrypted channel connecting the JTAG interface to the authorized user, if no additional protections are employed.



Example 4


The following Azure CLI command lists the properties of a particular storage account:

(informative)
Example Language: Shell 
az storage account show -g {ResourceGroupName} -n {StorageAccountName}

The JSON result might be:

(bad code)
Example Language: JSON 
{
"name": "{StorageAccountName}",
"enableHttpsTrafficOnly": false,
"type": "Microsoft.Storage/storageAccounts"
}

The enableHttpsTrafficOnly value is set to false, because the default setting for Secure transfer is set to Disabled. This allows cloud storage resources to successfully connect and transfer data without the use of encryption (e.g., HTTP, SMB 2.1, SMB 3.0, etc.).

Azure's storage accounts can be configured to only accept requests from secure connections made over HTTPS. The secure transfer setting can be enabled using Azure's Portal (GUI) or programmatically by setting the enableHttpsTrafficOnly property to True on the storage account, such as:

(good code)
Example Language: Shell 
az storage account update -g {ResourceGroupName} -n {StorageAccountName} --https-only true

The change can be confirmed from the result by verifying that the enableHttpsTrafficOnly value is true:

(good code)
Example Language: JSON 
{
"name": "{StorageAccountName}",
"enableHttpsTrafficOnly": true,
"type": "Microsoft.Storage/storageAccounts"
}

Note: to enable secure transfer using Azure's Portal instead of the command line:

  1. Open the Create storage account pane in the Azure portal.
  2. In the Advanced page, select the Enable secure transfer checkbox.



+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Programmable Logic Controller (PLC) sends sensitive information in plaintext, including passwords and session tokens.
Building Controller uses a protocol that transmits authentication credentials in plaintext.
Programmable Logic Controller (PLC) sends password in plaintext.
Passwords transmitted in cleartext.
Chain: Use of HTTPS cookie without "secure" flag causes it to be transmitted across unencrypted HTTP.
Product sends password hash in cleartext in violation of intended policy.
Remote management feature sends sensitive information including passwords in cleartext.
Backup routine sends password in cleartext in email.
Product transmits Blowfish encryption key in cleartext.
Printer sends configuration information, including administrative password, in cleartext.
Chain: cleartext transmission of the MD5 hash of password enables attacks against a server that is susceptible to replay (CWE-294).
Product sends passwords in cleartext to a log server.
Product sends file with cleartext passwords in e-mail message intended for diagnostic purposes.
+ Detection Methods
Method Details

Black Box

Use monitoring tools that examine the software's process as it interacts with the operating system and the network. This technique is useful in cases when source code is unavailable, if the software was not developed by you, or if you want to verify that the build phase did not introduce any new weaknesses. Examples include debuggers that directly attach to the running process; system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and sniffers and protocol analyzers that monitor network traffic.

Attach the monitor to the process, trigger the feature that sends the data, and look for the presence or absence of common cryptographic functions in the call tree. Monitor the network and determine if the data packets contain readable commands. Tools exist for detecting if certain encodings are in use. If the traffic contains high entropy, this might indicate the usage of encryption.

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 751 2009 Top 25 - Insecure Interaction Between Components
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 818 OWASP Top Ten 2010 Category A9 - Insufficient Transport Layer Protection
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 858 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 15 - Serialization (SER)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 859 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 16 - Platform Security (SEC)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 934 OWASP Top Ten 2013 Category A6 - Sensitive Data Exposure
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 963 SFP Secondary Cluster: Exposed Data
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1029 OWASP Top Ten 2017 Category A3 - Sensitive Data Exposure
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1148 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1346 OWASP Top Ten 2021 Category A02:2021 - Cryptographic Failures
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1366 ICS Communications: Frail Security in Protocols
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1402 Comprehensive Categorization: Encryption
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Other

Applicable communication channels are not limited to software products. Applicable channels include hardware-specific technologies such as internal hardware networks and external debug channels, supporting remote JTAG debugging. When mitigations are not applied to combat adversaries within the product's threat model, this weakness significantly lowers the difficulty of exploitation by such adversaries.

Maintenance

The Taxonomy_Mappings to ISA/IEC 62443 were added in CWE 4.10, but they are still under review and might change in future CWE versions. These draft mappings were performed by members of the "Mapping CWE to 62443" subgroup of the CWE-CAPEC ICS/OT Special Interest Group (SIG), and their work is incomplete as of CWE 4.10. The mappings are included to facilitate discussion and review by the broader ICS/OT community, and they are likely to change in future CWE versions.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Plaintext Transmission of Sensitive Information
The CERT Oracle Secure Coding Standard for Java (2011) SEC06-J Do not rely on the default automatic signature verification provided by URLClassLoader and java.util.jar
The CERT Oracle Secure Coding Standard for Java (2011) SER02-J Sign then seal sensitive objects before sending them outside a trust boundary
Software Fault Patterns SFP23 Exposed Data
ISA/IEC 62443 Part 3-3 Req SR 4.1
ISA/IEC 62443 Part 4-2 Req CR 4.1B
+ References
[REF-271] OWASP. "Top 10 2007-Insecure Communications". 2007.
<https://web.archive.org/web/20160319230109/http://www.owasp.org/index.php/Top_10_2007-A9>. (URL validated: 2025-08-04)
[REF-7] Michael Howard and David LeBlanc. "Writing Secure Code". Chapter 9, "Protecting Secret Data" Page 299. 2nd Edition. Microsoft Press. 2002-12-04.
<https://www.microsoftpressstore.com/store/writing-secure-code-9780735617223>.
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 22: Failing to Protect Network Traffic." Page 337. McGraw-Hill. 2010.
[REF-172] Chris Wysopal. "Mobile App Top 10 List". 2010-12-13.
<https://www.veracode.com/blog/2010/12/mobile-app-top-10-list>. (URL validated: 2023-04-07)
[REF-1283] Forescout Vedere Labs. "OT:ICEFALL: The legacy of "insecure by design" and its implications for certifications and risk management". 2022-06-20.
<https://www.forescout.com/resources/ot-icefall-report/>.
[REF-1307] Center for Internet Security. "CIS Microsoft Azure Foundations Benchmark version 1.5.0". Sections 3.1 and 3.10. 2022-08-16.
<https://www.cisecurity.org/benchmark/azure>. (URL validated: 2023-01-19)
[REF-1309] Microsoft. "Require secure transfer to ensure secure connections". 2022-07-24.
<https://learn.microsoft.com/en-us/azure/storage/common/storage-require-secure-transfer>. (URL validated: 2023-01-24)
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Contributions
Contribution Date Contributor Organization
2023-01-24 Accellera IP Security Assurance (IPSA) Working Group Accellera Systems Initiative
Submitted original contents of CWE-1324 and reviewed its integration into this entry.
+ Modifications
Modification Date Modifier Organization
2025-09-09
(CWE 4.18, 2025-09-09)
CWE Content Team MITRE
updated References
2025-04-03
(CWE 4.17, 2025-04-03)
CWE Content Team MITRE
updated Common_Consequences, Description, Diagram, Other_Notes, Relationships
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Demonstrative_Examples
2023-06-29 CWE Content Team MITRE
updated Description, Mapping_Notes, Relationships
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, References, Relationships
2023-01-31 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Description, Maintenance_Notes, Modes_of_Introduction, Potential_Mitigations, References, Relationships, Taxonomy_Mappings
2022-10-13 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Observed_Examples, References
2022-06-28 CWE Content Team MITRE
updated Relationships
2021-10-28 CWE Content Team MITRE
updated Relationships
2020-02-24 CWE Content Team MITRE
updated Applicable_Platforms, Related_Attack_Patterns, Relationships
2019-06-20 CWE Content Team MITRE
updated Relationships, Type
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2018-03-27 CWE Content Team MITRE
updated References, Relationships, Type
2018-01-23 CWE Content Team MITRE
updated Abstraction
2017-11-08 CWE Content Team MITRE
updated Likelihood_of_Exploit, Modes_of_Introduction, References, Relationships
2017-05-03 CWE Content Team MITRE
updated Related_Attack_Patterns
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2014-06-23 CWE Content Team MITRE
updated Relationships
2014-02-18 CWE Content Team MITRE
updated Related_Attack_Patterns
2013-07-17 CWE Content Team MITRE
updated Relationships
2013-02-21 CWE Content Team MITRE
updated Applicable_Platforms, References
2012-05-11 CWE Content Team MITRE
updated Demonstrative_Examples, References, Related_Attack_Patterns, Relationships, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-03-29 CWE Content Team MITRE
updated Potential_Mitigations
2010-12-13 CWE Content Team MITRE
updated Observed_Examples, Related_Attack_Patterns
2010-06-21 CWE Content Team MITRE
updated Detection_Factors, Relationships
2010-04-05 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Time_of_Introduction
2010-02-16 CWE Content Team MITRE
updated References
2009-05-27 CWE Content Team MITRE
updated Related_Attack_Patterns
2009-03-10 CWE Content Team MITRE
updated Potential_Mitigations
2009-01-12 CWE Content Team MITRE
updated Common_Consequences, Description, Likelihood_of_Exploit, Name, Observed_Examples, Potential_Mitigations, References, Relationships
2008-09-08 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2009-01-12 Plaintext Transmission of Sensitive Information

CWE-498: Cloneable Class Containing Sensitive Information

Weakness ID: 498
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The code contains a class with sensitive data, but the class is cloneable. The data can then be accessed by cloning the class.
+ Extended Description
Cloneable classes are effectively open classes, since data cannot be hidden in them. Classes that do not explicitly deny cloning can be cloned by any other class without running the constructor.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Bypass Protection Mechanism

Scope: Access Control

A class that can be cloned can be produced without executing the constructor. This is dangerous since the constructor may perform security-related checks. By allowing the object to be cloned, those checks may be bypassed.
+ Potential Mitigations
Phase(s) Mitigation

Implementation

If you do make your classes clonable, ensure that your clone method is final and throw super.clone().
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 668 Exposure of Resource to Wrong Sphere
CanPrecede Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 200 Exposure of Sensitive Information to an Unauthorized Actor
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

C++ (Undetermined Prevalence)

Java (Undetermined Prevalence)

C# (Undetermined Prevalence)

+ Likelihood Of Exploit
Medium
+ Demonstrative Examples

Example 1


The following example demonstrates the weakness.

(bad code)
Example Language: Java 
public class CloneClient {
public CloneClient() //throws
java.lang.CloneNotSupportedException {

Teacher t1 = new Teacher("guddu","22,nagar road");
//...
// Do some stuff to remove the teacher.
Teacher t2 = (Teacher)t1.clone();
System.out.println(t2.name);
}
public static void main(String args[]) {

new CloneClient();
}
}
class Teacher implements Cloneable {

public Object clone() {

try {
return super.clone();
}
catch (java.lang.CloneNotSupportedException e) {

throw new RuntimeException(e.toString());
}
}
public String name;
public String clas;
public Teacher(String name,String clas) {

this.name = name;
this.clas = clas;
}
}

Make classes uncloneable by defining a clone function like:

(good code)
Example Language: Java 
public final void clone() throws java.lang.CloneNotSupportedException {
throw new java.lang.CloneNotSupportedException();
}


+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 849 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 6 - Object Orientation (OBJ)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 963 SFP Secondary Cluster: Exposed Data
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1139 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation (OBJ)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1403 Comprehensive Categorization: Exposed Resource
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Information leak through class cloning
The CERT Oracle Secure Coding Standard for Java (2011) OBJ07-J Sensitive classes must not let themselves be copied
Software Fault Patterns SFP23 Exposed Data
+ References
[REF-18] Secure Software, Inc.. "The CLASP Application Security Process". 2005.
<https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf>. (URL validated: 2024-11-17)
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
CLASP
+ Modifications
Modification Date Modifier Organization
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Relationships
2021-03-15 CWE Content Team MITRE
updated Relationships
2020-02-24 CWE Content Team MITRE
updated References, Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Demonstrative_Examples, Potential_Mitigations, Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-05-11 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-03-29 CWE Content Team MITRE
updated Name
2009-10-29 CWE Content Team MITRE
updated Common_Consequences, Description, Other_Notes, Potential_Mitigations
2008-10-14 CWE Content Team MITRE
updated Other_Notes
2008-09-08 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Description, Relationships, Other_Notes, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2011-03-29 Information Leak through Class Cloning

CWE-182: Collapse of Data into Unsafe Value

Weakness ID: 182
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product filters data in a way that causes it to be reduced or "collapsed" into an unsafe value that violates an expected security property.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Bypass Protection Mechanism

Scope: Access Control

+ Potential Mitigations
Phase(s) Mitigation

Architecture and Design

Strategy: Input Validation

Avoid making decisions based on names of resources (e.g. files) if those resources can have alternate names.

Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

Implementation

Strategy: Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180). Make sure that the application does not decode the same input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by introducing dangerous inputs after they have been checked.
Canonicalize the name to match that of the file system's representation of the name. This can sometimes be achieved with an available API (e.g. in Win32 the GetFullPathName function).
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 707 Improper Neutralization
CanFollow Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 185 Incorrect Regular Expression
CanPrecede Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 33 Path Traversal: '....' (Multiple Dot)
CanPrecede Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 34 Path Traversal: '....//'
CanPrecede Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 35 Path Traversal: '.../...//'
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 19 Data Processing Errors
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
"/.////" in pathname collapses to absolute path.
"/.//..//////././" is collapsed into "/.././" after ".." and "//" sequences are removed.
".../...//" collapsed to "..." due to removal of "./" in web server.
chain: HTTP server protects against ".." but allows "." variants such as "////./../.../". If the server removes "/.." sequences, the result would collapse into an unsafe value "////../" (CWE-182).
MFV. Regular expression intended to protect against directory traversal reduces ".../...//" to "../".
XSS protection mechanism strips a <script> sequence that is nested in another <script> sequence.
+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 845 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 2 - Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 992 SFP Secondary Cluster: Faulty Input Transformation
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1134 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1413 Comprehensive Categorization: Protection Mechanism Failure
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Relationship

Overlaps regular expressions, although an implementation might not necessarily use regexp's.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Collapse of Data into Unsafe Value
The CERT Oracle Secure Coding Standard for Java (2011) IDS11-J Eliminate noncharacter code points before validation
+ References
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 8, "Character Stripping Vulnerabilities", Page 437. 1st Edition. Addison Wesley. 2006.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Modifications
Modification Date Modifier Organization
2025-04-03
(CWE 4.17, 2025-04-03)
CWE Content Team MITRE
updated Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2020-06-25 CWE Content Team MITRE
updated Potential_Mitigations
2020-02-24 CWE Content Team MITRE
updated Potential_Mitigations, Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Relevant_Properties
2014-07-30 CWE Content Team MITRE
updated Relationships
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated References, Relationships, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-03-29 CWE Content Team MITRE
updated Potential_Mitigations
2010-12-13 CWE Content Team MITRE
updated Relationships
2010-06-21 CWE Content Team MITRE
updated Description, Observed_Examples
2009-07-27 CWE Content Team MITRE
updated Potential_Mitigations
2009-03-10 CWE Content Team MITRE
updated Relationships
2008-11-24 CWE Content Team MITRE
updated Observed_Examples
2008-09-08 CWE Content Team MITRE
updated Description, Relationships, Relationship_Notes, Relevant_Properties, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Potential_Mitigations, Time_of_Introduction

CWE-486: Comparison of Classes by Name

Weakness ID: 486
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product compares classes by name, which can cause it to use the wrong class when multiple classes can have the same name.
+ Extended Description
If the decision to trust the methods and data of an object is based on the name of a class, it is possible for malicious users to send objects of the same name as trusted classes and thereby gain the trust afforded to known classes and types.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Execute Unauthorized Code or Commands

Scope: Integrity, Confidentiality, Availability

If a product relies solely on the name of an object to determine identity, it may execute the incorrect or unintended code.
+ Potential Mitigations
Phase(s) Mitigation

Implementation

Use class equivalency to determine type. Rather than use the class name to determine if an object is of a given type, use the getClass() method, and == operator.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1025 Comparison Using Wrong Factors
PeerOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 386 Symbolic Name not Mapping to Correct Object
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Java (Undetermined Prevalence)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1


In this example, the expression in the if statement compares the class of the inputClass object to a trusted class by comparing the class names.

(bad code)
Example Language: Java 
if (inputClass.getClass().getName().equals("TrustedClassName")) {

// Do something assuming you trust inputClass

// ...
}

However, multiple classes can have the same name therefore comparing an object's class by name can allow untrusted classes of the same name as the trusted class to be use to execute unintended or incorrect code. To compare the class of an object to the intended class the getClass() method and the comparison operator "==" should be used to ensure the correct trusted class is used, as shown in the following example.

(good code)
Example Language: Java 
if (inputClass.getClass() == TrustedClass.class) {

// Do something assuming you trust inputClass

// ...
}


Example 2


In this example, the Java class, TrustedClass, overrides the equals method of the parent class Object to determine equivalence of objects of the class. The overridden equals method first determines if the object, obj, is the same class as the TrustedClass object and then compares the object's fields to determine if the objects are equivalent.

(bad code)
Example Language: Java 
public class TrustedClass {
...

@Override
public boolean equals(Object obj) {
boolean isEquals = false;

// first check to see if the object is of the same class
if (obj.getClass().getName().equals(this.getClass().getName())) {

// then compare object fields
...
if (...) {
isEquals = true;
}
}

return isEquals;
}

...
}

However, the equals method compares the class names of the object, obj, and the TrustedClass object to determine if they are the same class. As with the previous example using the name of the class to compare the class of objects can lead to the execution of unintended or incorrect code if the object passed to the equals method is of another class with the same name. To compare the class of an object to the intended class, the getClass() method and the comparison operator "==" should be used to ensure the correct trusted class is used, as shown in the following example.

(good code)
Example Language: Java 
public boolean equals(Object obj) {
...

// first check to see if the object is of the same class
if (obj.getClass() == this.getClass()) {
...
}

...
}


+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 485 7PK - Encapsulation
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 849 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 6 - Object Orientation (OBJ)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 998 SFP Secondary Cluster: Glitch in Computation
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1139 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation (OBJ)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1397 Comprehensive Categorization: Comparison
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Comparing Classes by Name
CLASP Comparing classes by name
The CERT Oracle Secure Coding Standard for Java (2011) OBJ09-J Compare classes and not class names
Software Fault Patterns SFP1 Glitch in computation
+ References
[REF-6] Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools Techniques and Metrics. NIST. 2005-11-07.
<https://samate.nist.gov/SSATTM_Content/papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf>.
[REF-18] Secure Software, Inc.. "The CLASP Application Security Process". 2005.
<https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf>. (URL validated: 2024-11-17)
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
7 Pernicious Kingdoms
+ Modifications
Modification Date Modifier Organization
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships
2023-01-31 CWE Content Team MITRE
updated Common_Consequences, Description
2020-02-24 CWE Content Team MITRE
updated References, Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2018-03-27 CWE Content Team MITRE
updated Relationships
2017-11-08 CWE Content Team MITRE
updated Relationships, Relevant_Properties
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-05-11 CWE Content Team MITRE
updated Demonstrative_Examples, Relationships, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2009-07-27 CWE Content Team MITRE
updated Demonstrative_Examples
2009-03-10 CWE Content Team MITRE
updated Other_Notes
2008-09-08 CWE Content Team MITRE
updated Common_Consequences, Description, Relationships, Other_Notes, Relevant_Properties, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Comparing Classes by Name

CWE-595: Comparison of Object References Instead of Object Contents

Weakness ID: 595
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product compares object references instead of the contents of the objects themselves, preventing it from detecting equivalent objects.
+ Extended Description
For example, in Java, comparing objects using == usually produces deceptive results, since the == operator compares object references rather than values; often, this means that using == for strings is actually comparing the strings' references, not their values.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Varies by Context

Scope: Other

This weakness can lead to erroneous results that can cause unexpected application behaviors.
+ Potential Mitigations
Phase(s) Mitigation

Implementation

In Java, use the equals() method to compare objects instead of the == operator. If using ==, it is important for performance reasons that your objects are created by a static factory, not by a constructor.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1025 Comparison Using Wrong Factors
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 597 Use of Wrong Operator in String Comparison
+ Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Nature Type ID Name
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 597 Use of Wrong Operator in String Comparison
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1097 Persistent Storable Data Element without Associated Comparison Control Element
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Java (Undetermined Prevalence)

JavaScript (Undetermined Prevalence)

PHP (Undetermined Prevalence)

Class: Not Language-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


In the example below, two Java String objects are declared and initialized with the same string values. An if statement is used to determine if the strings are equivalent.

(bad code)
Example Language: Java 
String str1 = new String("Hello");
String str2 = new String("Hello");
if (str1 == str2) {
System.out.println("str1 == str2");
}

However, the if statement will not be executed as the strings are compared using the "==" operator. For Java objects, such as String objects, the "==" operator compares object references, not object values. While the two String objects above contain the same string values, they refer to different object references, so the System.out.println statement will not be executed. To compare object values, the previous code could be modified to use the equals method:

(good code)
Example Language: Java 
if (str1.equals(str2)) {
System.out.println("str1 equals str2");
}


Example 2


In the following Java example, two BankAccount objects are compared in the isSameAccount method using the == operator.

(bad code)
Example Language: Java 
public boolean isSameAccount(BankAccount accountA, BankAccount accountB) {
return accountA == accountB;
}

Using the == operator to compare objects may produce incorrect or deceptive results by comparing object references rather than values. The equals() method should be used to ensure correct results or objects should contain a member variable that uniquely identifies the object.

The following example shows the use of the equals() method to compare the BankAccount objects and the next example uses a class get method to retrieve the bank account number that uniquely identifies the BankAccount object to compare the objects.

(good code)
Example Language: Java 
public boolean isSameAccount(BankAccount accountA, BankAccount accountB) {
return accountA.equals(accountB);
}


+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 847 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 4 - Expressions (EXP)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 977 SFP Secondary Cluster: Design
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1136 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 02. Expressions (EXP)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1306 CISQ Quality Measures - Reliability
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1397 Comprehensive Categorization: Comparison
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure Coding Standard for Java (2011) EXP02-J Use the two-argument Arrays.equals() method to compare the contents of arrays
The CERT Oracle Secure Coding Standard for Java (2011) EXP02-J Use the two-argument Arrays.equals() method to compare the contents of arrays
The CERT Oracle Secure Coding Standard for Java (2011) EXP03-J Do not use the equality operators when comparing values of boxed primitives
+ References
[REF-954] Mozilla MDN. "Equality comparisons and sameness".
<https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Equality_comparisons_and_sameness>. (URL validated: 2025-08-04)
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-12-15
(CWE Draft 5, 2006-12-15)
CWE Content Team MITRE
+ Modifications
Modification Date Modifier Organization
2025-09-09
(CWE 4.18, 2025-09-09)
CWE Content Team MITRE
updated References
2025-04-03
(CWE 4.17, 2025-04-03)
CWE Content Team MITRE
updated Demonstrative_Examples
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2021-03-15 CWE Content Team MITRE
updated Demonstrative_Examples
2020-08-20 CWE Content Team MITRE
updated Relationships
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2018-03-27 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Description, Other_Notes, Potential_Mitigations, References, Relationships, Type
2014-07-30 CWE Content Team MITRE
updated Relationships
2014-06-23 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Common_Consequences, Demonstrative_Examples, Relationships, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2010-12-13 CWE Content Team MITRE
updated Demonstrative_Examples
2009-05-27 CWE Content Team MITRE
updated Name
2008-09-08 CWE Content Team MITRE
updated Description, Relationships, Other_Notes
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-07-01 Sean Eidemiller Cigital
added/updated demonstrative examples
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Incorrect Object Comparison: Syntactic
2009-05-27 Incorrect Syntactic Object Comparison

CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')

Weakness ID: 362
Vulnerability Mapping: ALLOWED This CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review (with careful review of mapping notes)
Abstraction: Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently. Diagram for CWE-362
+ Extended Description

A race condition occurs within concurrent environments, and it is effectively a property of a code sequence. Depending on the context, a code sequence may be in the form of a function call, a small number of instructions, a series of program invocations, etc.

A race condition violates these properties, which are closely related:

  • Exclusivity - the code sequence is given exclusive access to the shared resource, i.e., no other code sequence can modify properties of the shared resource before the original sequence has completed execution.
  • Atomicity - the code sequence is behaviorally atomic, i.e., no other thread or process can concurrently execute the same sequence of instructions (or a subset) against the same resource.

A race condition exists when an "interfering code sequence" can still access the shared resource, violating exclusivity.

The interfering code sequence could be "trusted" or "untrusted." A trusted interfering code sequence occurs within the product; it cannot be modified by the attacker, and it can only be invoked indirectly. An untrusted interfering code sequence can be authored directly by the attacker, and typically it is external to the vulnerable product.

+ Alternate Terms
Race Condition
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

DoS: Resource Consumption (CPU); DoS: Resource Consumption (Memory); DoS: Resource Consumption (Other)

Scope: Availability

When a race condition makes it possible to bypass a resource cleanup routine or trigger multiple initialization routines, it may lead to resource exhaustion.

DoS: Crash, Exit, or Restart; DoS: Instability

Scope: Availability

When a race condition allows multiple control flows to access a resource simultaneously, it might lead the product(s) into unexpected states, possibly resulting in a crash.

Read Files or Directories; Read Application Data

Scope: Confidentiality, Integrity

When a race condition is combined with predictable resource names and loose permissions, it may be possible for an attacker to overwrite or access confidential data (CWE-59).

Execute Unauthorized Code or Commands; Gain Privileges or Assume Identity; Bypass Protection Mechanism

Scope: Access Control

This can have security implications when the expected synchronization is in security-critical code, such as recording whether a user is authenticated or modifying important state information that should not be influenced by an outsider.
+ Potential Mitigations
Phase(s) Mitigation

Architecture and Design

In languages that support it, use synchronization primitives. Only wrap these around critical code to minimize the impact on performance.

Architecture and Design

Use thread-safe capabilities such as the data access abstraction in Spring.

Architecture and Design

Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring.

Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400).

Implementation

When using multithreading and operating on shared variables, only use thread-safe functions.

Implementation

Use atomic operations on shared variables. Be wary of innocent-looking constructs such as "x++". This may appear atomic at the code layer, but it is actually non-atomic at the instruction layer, since it involves a read, followed by a computation, followed by a write.

Implementation

Use a mutex if available, but be sure to avoid related weaknesses such as CWE-412.

Implementation

Avoid double-checked locking (CWE-609) and other implementation errors that arise when trying to avoid the overhead of synchronization.

Implementation

Disable interrupts or signals over critical parts of the code, but also make sure that the code does not go into a large or infinite loop.

Implementation

Use the volatile type modifier for critical variables to avoid unexpected compiler optimization or reordering. This does not necessarily solve the synchronization problem, but it can help.

Architecture and Design; Operation

Strategy: Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 691 Insufficient Control Flow Management
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 364 Signal Handler Race Condition
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 366 Race Condition within a Thread
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 367 Time-of-check Time-of-use (TOCTOU) Race Condition
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 368 Context Switching Race Condition
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 421 Race Condition During Access to Alternate Channel
ParentOf Composite Composite - a Compound Element that consists of two or more distinct weaknesses, in which all weaknesses must be present at the same time in order for a potential vulnerability to arise. Removing any of the weaknesses eliminates or sharply reduces the risk. One weakness, X, can be "broken down" into component weaknesses Y and Z. There can be cases in which one weakness might not be essential to a composite, but changes the nature of the composite when it becomes a vulnerability. 689 Permission Race Condition During Resource Copy
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1223 Race Condition for Write-Once Attributes
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1298 Hardware Logic Contains Race Conditions
CanFollow Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 662 Improper Synchronization
CanPrecede Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 416 Use After Free
CanPrecede Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 476 NULL Pointer Dereference
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Nature Type ID Name
MemberOf View View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1003 Weaknesses for Simplified Mapping of Published Vulnerabilities
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 367 Time-of-check Time-of-use (TOCTOU) Race Condition
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design
Implementation Programmers may assume that certain code sequences execute too quickly to be affected by an interfering code sequence; when they are not, this violates atomicity. For example, the single "x++" statement may appear atomic at the code layer, but it is actually non-atomic at the instruction layer, since it involves a read (the original value of x), followed by a computation (x+1), followed by a write (save the result to x).
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

C (Sometimes Prevalent)

C++ (Sometimes Prevalent)

Java (Sometimes Prevalent)

Technologies

Class: Mobile (Undetermined Prevalence)

Class: ICS/OT (Undetermined Prevalence)

+ Likelihood Of Exploit
Medium
+ Demonstrative Examples

Example 1


This code could be used in an e-commerce application that supports transfers between accounts. It takes the total amount of the transfer, sends it to the new account, and deducts the amount from the original account.

(bad code)
Example Language: Perl 
$transfer_amount = GetTransferAmount();
$balance = GetBalanceFromDatabase();

if ($transfer_amount < 0) {
FatalError("Bad Transfer Amount");
}
$newbalance = $balance - $transfer_amount;
if (($balance - $transfer_amount) < 0) {
FatalError("Insufficient Funds");
}
SendNewBalanceToDatabase($newbalance);
NotifyUser("Transfer of $transfer_amount succeeded.");
NotifyUser("New balance: $newbalance");

A race condition could occur between the calls to GetBalanceFromDatabase() and SendNewBalanceToDatabase().

Suppose the balance is initially 100.00. An attack could be constructed as follows:

(attack code)
Example Language: Other 
In the following pseudocode, the attacker makes two simultaneous calls of the program, CALLER-1 and CALLER-2. Both callers are for the same user account.
CALLER-1 (the attacker) is associated with PROGRAM-1 (the instance that handles CALLER-1). CALLER-2 is associated with PROGRAM-2.
CALLER-1 makes a transfer request of 80.00.
PROGRAM-1 calls GetBalanceFromDatabase and sets $balance to 100.00
PROGRAM-1 calculates $newbalance as 20.00, then calls SendNewBalanceToDatabase().
Due to high server load, the PROGRAM-1 call to SendNewBalanceToDatabase() encounters a delay.
CALLER-2 makes a transfer request of 1.00.
PROGRAM-2 calls GetBalanceFromDatabase() and sets $balance to 100.00. This happens because the previous PROGRAM-1 request was not processed yet.
PROGRAM-2 determines the new balance as 99.00.
After the initial delay, PROGRAM-1 commits its balance to the database, setting it to 20.00.
PROGRAM-2 sends a request to update the database, setting the balance to 99.00

At this stage, the attacker should have a balance of 19.00 (due to 81.00 worth of transfers), but the balance is 99.00, as recorded in the database.

To prevent this weakness, the programmer has several options, including using a lock to prevent multiple simultaneous requests to the web application, or using a synchronization mechanism that includes all the code between GetBalanceFromDatabase() and SendNewBalanceToDatabase().



Example 2


The following function attempts to acquire a lock in order to perform operations on a shared resource.

(bad code)
Example Language:
void f(pthread_mutex_t *mutex) {
pthread_mutex_lock(mutex);

/* access shared resource */


pthread_mutex_unlock(mutex);
}

However, the code does not check the value returned by pthread_mutex_lock() for errors. If pthread_mutex_lock() cannot acquire the mutex for any reason, the function may introduce a race condition into the program and result in undefined behavior.

In order to avoid data races, correctly written programs must check the result of thread synchronization functions and appropriately handle all errors, either by attempting to recover from them or reporting them to higher levels.

(good code)
Example Language:
int f(pthread_mutex_t *mutex) {
int result;

result = pthread_mutex_lock(mutex);
if (0 != result)
return result;


/* access shared resource */


return pthread_mutex_unlock(mutex);
}


Example 3


Suppose a processor's Memory Management Unit (MMU) has 5 other shadow MMUs to distribute its workload for its various cores. Each MMU has the start address and end address of "accessible" memory. Any time this accessible range changes (as per the processor's boot status), the main MMU sends an update message to all the shadow MMUs.

Suppose the interconnect fabric does not prioritize such "update" packets over other general traffic packets. This introduces a race condition. If an attacker can flood the target with enough messages so that some of those attack packets reach the target before the new access ranges gets updated, then the attacker can leverage this scenario.



+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Go application for cloud management creates a world-writable sudoers file that allows local attackers to inject sudo rules and escalate privileges to root by winning a race condition.
Chain: improper locking (CWE-667) leads to race condition (CWE-362), as exploited in the wild per CISA KEV.
Chain: mobile platform race condition (CWE-362) leading to use-after-free (CWE-416), as exploited in the wild per CISA KEV.
Chain: race condition (CWE-362) leads to use-after-free (CWE-416), as exploited in the wild per CISA KEV.
chain: JTAG interface is not disabled (CWE-1191) during ROM code execution, introducing a race condition (CWE-362) to extract encryption keys
Chain: race condition (CWE-362) in anti-malware product allows deletion of files by creating a junction (CWE-1386) and using hard links during the time window in which a temporary file is created and deleted.
TOCTOU in sandbox process allows installation of untrusted browser add-ons by replacing a file after it has been verified, but before it is executed
Chain: chipset has a race condition (CWE-362) between when an interrupt handler detects an attempt to write-enable the BIOS (in violation of the lock bit), and when the handler resets the write-enable bit back to 0, allowing attackers to issue BIOS writes during the timing window [REF-1237].
Race condition leading to a crash by calling a hook removal procedure while other activities are occurring at the same time.
chain: time-of-check time-of-use (TOCTOU) race condition in program allows bypass of protection mechanism that was designed to prevent symlink attacks.
chain: time-of-check time-of-use (TOCTOU) race condition in program allows bypass of protection mechanism that was designed to prevent symlink attacks.
Unsynchronized caching operation enables a race condition that causes messages to be sent to a deallocated object.
Race condition during initialization triggers a buffer overflow.
Daemon crash by quickly performing operations and undoing them, which eventually leads to an operation that does not acquire a lock.
chain: race condition triggers NULL pointer dereference
Race condition in library function could cause data to be sent to the wrong process.
Race condition in file parser leads to heap corruption.
chain: race condition allows attacker to access an object while it is still being initialized, causing software to access uninitialized memory.
chain: race condition for an argument value, possibly resulting in NULL dereference
chain: race condition might allow resource to be released before operating on it, leading to NULL dereference
Chain: Signal handler contains too much functionality (CWE-828), introducing a race condition (CWE-362) that leads to a double free (CWE-415).
+ Detection Methods
Method Details

Black Box

Black box methods may be able to identify evidence of race conditions via methods such as multiple simultaneous connections, which may cause the software to become instable or crash. However, race conditions with very narrow timing windows would not be detectable.

White Box

Common idioms are detectable in white box analysis, such as time-of-check-time-of-use (TOCTOU) file operations (CWE-367), or double-checked locking (CWE-609).

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the software using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The software's operation may slow down, but it should not become unstable, crash, or generate incorrect results.

Race conditions may be detected with a stress-test by calling the software simultaneously from a large number of threads or processes, and look for evidence of any unexpected behavior.

Insert breakpoints or delays in between relevant code statements to artificially expand the race window so that it will be easier to detect.

Effectiveness: Moderate

Automated Static Analysis - Binary or Bytecode

According to SOAR [REF-1479], the following detection techniques may be useful:

Highly cost effective:
  • Bytecode Weakness Analysis - including disassembler + source code weakness analysis
Cost effective for partial coverage:
  • Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness: High

Dynamic Analysis with Automated Results Interpretation

According to SOAR [REF-1479], the following detection techniques may be useful:

Cost effective for partial coverage:
  • Web Application Scanner
  • Web Services Scanner
  • Database Scanners

Effectiveness: SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR [REF-1479], the following detection techniques may be useful:

Highly cost effective:
  • Framework-based Fuzzer
Cost effective for partial coverage:
  • Fuzz Tester
  • Monitored Virtual Environment - run potentially malicious code in sandbox / wrapper / virtual machine, see if it does anything suspicious

Effectiveness: High

Manual Static Analysis - Source Code

According to SOAR [REF-1479], the following detection techniques may be useful:

Highly cost effective:
  • Manual Source Code Review (not inspections)
Cost effective for partial coverage:
  • Focused Manual Spotcheck - Focused manual analysis of source

Effectiveness: High

Automated Static Analysis - Source Code

According to SOAR [REF-1479], the following detection techniques may be useful:

Highly cost effective:
  • Source code Weakness Analyzer
  • Context-configured Source Code Weakness Analyzer

Effectiveness: High

Architecture or Design Review

According to SOAR [REF-1479], the following detection techniques may be useful:

Highly cost effective:
  • Formal Methods / Correct-By-Construction
Cost effective for partial coverage:
  • Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness: High

+ Affected Resources
  • File or Directory
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 635 Weaknesses Originally Used by NVD from 2008 to 2016
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 743 CERT C Secure Coding Standard (2008) Chapter 10 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 751 2009 Top 25 - Insecure Interaction Between Components
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 801 2010 Top 25 - Insecure Interaction Between Components
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 852 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 9 - Visibility and Atomicity (VNA)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 867 2011 Top 25 - Weaknesses On the Cusp
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 877 CERT C++ Secure Coding Section 09 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 882 CERT C++ Secure Coding Section 14 - Concurrency (CON)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 988 SFP Secondary Cluster: Race Condition Window
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1142 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity (VNA)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1364 ICS Communications: Zone Boundary Failures
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1365 ICS Communications: Unreliability
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1366 ICS Communications: Frail Security in Protocols
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1376 ICS Engineering (Construction/Deployment): Security Gaps in Commissioning
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous Software Weaknesses
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1401 Comprehensive Categorization: Concurrency
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1425 Weaknesses in the 2023 CWE Top 25 Most Dangerous Software Weaknesses
+ Vulnerability Mapping Notes
Usage ALLOWED-WITH-REVIEW
(this CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review)
Reason Abstraction

Rationale

This CWE entry is a Class and might have Base-level children that would be more appropriate

Comments

Examine children of this entry to see if there is a better fit
+ Notes

Research Gap

Race conditions in web applications are under-studied and probably under-reported. However, in 2008 there has been growing interest in this area.

Research Gap

Much of the focus of race condition research has been in Time-of-check Time-of-use (TOCTOU) variants (CWE-367), but many race conditions are related to synchronization problems that do not necessarily require a time-of-check.

Research Gap

From a classification/taxonomy perspective, the relationships between concurrency and program state need closer investigation and may be useful in organizing related issues.

Maintenance

The relationship between race conditions and synchronization problems (CWE-662) needs to be further developed. They are not necessarily two perspectives of the same core concept, since synchronization is only one technique for avoiding race conditions, and synchronization can be used for other purposes besides race condition prevention.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Race Conditions
The CERT Oracle Secure Coding Standard for Java (2011) VNA03-J Do not assume that a group of calls to independently atomic methods is atomic
+ References
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 13: Race Conditions." Page 205. McGraw-Hill. 2010.
[REF-349] Andrei Alexandrescu. "volatile - Multithreaded Programmer's Best Friend". Dr. Dobb's. 2008-02-01.
<https://drdobbs.com/cpp/volatile-the-multithreaded-programmers-b/184403766>. (URL validated: 2023-04-07)
[REF-350] Steven Devijver. "Thread-safe webapps using Spring".
<https://web.archive.org/web/20170609174845/http://www.javalobby.org/articles/thread-safe/index.jsp>. (URL validated: 2023-04-07)
[REF-351] David Wheeler. "Prevent race conditions". 2007-10-04.
<https://www.ida.liu.se/~TDDC90/literature/papers/SP-race-conditions.pdf>. (URL validated: 2023-04-07)
[REF-352] Matt Bishop. "Race Conditions, Files, and Security Flaws; or the Tortoise and the Hare Redux". 1995-09.
<https://seclab.cs.ucdavis.edu/projects/vulnerabilities/scriv/ucd-ecs-95-08.pdf>. (URL validated: 2023-04-07)
[REF-353] David Wheeler. "Secure Programming for Linux and Unix HOWTO". 2003-03-03.
<https://dwheeler.com/secure-programs/Secure-Programs-HOWTO/avoid-race.html>. (URL validated: 2023-04-07)
[REF-354] Blake Watts. "Discovering and Exploiting Named Pipe Security Flaws for Fun and Profit". 2002-04.
<https://www.blakewatts.com/blog/discovering-and-exploiting-named-pipe-security-flaws-for-fun-and-profit>. (URL validated: 2023-04-07)
[REF-355] Roberto Paleari, Davide Marrone, Danilo Bruschi and Mattia Monga. "On Race Vulnerabilities in Web Applications".
<http://security.dico.unimi.it/~roberto/pubs/dimva08-web.pdf>.
[REF-356] "Avoiding Race Conditions and Insecure File Operations". Apple Developer Connection.
<https://web.archive.org/web/20081010155022/http://developer.apple.com/documentation/Security/Conceptual/SecureCodingGuide/Articles/RaceConditions.html>. (URL validated: 2023-04-07)
[REF-357] Johannes Ullrich. "Top 25 Series - Rank 25 - Race Conditions". SANS Software Security Institute. 2010-03-26.
<https://web.archive.org/web/20100530231203/http://blogs.sans.org:80/appsecstreetfighter/2010/03/26/top-25-series-rank-25-race-conditions/>. (URL validated: 2023-04-07)
[REF-76] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14.
<https://web.archive.org/web/20211209014121/https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/least-privilege>. (URL validated: 2023-04-07)
[REF-1237] CERT Coordination Center. "Intel BIOS locking mechanism contains race condition that enables write protection bypass". 2015-01-05.
<https://www.kb.cert.org/vuls/id/766164/>.
[REF-1479] Gregory Larsen, E. Kenneth Hong Fong, David A. Wheeler and Rama S. Moorthy. "State-of-the-Art Resources (SOAR) for Software Vulnerability Detection, Test, and Evaluation". 2014-07.
<https://www.ida.org/-/media/feature/publications/s/st/stateoftheart-resources-soar-for-software-vulnerability-detection-test-and-evaluation/p-5061.ashx>. (URL validated: 2025-09-05)
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Contributions
Contribution Date Contributor Organization
2010-04-30 Martin Sebor Cisco Systems, Inc.
Provided Demonstrative Example
2024-02-29
(CWE 4.16, 2024-11-19)
Abhi Balakrishnan
Provided diagram to improve CWE usability
+ Modifications
Modification Date Modifier Organization
2025-09-09
(CWE 4.18, 2025-09-09)
CWE Content Team MITRE
updated Detection_Factors, References
2025-04-03
(CWE 4.17, 2025-04-03)
CWE Content Team MITRE
updated Affected_Resources
2024-11-19
(CWE 4.16, 2024-11-19)
CWE Content Team MITRE
updated Alternate_Terms, Common_Consequences, Description, Diagram, Modes_of_Introduction
2024-07-16
(CWE 4.15, 2024-07-16)
CWE Content Team MITRE
updated Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes, Relationships
2023-04-27 CWE Content Team MITRE
updated References, Relationships
2023-01-31 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Description
2022-10-13 CWE Content Team MITRE
updated Observed_Examples, References
2022-06-28 CWE Content Team MITRE
updated Observed_Examples, Relationships
2022-04-28 CWE Content Team MITRE
updated Observed_Examples, Relationships
2021-10-28 CWE Content Team MITRE
updated Observed_Examples, References
2021-03-15 CWE Content Team MITRE
updated Demonstrative_Examples
2020-08-20 CWE Content Team MITRE
updated Relationships
2020-02-24 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Observed_Examples, Relationships
2019-06-20 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Demonstrative_Examples, References, Research_Gaps, Taxonomy_Mappings
2015-12-07 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Detection_Factors, Relationships
2012-05-11 CWE Content Team MITRE
updated Potential_Mitigations, References, Relationships
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2010-12-13 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Description, Name, Potential_Mitigations, Relationships
2010-09-27 CWE Content Team MITRE
updated Observed_Examples, Potential_Mitigations, Relationships
2010-06-21 CWE Content Team MITRE
updated Common_Consequences, Demonstrative_Examples, Detection_Factors, Potential_Mitigations, References
2010-02-16 CWE Content Team MITRE
updated Detection_Factors, References, Relationships
2009-05-27 CWE Content Team MITRE
updated Relationships
2009-03-10 CWE Content Team MITRE
updated Demonstrative_Examples, Potential_Mitigations
2009-01-12 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Demonstrative_Examples, Description, Likelihood_of_Exploit, Maintenance_Notes, Observed_Examples, Potential_Mitigations, References, Relationships, Research_Gaps
2008-11-24 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2008-10-14 CWE Content Team MITRE
updated Relationships
2008-09-08 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Race Conditions
2010-12-13 Race Condition

CWE-766: Critical Data Element Declared Public

Weakness ID: 766
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product declares a critical variable, field, or member to be public when intended security policy requires it to be private.
+ Extended Description

This issue makes it more difficult to maintain the product, which indirectly affects security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it easier to introduce vulnerabilities.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Read Application Data; Modify Application Data

Scope: Integrity, Confidentiality

Making a critical variable public allows anyone with access to the object in which the variable is contained to alter or read the value.

Reduce Maintainability

Scope: Other

+ Potential Mitigations
Phase(s) Mitigation

Implementation

Data should be private, static, and final whenever possible. This will assure that your code is protected by instantiating early, preventing access, and preventing tampering.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 732 Incorrect Permission Assignment for Critical Resource
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 1061 Insufficient Encapsulation
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 275 Permission Issues
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

C++ (Undetermined Prevalence)

C# (Undetermined Prevalence)

Java (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


The following example declares a critical variable public, making it accessible to anyone with access to the object in which it is contained.

(bad code)
Example Language: C++ 
public: char* password;

Instead, the critical data should be declared private.

(good code)
Example Language: C++ 
private: char* password;

Even though this example declares the password to be private, there are other possible issues with this implementation, such as the possibility of recovering the password from process memory (CWE-257).



Example 2


The following example shows a basic user account class that includes member variables for the username and password as well as a public constructor for the class and a public method to authorize access to the user account.

(bad code)
Example Language: C++ 
#define MAX_PASSWORD_LENGTH 15
#define MAX_USERNAME_LENGTH 15

class UserAccount
{
public:
UserAccount(char *username, char *password)
{
if ((strlen(username) > MAX_USERNAME_LENGTH) ||
(strlen(password) > MAX_PASSWORD_LENGTH)) {
ExitError("Invalid username or password");
}
strcpy(this->username, username);
strcpy(this->password, password);
}


int authorizeAccess(char *username, char *password)
{
if ((strlen(username) > MAX_USERNAME_LENGTH) ||
(strlen(password) > MAX_PASSWORD_LENGTH)) {
ExitError("Invalid username or password");
}
// if the username and password in the input parameters are equal to

// the username and password of this account class then authorize access
if (strcmp(this->username, username) ||
strcmp(this->password, password))
return 0;

// otherwise do not authorize access
else
return 1;
}

char username[MAX_USERNAME_LENGTH+1];
char password[MAX_PASSWORD_LENGTH+1];
};

However, the member variables username and password are declared public and therefore will allow access and changes to the member variables to anyone with access to the object. These member variables should be declared private as shown below to prevent unauthorized access and changes.

(good code)
Example Language: C++ 
class UserAccount
{
public:
...


private:
char username[MAX_USERNAME_LENGTH+1];
char password[MAX_PASSWORD_LENGTH+1];
};


+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
variables declared public allow remote read of system properties such as user name and home directory.
+ Weakness Ordinalities
Ordinality Description
Primary
(where the weakness exists independent of other weaknesses)
Indirect
(where the weakness is a quality issue that might indirectly make it easier to introduce security-relevant weaknesses or make them more difficult to detect)
+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 849 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 6 - Object Orientation (OBJ)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1002 SFP Secondary Cluster: Unexpected Entry Points
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1130 CISQ Quality Measures (2016) - Maintainability
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1139 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation (OBJ)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1412 Comprehensive Categorization: Poor Coding Practices
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Failure to protect stored data from modification
The CERT Oracle Secure Coding Standard for Java (2011) OBJ01-J Declare data members as private and provide accessible wrapper methods
Software Fault Patterns SFP28 Unexpected access points
OMG ASCMM ASCMM-MNT-15
+ References
[REF-960] Object Management Group (OMG). "Automated Source Code Maintainability Measure (ASCMM)". ASCMM-MNT-15. 2016-01.
<https://www.omg.org/spec/ASCMM/>. (URL validated: 2023-04-07)
+ Content History
+ Submissions
Submission Date Submitter Organization
2009-03-03
(CWE 1.4, 2009-05-27)
CWE Content Team MITRE
+ Modifications
Modification Date Modifier Organization
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Demonstrative_Examples
2023-10-26 CWE Content Team MITRE
updated Observed_Examples
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes, Relationships
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, References, Relationships, Time_of_Introduction, Type
2023-01-31 CWE Content Team MITRE
updated Description
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Common_Consequences, Description, Name, References, Relationships, Taxonomy_Mappings, Weakness_Ordinalities
2017-11-08 CWE Content Team MITRE
updated Likelihood_of_Exploit, Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-05-11 CWE Content Team MITRE
updated Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2010-12-13 CWE Content Team MITRE
updated Observed_Examples
2009-12-28 CWE Content Team MITRE
updated Demonstrative_Examples
+ Previous Entry Names
Change Date Previous Entry Name
2019-01-03 Critical Variable Declared Public

CWE-397: Declaration of Throws for Generic Exception

Weakness ID: 397
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product throws or raises an overly broad exceptions that can hide important details and produce inappropriate responses to certain conditions.
+ Extended Description
Declaring a method to throw Exception or Throwable promotes generic error handling procedures that make it difficult for callers to perform proper error handling and error recovery. For example, Java's exception mechanism makes it easy for callers to anticipate what can go wrong and write code to handle each specific exceptional circumstance. Declaring that a method throws a generic form of exception defeats this system.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Hide Activities; Alter Execution Logic

Scope: Non-Repudiation, Other

Throwing a generic exception can hide details about unexpected adversary activities by making it difficult to properly troubleshoot error conditions during execution.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 221 Information Loss or Omission
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 703 Improper Check or Handling of Exceptional Conditions
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 705 Incorrect Control Flow Scoping
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 389 Error Conditions, Return Values, Status Codes
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

C++ (Undetermined Prevalence)

C# (Undetermined Prevalence)

Java (Undetermined Prevalence)

Python (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


The following method throws three types of exceptions.

(good code)
Example Language: Java 
public void doExchange() throws IOException, InvocationTargetException, SQLException {
...
}

While it might seem tidier to write

(bad code)
Example Language: Java 
public void doExchange() throws Exception {
...
}

doing so hampers the caller's ability to understand and handle the exceptions that occur. Further, if a later revision of doExchange() introduces a new type of exception that should be treated differently than previous exceptions, there is no easy way to enforce this requirement.



Example 2


Early versions of C++ (C++98, C++03, C++11) included a feature known as Dynamic Exception Specification. This allowed functions to declare what type of exceptions it may throw. It is possible to declare a general class of exception to cover any derived exceptions that may be thrown.

(bad code)
Example Language: C++ 
int myfunction() throw(std::exception) {
if (0) throw out_of_range();
throw length_error();
}

In the example above, the code declares that myfunction() can throw an exception of type "std::exception" thus hiding details about the possible derived exceptions that could potentially be thrown.



+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 388 7PK - Errors
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 851 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 8 - Exceptional Behavior (ERR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 960 SFP Secondary Cluster: Ambiguous Exception Type
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1129 CISQ Quality Measures (2016) - Reliability
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1131 CISQ Quality Measures (2016) - Security
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1141 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior (ERR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1410 Comprehensive Categorization: Insufficient Control Flow Management
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Applicable Platform

For C++, this weakness only applies to C++98, C++03, and C++11. It relies on a feature known as Dynamic Exception Specification, which was part of early versions of C++ but was deprecated in C++11. It has been removed for C++17 and later.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Overly-Broad Throws Declaration
The CERT Oracle Secure Coding Standard for Java (2011) ERR07-J Do not throw RuntimeException, Exception, or Throwable
Software Fault Patterns SFP5 Ambiguous Exception Type
OMG ASCSM ASCSM-CWE-397
OMG ASCRM ASCRM-CWE-397
+ References
[REF-6] Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools Techniques and Metrics. NIST. 2005-11-07.
<https://samate.nist.gov/SSATTM_Content/papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf>.
[REF-961] Object Management Group (OMG). "Automated Source Code Reliability Measure (ASCRM)". ASCRM-CWE-397. 2016-01.
<http://www.omg.org/spec/ASCRM/1.0/>.
[REF-962] Object Management Group (OMG). "Automated Source Code Security Measure (ASCSM)". ASCSM-CWE-397. 2016-01.
<http://www.omg.org/spec/ASCSM/1.0/>.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
7 Pernicious Kingdoms
+ Modifications
Modification Date Modifier Organization
2025-04-03
(CWE 4.17, 2025-04-03)
CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Demonstrative_Examples, Description
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Demonstrative_Examples
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships, Time_of_Introduction
2020-02-24 CWE Content Team MITRE
updated References
2019-01-03 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, References, Relationships, Taxonomy_Mappings
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-05-11 CWE Content Team MITRE
updated Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2009-10-29 CWE Content Team MITRE
updated Description, Other_Notes
2009-05-27 CWE Content Team MITRE
updated Demonstrative_Examples
2009-03-10 CWE Content Team MITRE
updated Relationships
2008-10-14 CWE Content Team MITRE
updated Applicable_Platforms
2008-09-24 CWE Content Team MITRE
Removed C from Applicable_Platforms
2008-09-08 CWE Content Team MITRE
updated Applicable_Platforms, Relationships, Other_Notes, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Overly-Broad Throws Declaration

CWE-502: Deserialization of Untrusted Data

Weakness ID: 502
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product deserializes untrusted data without sufficiently ensuring that the resulting data will be valid. Diagram for CWE-502
+ Alternate Terms
Marshaling, Unmarshaling
Marshaling and unmarshaling are effectively synonyms for serialization and deserialization, respectively.
Pickling, Unpickling
In Python, the "pickle" functionality is used to perform serialization and deserialization.
PHP Object Injection
Some PHP application researchers use this term when attacking unsafe use of the unserialize() function; but it is also used for CWE-915.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Modify Application Data; Unexpected State

Scope: Integrity

Attackers can modify unexpected objects or data that was assumed to be safe from modification. Deserialized data or code could be modified without using the provided accessor functions, or unexpected functions could be invoked.

DoS: Resource Consumption (CPU)

Scope: Availability

If a function is making an assumption on when to terminate, based on a sentry in a string, it could easily never terminate.

Varies by Context

Scope: Other

The consequences can vary widely, because it depends on which objects or methods are being deserialized, and how they are used. Making an assumption that the code in the deserialized object is valid is dangerous and can enable exploitation. One example is attackers using gadget chains to perform unauthorized actions, such as generating a shell.
+ Potential Mitigations
Phase(s) Mitigation

Architecture and Design; Implementation

If available, use the signing/sealing features of the programming language to assure that deserialized data has not been tainted. For example, a hash-based message authentication code (HMAC) could be used to ensure that data has not been modified.

Implementation

When deserializing data, populate a new object rather than just deserializing. The result is that the data flows through safe input validation and that the functions are safe.

Implementation

Explicitly define a final object() to prevent deserialization.

Architecture and Design; Implementation

Make fields transient to protect them from deserialization.

An attempt to serialize and then deserialize a class containing transient fields will result in NULLs where the transient data should be. This is an excellent way to prevent time, environment-based, or sensitive variables from being carried over and used improperly.

Implementation

Avoid having unnecessary types or gadgets (a sequence of instances and method invocations that can self-execute during the deserialization process, often found in libraries) available that can be leveraged for malicious ends. This limits the potential for unintended or unauthorized types and gadgets to be leveraged by the attacker. Add only acceptable classes to an allowlist. Note: new gadgets are constantly being discovered, so this alone is not a sufficient mitigation.

Architecture and Design; Implementation

Employ cryptography of the data or code for protection. However, it's important to note that it would still be client-side security. This is risky because if the client is compromised then the security implemented on the client (the cryptography) can be bypassed.

Operation

Strategy: Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial in cases in which the code cannot be fixed (because it is controlled by a third party), as an emergency prevention measure while more comprehensive software assurance measures are applied, or to provide defense in depth [REF-1481].

Effectiveness: Moderate

Note: An application firewall might not cover all possible input vectors. In addition, attack techniques might be available to bypass the protection mechanism, such as using malformed inputs that can still be processed by the component that receives those inputs. Depending on functionality, an application firewall might inadvertently reject or modify legitimate requests. Finally, some manual effort may be required for customization.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 913 Improper Control of Dynamically-Managed Code Resources
PeerOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 915 Improperly Controlled Modification of Dynamically-Determined Object Attributes
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 399 Resource Management Errors
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 913 Improper Control of Dynamically-Managed Code Resources
+ Relevant to the view "Architectural Concepts" (View-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1019 Validate Inputs
+ Background Details
Serialization and deserialization refer to the process of taking program-internal object-related data, packaging it in a way that allows the data to be externally stored or transferred ("serialization"), then extracting the serialized data to reconstruct the original object ("deserialization").
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design OMISSION: This weakness is caused by missing a security tactic during the architecture and design phase.
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Java (Undetermined Prevalence)

Ruby (Undetermined Prevalence)

PHP (Undetermined Prevalence)

Python (Undetermined Prevalence)

JavaScript (Undetermined Prevalence)

Technologies

Class: ICS/OT (Often Prevalent)

+ Likelihood Of Exploit
Medium
+ Demonstrative Examples

Example 1


This code snippet deserializes an object from a file and uses it as a UI button:

(bad code)
Example Language: Java 
try {
File file = new File("object.obj");
ObjectInputStream in = new ObjectInputStream(new FileInputStream(file));
javax.swing.JButton button = (javax.swing.JButton) in.readObject();
in.close();
}

This code does not attempt to verify the source or contents of the file before deserializing it. An attacker may be able to replace the intended file with a file that contains arbitrary malicious code which will be executed when the button is pressed.

To mitigate this, explicitly define final readObject() to prevent deserialization. An example of this is:

(good code)
Example Language: Java 
private final void readObject(ObjectInputStream in) throws java.io.IOException {
throw new java.io.IOException("Cannot be deserialized"); }


Example 2


In Python, the Pickle library handles the serialization and deserialization processes. In this example derived from [REF-467], the code receives and parses data, and afterwards tries to authenticate a user based on validating a token.

(bad code)
Example Language: Python 
try {
class ExampleProtocol(protocol.Protocol):
def dataReceived(self, data):

# Code that would be here would parse the incoming data
# After receiving headers, call confirmAuth() to authenticate

def confirmAuth(self, headers):
try:
token = cPickle.loads(base64.b64decode(headers['AuthToken']))
if not check_hmac(token['signature'], token['data'], getSecretKey()):
raise AuthFail
self.secure_data = token['data']
except:
raise AuthFail
}

Unfortunately, the code does not verify that the incoming data is legitimate. An attacker can construct a illegitimate, serialized object "AuthToken" that instantiates one of Python's subprocesses to execute arbitrary commands. For instance,the attacker could construct a pickle that leverages Python's subprocess module, which spawns new processes and includes a number of arguments for various uses. Since Pickle allows objects to define the process for how they should be unpickled, the attacker can direct the unpickle process to call Popen in the subprocess module and execute /bin/sh.



+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
insecure deserialization in platform for managing AI/ML applications and models allows code execution via a crafted pickled object in a model file
deserialization of untrusted YAML data in dashboard for data query and visualization of Elasticsearch data
PHP object injection in WordPress plugin for AI-based SEO
chain: bypass of untrusted deserialization issue (CWE-502) by using an assumed-trusted class (CWE-183)
Deserialization issue in commonly-used Java library allows remote execution.
Deserialization issue in commonly-used Java library allows remote execution.
Use of PHP unserialize function on untrusted input allows attacker to modify application configuration.
Use of PHP unserialize function on untrusted input in content management system might allow code execution.
Use of PHP unserialize function on untrusted input in content management system allows code execution using a crafted cookie value.
Content management system written in PHP allows unserialize of arbitrary objects, possibly allowing code execution.
Python script allows local users to execute code via pickled data.
Unsafe deserialization using pickle in a Python script.
Web browser allows execution of native methods via a crafted string to a JavaScript function that deserializes the string.
+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 858 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 15 - Serialization (SER)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 994 SFP Secondary Cluster: Tainted Input to Variable
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1034 OWASP Top Ten 2017 Category A8 - Insecure Deserialization
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1148 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous Software Errors
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1308 CISQ Quality Measures - Security
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous Software Weaknesses
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1340 CISQ Data Protection Measures
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous Software Weaknesses
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1354 OWASP Top Ten 2021 Category A08:2021 - Software and Data Integrity Failures
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous Software Weaknesses
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1415 Comprehensive Categorization: Resource Control
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1425 Weaknesses in the 2023 CWE Top 25 Most Dangerous Software Weaknesses
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1430 Weaknesses in the 2024 CWE Top 25 Most Dangerous Software Weaknesses
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Maintenance

The relationships between CWE-502 and CWE-915 need further exploration. CWE-915 is more narrowly scoped to object modification, and is not necessarily used for deserialization.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Deserialization of untrusted data
The CERT Oracle Secure Coding Standard for Java (2011) SER01-J Do not deviate from the proper signatures of serialization methods
The CERT Oracle Secure Coding Standard for Java (2011) SER03-J Do not serialize unencrypted, sensitive data
The CERT Oracle Secure Coding Standard for Java (2011) SER06-J Make defensive copies of private mutable components during deserialization
The CERT Oracle Secure Coding Standard for Java (2011) SER08-J Do not use the default serialized form for implementation defined invariants
Software Fault Patterns SFP25 Tainted input to variable
+ References
[REF-18] Secure Software, Inc.. "The CLASP Application Security Process". 2005.
<https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf>. (URL validated: 2024-11-17)
[REF-461] Matthias Kaiser. "Exploiting Deserialization Vulnerabilities in Java". 2015-10-28.
<https://www.slideshare.net/codewhitesec/exploiting-deserialization-vulnerabilities-in-java-54707478>. (URL validated: 2023-04-07)
[REF-462] Sam Thomas. "PHP unserialization vulnerabilities: What are we missing?". 2015-08-27.
<https://www.slideshare.net/_s_n_t/php-unserialization-vulnerabilities-what-are-we-missing>. (URL validated: 2023-04-07)
[REF-463] Gabriel Lawrence and Chris Frohoff. "Marshalling Pickles: How deserializing objects can ruin your day". 2015-01-28.
<https://www.slideshare.net/frohoff1/appseccali-2015-marshalling-pickles>. (URL validated: 2023-04-07)
[REF-464] Heine Deelstra. "Unserializing user-supplied data, a bad idea". 2010-08-25.
<https://drupalsun.com/heine/2010/08/25/unserializing-user-supplied-data-bad-idea>. (URL validated: 2023-04-07)
[REF-465] Manish S. Saindane. "Black Hat EU 2010 - Attacking Java Serialized Communication". 2010-04-26.
<https://www.slideshare.net/msaindane/black-hat-eu-2010-attacking-java-serialized-communication>. (URL validated: 2023-04-07)
[REF-466] Nadia Alramli. "Why Python Pickle is Insecure". 2009-09-09.
<http://michael-rushanan.blogspot.com/2012/10/why-python-pickle-is-insecure.html>. (URL validated: 2023-04-07)
[REF-467] Nelson Elhage. "Exploiting misuse of Python's "pickle"". 2011-03-20.
<https://blog.nelhage.com/2011/03/exploiting-pickle/>.
[REF-468] Chris Frohoff. "Deserialize My Shorts: Or How I Learned to Start Worrying and Hate Java Object Deserialization". 2016-03-21.
<https://speakerdeck.com/frohoff/owasp-sd-deserialize-my-shorts-or-how-i-learned-to-start-worrying-and-hate-java-object-deserialization>. (URL validated: 2023-04-07)
[REF-1481] D3FEND. "D3FEND: Application Layer Firewall".
<https://d3fend.mitre.org/dao/artifact/d3f:ApplicationLayerFirewall/>. (URL validated: 2025-09-06)
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
CLASP
+ Contributions
Contribution Date Contributor Organization
2024-02-29
(CWE 4.16, 2024-11-19)
Abhi Balakrishnan
Contributed usability diagram concepts used by the CWE team
+ Modifications
Modification Date Modifier Organization
2025-09-09
(CWE 4.18, 2025-09-09)
CWE Content Team MITRE
updated Observed_Examples, Potential_Mitigations, References
2024-11-19
(CWE 4.16, 2024-11-19)
CWE Content Team MITRE
updated Common_Consequences, Description, Diagram, Potential_Mitigations, Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes, Relationships
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, References, Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2022-10-13 CWE Content Team MITRE
updated Applicable_Platforms
2022-06-28 CWE Content Team MITRE
updated Relationships
2021-10-28 CWE Content Team MITRE
updated Relationships
2021-07-20 CWE Content Team MITRE
updated Relationships
2020-12-10 CWE Content Team MITRE
updated Relationships
2020-08-20 CWE Content Team MITRE
updated Relationships
2020-06-25 CWE Content Team MITRE
updated Alternate_Terms, Potential_Mitigations
2020-02-24 CWE Content Team MITRE
updated Observed_Examples, References, Relationships
2019-09-19 CWE Content Team MITRE
updated Relationships
2019-06-20 CWE Content Team MITRE
updated Type
2019-01-03 CWE Content Team MITRE
updated Related_Attack_Patterns, Relationships, Taxonomy_Mappings
2018-03-27 CWE Content Team MITRE
updated Relationships
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Demonstrative_Examples, Modes_of_Introduction, Potential_Mitigations, References, Relationships
2017-05-03 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Description, Potential_Mitigations, References
2015-12-07 CWE Content Team MITRE
updated Observed_Examples, References, Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2013-02-21 CWE Content Team MITRE
updated Alternate_Terms, Applicable_Platforms, Background_Details, Common_Consequences, Maintenance_Notes, Observed_Examples, Potential_Mitigations, References, Relationships
2012-10-30 CWE Content Team MITRE
updated Demonstrative_Examples
2012-05-11 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2009-10-29 CWE Content Team MITRE
updated Description, Other_Notes, Potential_Mitigations
2008-09-08 CWE Content Team MITRE
updated Common_Consequences, Description, Relationships, Other_Notes, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction

CWE-111: Direct Use of Unsafe JNI

Weakness ID: 111
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
When a Java application uses the Java Native Interface (JNI) to call code written in another programming language, it can expose the application to weaknesses in that code, even if those weaknesses cannot occur in Java.
+ Extended Description
Many safety features that programmers may take for granted do not apply for native code, so you must carefully review all such code for potential problems. The languages used to implement native code may be more susceptible to buffer overflows and other attacks. Native code is unprotected by the security features enforced by the runtime environment, such as strong typing and array bounds checking.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Bypass Protection Mechanism

Scope: Access Control

+ Potential Mitigations
Phase(s) Mitigation

Implementation

Implement error handling around the JNI call.

Implementation

Strategy: Refactoring

Do not use JNI calls if you don't trust the native library.

Implementation

Strategy: Refactoring

Be reluctant to use JNI calls. A Java API equivalent may exist.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 695 Use of Low-Level Functionality
+ Relevant to the view "Seven Pernicious Kingdoms" (View-700)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 20 Improper Input Validation
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Java (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


The following code defines a class named Echo. The class declares one native method (defined below), which uses C to echo commands entered on the console back to the user. The following C code defines the native method implemented in the Echo class:

(bad code)
Example Language: Java 
class Echo {

public native void runEcho();
static {

System.loadLibrary("echo");
}
public static void main(String[] args) {

new Echo().runEcho();
}
}
(bad code)
Example Language:
#include <jni.h>
#include "Echo.h"//the java class above compiled with javah
#include <stdio.h>

JNIEXPORT void JNICALL
Java_Echo_runEcho(JNIEnv *env, jobject obj)
{
char buf[64];
gets(buf);
printf(buf);
}

Because the example is implemented in Java, it may appear that it is immune to memory issues like buffer overflow vulnerabilities. Although Java does do a good job of making memory operations safe, this protection does not extend to vulnerabilities occurring in source code written in other languages that are accessed using the Java Native Interface. Despite the memory protections offered in Java, the C code in this example is vulnerable to a buffer overflow because it makes use of gets(), which does not check the length of its input.

The Sun Java(TM) Tutorial provides the following description of JNI [See Reference]: The JNI framework lets your native method utilize Java objects in the same way that Java code uses these objects. A native method can create Java objects, including arrays and strings, and then inspect and use these objects to perform its tasks. A native method can also inspect and use objects created by Java application code. A native method can even update Java objects that it created or that were passed to it, and these updated objects are available to the Java application. Thus, both the native language side and the Java side of an application can create, update, and access Java objects and then share these objects between them.

The vulnerability in the example above could easily be detected through a source code audit of the native method implementation. This may not be practical or possible depending on the availability of the C source code and the way the project is built, but in many cases it may suffice. However, the ability to share objects between Java and native methods expands the potential risk to much more insidious cases where improper data handling in Java may lead to unexpected vulnerabilities in native code or unsafe operations in native code corrupt data structures in Java. Vulnerabilities in native code accessed through a Java application are typically exploited in the same manner as they are in applications written in the native language. The only challenge to such an attack is for the attacker to identify that the Java application uses native code to perform certain operations. This can be accomplished in a variety of ways, including identifying specific behaviors that are often implemented with native code or by exploiting a system information exposure in the Java application that reveals its use of JNI [See Reference].



+ Weakness Ordinalities
Ordinality Description
Primary
(where the weakness exists independent of other weaknesses)
+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 859 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 16 - Platform Security (SEC)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1001 SFP Secondary Cluster: Use of an Improper API
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1151 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 17. Java Native Interface (JNI)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1412 Comprehensive Categorization: Poor Coding Practices
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Unsafe JNI
The CERT Oracle Secure Coding Standard for Java (2011) SEC08-J Define wrappers around native methods
SEI CERT Oracle Coding Standard for Java JNI01-J Safely invoke standard APIs that perform tasks using the immediate caller's class loader instance (loadLibrary)
SEI CERT Oracle Coding Standard for Java JNI00-J Imprecise Define wrappers around native methods
Software Fault Patterns SFP3 Use of an improper API
+ References
[REF-6] Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools Techniques and Metrics. NIST. 2005-11-07.
<https://samate.nist.gov/SSATTM_Content/papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf>.
[REF-41] Fortify Software. "Fortify Descriptions".
<http://vulncat.fortifysoftware.com>.
[REF-42] Beth Stearns. "The Java(TM) Tutorial: The Java Native Interface". Sun Microsystems. 2005.
<http://www.eg.bucknell.edu/~mead/Java-tutorial/native1.1/index.html>.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
7 Pernicious Kingdoms
+ Modifications
Modification Date Modifier Organization
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Demonstrative_Examples
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships
2021-03-15 CWE Content Team MITRE
updated Description
2020-02-24 CWE Content Team MITRE
updated References, Relationships, Type
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Causal_Nature, Potential_Mitigations, References
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2013-02-21 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-03-29 CWE Content Team MITRE
updated Demonstrative_Examples
2009-10-29 CWE Content Team MITRE
updated Description, Other_Notes
2008-11-24 CWE Content Team MITRE
updated Description, Other_Notes
2008-09-08 CWE Content Team MITRE
updated Relationships, Other_Notes, References, Taxonomy_Mappings, Weakness_Ordinalities
2008-07-01 Eric Dalci Cigital
updated Demonstrative_Example, Potential_Mitigations, Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Unsafe JNI

CWE-369: Divide By Zero

Weakness ID: 369
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product divides a value by zero.
+ Extended Description
This weakness typically occurs when an unexpected value is provided to the product, or if an error occurs that is not properly detected. It frequently occurs in calculations involving physical dimensions such as size, length, width, and height.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

DoS: Crash, Exit, or Restart

Scope: Availability

A Divide by Zero results in a crash.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 682 Incorrect Calculation
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 189 Numeric Errors
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 682 Incorrect Calculation
+ Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 682 Incorrect Calculation
+ Relevant to the view "CISQ Data Protection Measures" (View-1340)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 682 Incorrect Calculation
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Likelihood Of Exploit
Medium
+ Demonstrative Examples

Example 1


The following Java example contains a function to compute an average but does not validate that the input value used as the denominator is not zero. This will create an exception for attempting to divide by zero. If this error is not handled by Java exception handling, unexpected results can occur.

(bad code)
Example Language: Java 
public int computeAverageResponseTime (int totalTime, int numRequests) {
return totalTime / numRequests;
}

By validating the input value used as the denominator the following code will ensure that a divide by zero error will not cause unexpected results. The following Java code example will validate the input value, output an error message, and throw an exception.

(good code)
Example Language: Java 
public int computeAverageResponseTime (int totalTime, int numRequests) throws ArithmeticException {
if (numRequests == 0) {
System.out.println("Division by zero attempted!");
throw ArithmeticException;
}
return totalTime / numRequests;
}


Example 2


The following C/C++ example contains a function that divides two numeric values without verifying that the input value used as the denominator is not zero. This will create an error for attempting to divide by zero, if this error is not caught by the error handling capabilities of the language, unexpected results can occur.

(bad code)
Example Language:
double divide(double x, double y){
return x/y;
}

By validating the input value used as the denominator the following code will ensure that a divide by zero error will not cause unexpected results. If the method is called and a zero is passed as the second argument a DivideByZero error will be thrown and should be caught by the calling block with an output message indicating the error.

(good code)
Example Language:
const int DivideByZero = 10;
double divide(double x, double y){
if ( 0 == y ){
throw DivideByZero;
}
return x/y;
}
...
try{
divide(10, 0);
}
catch( int i ){
if(i==DivideByZero) {
cerr<<"Divide by zero error";
}
}
Example 2 References:
[REF-371] Alex Allain. "Handling Errors Exceptionally Well in C++". <https://www.cprogramming.com/tutorial/exceptions.html>. URL validated: 2023-04-07.


Example 3


The following C# example contains a function that divides two numeric values without verifying that the input value used as the denominator is not zero. This will create an error for attempting to divide by zero, if this error is not caught by the error handling capabilities of the language, unexpected results can occur.

(bad code)
Example Language: C# 
int Division(int x, int y){
return (x / y);
}

The method can be modified to raise, catch and handle the DivideByZeroException if the input value used as the denominator is zero.

(good code)
Example Language: C# 
int SafeDivision(int x, int y){
try{
return (x / y);
}
catch (System.DivideByZeroException dbz){
System.Console.WriteLine("Division by zero attempted!");
return 0;
}
}
Example 3 References:
[REF-372] Microsoft. "Exceptions and Exception Handling (C# Programming Guide)". <https://msdn.microsoft.com/pl-pl/library/ms173160(v=vs.100).aspx>.


+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Invalid size value leads to divide by zero.
"Empty" content triggers divide by zero.
Height value of 0 triggers divide by zero.
+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

Fuzzing

Fuzz testing (fuzzing) is a powerful technique for generating large numbers of diverse inputs - either randomly or algorithmically - and dynamically invoking the code with those inputs. Even with random inputs, it is often capable of generating unexpected results such as crashes, memory corruption, or resource consumption. Fuzzing effectively produces repeatable test cases that clearly indicate bugs, which helps developers to diagnose the issues.

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 730 OWASP Top Ten 2004 Category A9 - Denial of Service
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 738 CERT C Secure Coding Standard (2008) Chapter 5 - Integers (INT)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 739 CERT C Secure Coding Standard (2008) Chapter 6 - Floating Point (FLP)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 848 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 5 - Numeric Types and Operations (NUM)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 872 CERT C++ Secure Coding Section 04 - Integers (INT)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 873 CERT C++ Secure Coding Section 05 - Floating Point Arithmetic (FLP)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 998 SFP Secondary Cluster: Glitch in Computation
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1137 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 03. Numeric Types and Operations (NUM)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1158 SEI CERT C Coding Standard - Guidelines 04. Integers (INT)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1408 Comprehensive Categorization: Incorrect Calculation
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
CERT C Secure Coding FLP03-C Detect and handle floating point errors
CERT C Secure Coding INT33-C Exact Ensure that division and remainder operations do not result in divide-by-zero errors
The CERT Oracle Secure Coding Standard for Java (2011) NUM02-J Ensure that division and modulo operations do not result in divide-by-zero errors
Software Fault Patterns SFP1 Glitch in computation
+ References
[REF-371] Alex Allain. "Handling Errors Exceptionally Well in C++".
<https://www.cprogramming.com/tutorial/exceptions.html>. (URL validated: 2023-04-07)
[REF-372] Microsoft. "Exceptions and Exception Handling (C# Programming Guide)".
<https://msdn.microsoft.com/pl-pl/library/ms173160(v=vs.100).aspx>.
+ Content History
+ Submissions
Submission Date Submitter Organization
2008-04-11
(CWE Draft 9, 2008-04-11)
CWE Community
Submitted by members of the CWE community to extend early CWE versions
+ Modifications
Modification Date Modifier Organization
2025-04-03
(CWE 4.17, 2025-04-03)
CWE Content Team MITRE
updated Demonstrative_Examples
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Demonstrative_Examples, Detection_Factors, References, Relationships
2022-10-13 CWE Content Team MITRE
updated References
2020-12-10 CWE Content Team MITRE
updated Relationships
2020-08-20 CWE Content Team MITRE
updated Relationships
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Demonstrative_Examples, Taxonomy_Mappings
2015-12-07 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-05-11 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2009-10-29 CWE Content Team MITRE
updated Other_Notes
2009-05-27 CWE Content Team MITRE
updated Demonstrative_Examples
2008-11-24 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2008-09-08 CWE Content Team MITRE
updated Common_Consequences, Description, Relationships, Other_Notes, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-07-01 Sean Eidemiller Cigital
added/updated demonstrative examples

CWE-609: Double-Checked Locking

Weakness ID: 609
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product uses double-checked locking to access a resource without the overhead of explicit synchronization, but the locking is insufficient.
+ Extended Description
Double-checked locking refers to the situation where a programmer checks to see if a resource has been initialized, grabs a lock, checks again to see if the resource has been initialized, and then performs the initialization if it has not occurred yet. This should not be done, as it is not guaranteed to work in all languages and on all architectures. In summary, other threads may not be operating inside the synchronous block and are not guaranteed to see the operations execute in the same order as they would appear inside the synchronous block.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Modify Application Data; Alter Execution Logic

Scope: Integrity, Other

+ Potential Mitigations
Phase(s) Mitigation

Implementation

While double-checked locking can be achieved in some languages, it is inherently flawed in Java before 1.5, and cannot be achieved without compromising platform independence. Before Java 1.5, only use of the synchronized keyword is known to work. Beginning in Java 1.5, use of the "volatile" keyword allows double-checked locking to work successfully, although there is some debate as to whether it achieves sufficient performance gains. See references.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 667 Improper Locking
CanPrecede Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 367 Time-of-check Time-of-use (TOCTOU) Race Condition
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 411 Resource Locking Problems
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Java (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


It may seem that the following bit of code achieves thread safety while avoiding unnecessary synchronization...

(bad code)
Example Language: Java 
if (helper == null) {
synchronized (this) {
if (helper == null) {
helper = new Helper();
}
}
}
return helper;

The programmer wants to guarantee that only one Helper() object is ever allocated, but does not want to pay the cost of synchronization every time this code is called.

Suppose that helper is not initialized. Then, thread A sees that helper==null and enters the synchronized block and begins to execute:

(bad code)
Example Language: Java 
helper = new Helper();

If a second thread, thread B, takes over in the middle of this call and helper has not finished running the constructor, then thread B may make calls on helper while its fields hold incorrect values.



+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 853 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 10 - Locking (LCK)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 986 SFP Secondary Cluster: Missing Lock
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1143 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 09. Locking (LCK)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1401 Comprehensive Categorization: Concurrency
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure Coding Standard for Java (2011) LCK10-J Do not use incorrect forms of the double-checked locking idiom
Software Fault Patterns SFP19 Missing Lock
+ References
[REF-490] David Bacon et al. "The "Double-Checked Locking is Broken" Declaration".
<http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html>.
[REF-491] Jeremy Manson and Brian Goetz. "JSR 133 (Java Memory Model) FAQ".
<http://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html#dcl>.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 13, "Threading Vulnerabilities", Page 815. 1st Edition. Addison Wesley. 2006.
+ Content History
+ Submissions
Submission Date Submitter Organization
2007-05-07
(CWE Draft 6, 2007-05-07)
Anonymous Tool Vendor (under NDA)
+ Modifications
Modification Date Modifier Organization
2025-04-03
(CWE 4.17, 2025-04-03)
CWE Content Team MITRE
updated Demonstrative_Examples
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Demonstrative_Examples, References, Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2010-12-13 CWE Content Team MITRE
updated Relationships
2009-10-29 CWE Content Team MITRE
updated Taxonomy_Mappings
2009-05-27 CWE Content Team MITRE
updated Relationships
2009-01-12 CWE Content Team MITRE
updated Relationships
2008-11-24 CWE Content Team MITRE
updated Demonstrative_Examples
2008-09-08 CWE Content Team MITRE
updated Description, Relationships, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Context_Notes
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Double Checked Locking

CWE-586: Explicit Call to Finalize()

Weakness ID: 586
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product makes an explicit call to the finalize() method from outside the finalizer.
+ Extended Description
While the Java Language Specification allows an object's finalize() method to be called from outside the finalizer, doing so is usually a bad idea. For example, calling finalize() explicitly means that finalize() will be called more than once: the first time will be the explicit call and the last time will be the call that is made after the object is garbage collected.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Unexpected State; Quality Degradation

Scope: Integrity, Other

+ Potential Mitigations
Phase(s) Mitigation

Implementation; Testing

Do not make explicit calls to finalize(). Use static analysis tools to spot such instances.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 1076 Insufficient Adherence to Expected Conventions
PeerOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 675 Multiple Operations on Resource in Single-Operation Context
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1006 Bad Coding Practices
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Java (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


The following code fragment calls finalize() explicitly:

(bad code)
Example Language: Java 

// time to clean up
widget.finalize();


+ Weakness Ordinalities
Ordinality Description
Primary
(where the weakness exists independent of other weaknesses)
+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 850 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 7 - Methods (MET)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1001 SFP Secondary Cluster: Use of an Improper API
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1140 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1412 Comprehensive Categorization: Poor Coding Practices
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure Coding Standard for Java (2011) MET12-J Do not use finalizers
Software Fault Patterns SFP3 Use of an improper API
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-12-15
(CWE Draft 5, 2006-12-15)
CWE Community
Submitted by members of the CWE community to extend early CWE versions
+ Modifications
Modification Date Modifier Organization
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships, Type
2023-01-31 CWE Content Team MITRE
updated Description
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings, Weakness_Ordinalities
2017-11-08 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Common_Consequences
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2009-10-29 CWE Content Team MITRE
updated Description, Other_Notes
2009-05-27 CWE Content Team MITRE
updated Demonstrative_Examples
2008-09-08 CWE Content Team MITRE
updated Relationships, Other_Notes
2008-07-01 Eric Dalci Cigital
updated Name, Potential_Mitigations, Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2008-09-09 Explicit Call to Finalize

CWE-359: Exposure of Private Personal Information to an Unauthorized Actor

Weakness ID: 359
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product does not properly prevent a person's private, personal information from being accessed by actors who either (1) are not explicitly authorized to access the information or (2) do not have the implicit consent of the person about whom the information is collected. Diagram for CWE-359
+ Alternate Terms
Privacy violation
Privacy leak
Privacy leakage
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Read Application Data

Scope: Confidentiality

+ Potential Mitigations
Phase(s) Mitigation

Requirements

Identify and consult all relevant regulations for personal privacy. An organization may be required to comply with certain federal and state regulations, depending on its location, the type of business it conducts, and the nature of any private data it handles. Regulations may include Safe Harbor Privacy Framework [REF-340], Gramm-Leach Bliley Act (GLBA) [REF-341], Health Insurance Portability and Accountability Act (HIPAA) [REF-342], General Data Protection Regulation (GDPR) [REF-1047], California Consumer Privacy Act (CCPA) [REF-1048], and others.

Architecture and Design

Carefully evaluate how secure design may interfere with privacy, and vice versa. Security and privacy concerns often seem to compete with each other. From a security perspective, all important operations should be recorded so that any anomalous activity can later be identified. However, when private data is involved, this practice can in fact create risk. Although there are many ways in which private data can be handled unsafely, a common risk stems from misplaced trust. Programmers often trust the operating environment in which a program runs, and therefore believe that it is acceptable store private information on the file system, in the registry, or in other locally-controlled resources. However, even if access to certain resources is restricted, this does not guarantee that the individuals who do have access can be trusted.

+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 200 Exposure of Sensitive Information to an Unauthorized Actor
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 199 Information Management Errors
+ Relevant to the view "Architectural Concepts" (View-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1011 Authorize Actors
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design OMISSION: This weakness is caused by missing a security tactic during the architecture and design phase.
Implementation
Operation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

Technologies

Class: Mobile (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


The following code contains a logging statement that tracks the contents of records added to a database by storing them in a log file. Among other values that are stored, the getPassword() function returns the user-supplied plaintext password associated with the account.

(bad code)
Example Language: C# 
pass = GetPassword();
...
dbmsLog.WriteLine(id + ":" + pass + ":" + type + ":" + tstamp);

The code in the example above logs a plaintext password to the filesystem. Although many developers trust the filesystem as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern.



Example 2


This code uses location to determine the user's current US State location.

First the application must declare that it requires the ACCESS_FINE_LOCATION permission in the application's manifest.xml:

(bad code)
Example Language: XML 
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

During execution, a call to getLastLocation() will return a location based on the application's location permissions. In this case the application has permission for the most accurate location possible:

(bad code)
Example Language: Java 
locationClient = new LocationClient(this, this, this);
locationClient.connect();
Location userCurrLocation;
userCurrLocation = locationClient.getLastLocation();
deriveStateFromCoords(userCurrLocation);

While the application needs this information, it does not need to use the ACCESS_FINE_LOCATION permission, as the ACCESS_COARSE_LOCATION permission will be sufficient to identify which US state the user is in.



Example 3


In 2004, an employee at AOL sold approximately 92 million private customer e-mail addresses to a spammer marketing an offshore gambling web site [REF-338]. In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated.



+ Detection Methods
Method Details

Architecture or Design Review

Private personal data can enter a program in a variety of ways:

  • Directly from the user in the form of a password or personal information
  • Accessed from a database or other data store by the application
  • Indirectly from a partner or other third party

If the data is written to an external location - such as the console, file system, or network - a privacy violation may occur.

Effectiveness: High

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 254 7PK - Security Features
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 857 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 14 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 975 SFP Secondary Cluster: Architecture
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1029 OWASP Top Ten 2017 Category A3 - Sensitive Data Exposure
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1147 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1340 CISQ Data Protection Measures
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1345 OWASP Top Ten 2021 Category A01:2021 - Broken Access Control
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1417 Comprehensive Categorization: Sensitive Information Exposure
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Other

There are many types of sensitive information that products must protect from attackers, including system data, communications, configuration, business secrets, intellectual property, and an individual's personal (private) information. Private personal information may include a password, phone number, geographic location, personal messages, credit card number, etc. Private information is important to consider whether the person is a user of the product, or part of a data set that is processed by the product. An exposure of private information does not necessarily prevent the product from working properly, and in fact the exposure might be intended by the developer, e.g. as part of data sharing with other organizations. However, the exposure of personal private information can still be undesirable or explicitly prohibited by law or regulation.

Some types of private information include:

  • Government identifiers, such as Social Security Numbers
  • Contact information, such as home addresses and telephone numbers
  • Geographic location - where the user is (or was)
  • Employment history
  • Financial data - such as credit card numbers, salary, bank accounts, and debts
  • Pictures, video, or audio
  • Behavioral patterns - such as web surfing history, when certain activities are performed, etc.
  • Relationships (and types of relationships) with others - family, friends, contacts, etc.
  • Communications - e-mail addresses, private messages, text messages, chat logs, etc.
  • Health - medical conditions, insurance status, prescription records
  • Account passwords and other credentials

Some of this information may be characterized as PII (Personally Identifiable Information), Protected Health Information (PHI), etc. Categories of private information may overlap or vary based on the intended usage or the policies and practices of a particular industry.

Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private.

Maintenance

This entry overlaps many other entries that are not organized around the kind of sensitive information that is exposed. However, because privacy is treated with such importance due to regulations and other factors, and it may be useful for weakness-finding tools to highlight capabilities that detect personal private information instead of system information, it is not clear whether - and how - this entry should be deprecated.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Privacy Violation
The CERT Oracle Secure Coding Standard for Java (2011) FIO13-J Do not log sensitive information outside a trust boundary
+ References
[REF-6] Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools Techniques and Metrics. NIST. 2005-11-07.
<https://samate.nist.gov/SSATTM_Content/papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf>.
[REF-338] J. Oates. "AOL man pleads guilty to selling 92m email addies". The Register. 2005.
<https://www.theregister.com/2005/02/07/aol_email_theft/>. (URL validated: 2023-04-07)
[REF-339] NIST. "Guide to Protecting the Confidentiality of Personally Identifiable Information (SP 800-122)". 2010-04.
<https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-122.pdf>. (URL validated: 2023-04-07)
[REF-340] U.S. Department of Commerce. "Safe Harbor Privacy Framework".
<https://web.archive.org/web/20010223203241/http://www.export.gov/safeharbor/>. (URL validated: 2023-04-07)
[REF-341] Federal Trade Commission. "Financial Privacy: The Gramm-Leach Bliley Act (GLBA)".
<https://www.ftc.gov/business-guidance/privacy-security/gramm-leach-bliley-act>. (URL validated: 2023-04-07)
[REF-342] U.S. Department of Human Services. "Health Insurance Portability and Accountability Act (HIPAA)".
<https://www.hhs.gov/hipaa/index.html>. (URL validated: 2023-04-07)
[REF-343] Government of the State of California. "California SB-1386". 2002-02-12.
<http://www.leginfo.ca.gov/pub/01-02/bill/sen/sb_1351-1400/sb_1386_bill_20020926_chaptered.html>. (URL validated: 2025-07-24)
[REF-267] Information Technology Laboratory, National Institute of Standards and Technology. "FIPS PUB 140-2: SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001-05-25.
<https://csrc.nist.gov/files/pubs/fips/140-2/upd2/final/docs/fips1402.pdf>. (URL validated: 2025-05-21)
[REF-172] Chris Wysopal. "Mobile App Top 10 List". 2010-12-13.
<https://www.veracode.com/blog/2010/12/mobile-app-top-10-list>. (URL validated: 2023-04-07)
[REF-1047] Wikipedia. "General Data Protection Regulation".
<https://en.wikipedia.org/wiki/General_Data_Protection_Regulation>.
[REF-1048] State of California Department of Justice, Office of the Attorney General. "California Consumer Privacy Act (CCPA)".
<https://oag.ca.gov/privacy/ccpa>.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
7 Pernicious Kingdoms
+ Modifications
Modification Date Modifier Organization
2025-09-09
(CWE 4.18, 2025-09-09)
CWE Content Team MITRE
updated References
2024-11-19
(CWE 4.16, 2024-11-19)
CWE Content Team MITRE
updated Description, Diagram, Other_Notes
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, References, Relationships
2023-01-31 CWE Content Team MITRE
updated Related_Attack_Patterns
2021-10-28 CWE Content Team MITRE
updated Relationships
2021-03-15 CWE Content Team MITRE
updated References
2020-12-10 CWE Content Team MITRE
updated Relationships
2020-08-20 CWE Content Team MITRE
updated Related_Attack_Patterns
2020-02-24 CWE Content Team MITRE
updated Alternate_Terms, Applicable_Platforms, Demonstrative_Examples, Description, Detection_Factors, Maintenance_Notes, Name, Potential_Mitigations, References, Relationships, Type
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2018-03-27 CWE Content Team MITRE
updated Relationships
2017-11-08 CWE Content Team MITRE
updated Modes_of_Introduction, References, Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships
2014-02-18 CWE Content Team MITRE
updated Alternate_Terms, Demonstrative_Examples, Description, Name, Other_Notes, References
2013-02-21 CWE Content Team MITRE
updated Applicable_Platforms, References
2012-05-11 CWE Content Team MITRE
updated Related_Attack_Patterns, Relationships, Taxonomy_Mappings
2011-09-13 CWE Content Team MITRE
updated Other_Notes, References
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-03-29 CWE Content Team MITRE
updated Other_Notes
2010-02-16 CWE Content Team MITRE
updated Other_Notes, References
2009-12-28 CWE Content Team MITRE
updated Other_Notes, References
2009-07-27 CWE Content Team MITRE
updated Demonstrative_Examples
2009-03-10 CWE Content Team MITRE
updated Other_Notes
2008-09-08 CWE Content Team MITRE
updated Relationships, Other_Notes, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2014-02-18 Privacy Violation
2020-02-24 Exposure of Private Information ('Privacy Violation')

CWE-583: finalize() Method Declared Public

Weakness ID: 583
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product violates secure coding principles for mobile code by declaring a finalize() method public.
+ Extended Description
A product should never call finalize explicitly, except to call super.finalize() inside an implementation of finalize(). In mobile code situations, the otherwise error prone practice of manual garbage collection can become a security threat if an attacker can maliciously invoke a finalize() method because it is declared with public access.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Alter Execution Logic; Execute Unauthorized Code or Commands; Modify Application Data

Scope: Confidentiality, Integrity, Availability

+ Potential Mitigations
Phase(s) Mitigation

Implementation

If you are using finalize() as it was designed, there is no reason to declare finalize() with anything other than protected access.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 668 Exposure of Resource to Wrong Sphere
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Java (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


The following Java Applet code mistakenly declares a public finalize() method.

(bad code)
Example Language: Java 
public final class urlTool extends Applet {
public void finalize() {
...
}
...
}

Mobile code, in this case a Java Applet, is code that is transmitted across a network and executed on a remote machine. Because mobile code developers have little if any control of the environment in which their code will execute, special security concerns become relevant. One of the biggest environmental threats results from the risk that the mobile code will run side-by-side with other, potentially malicious, mobile code. Because all of the popular web browsers execute code from multiple sources together in the same JVM, many of the security guidelines for mobile code are focused on preventing manipulation of your objects' state and behavior by adversaries who have access to the same virtual machine where your product is running.



+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 850 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 7 - Methods (MET)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1002 SFP Secondary Cluster: Unexpected Entry Points
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1140 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1403 Comprehensive Categorization: Exposed Resource
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure Coding Standard for Java (2011) MET12-J Do not use finalizers
Software Fault Patterns SFP28 Unexpected access points
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-12-15
(CWE Draft 5, 2006-12-15)
CWE Community
Submitted by members of the CWE community to extend early CWE versions
+ Modifications
Modification Date Modifier Organization
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships
2023-01-31 CWE Content Team MITRE
updated Demonstrative_Examples, Description
2020-02-24 CWE Content Team MITRE
updated Description, Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Common_Consequences
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2009-10-29 CWE Content Team MITRE
updated Description, Other_Notes
2009-05-27 CWE Content Team MITRE
updated Demonstrative_Examples
2008-09-08 CWE Content Team MITRE
updated Relationships, Other_Notes
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Mobile Code: Public Finalize Method

CWE-568: finalize() Method Without super.finalize()

Weakness ID: 568
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product contains a finalize() method that does not call super.finalize().
+ Extended Description
The Java Language Specification states that it is a good practice for a finalize() method to call super.finalize().
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Quality Degradation

Scope: Other

+ Potential Mitigations
Phase(s) Mitigation

Implementation

Call the super.finalize() method.

Testing

Use static analysis tools to spot such issues in your code.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 459 Incomplete Cleanup
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 573 Improper Following of Specification by Caller
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Java (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


The following method omits the call to super.finalize().

(bad code)
Example Language: Java 
protected void finalize() {
discardNative();
}


+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 850 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 7 - Methods (MET)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1002 SFP Secondary Cluster: Unexpected Entry Points
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1140 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1416 Comprehensive Categorization: Resource Lifecycle Management
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure Coding Standard for Java (2011) MET12-J Do not use finalizers
Software Fault Patterns SFP28 Unexpected access points
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-12-15
(CWE Draft 5, 2006-12-15)
CWE Community
Submitted by members of the CWE community to extend early CWE versions
+ Modifications
Modification Date Modifier Organization
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Common_Consequences
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2009-10-29 CWE Content Team MITRE
updated Description, Other_Notes
2008-09-08 CWE Content Team MITRE
updated Relationships, Other_Notes
2008-07-01 Eric Dalci Cigital
updated Potential_Mitigations, Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Erroneous Finalize Method

CWE-754: Improper Check for Unusual or Exceptional Conditions

Weakness ID: 754
Vulnerability Mapping: ALLOWED This CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review (with careful review of mapping notes)
Abstraction: Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product does not check or incorrectly checks for unusual or exceptional conditions that are not expected to occur frequently during day to day operation of the product.
+ Extended Description

The programmer may assume that certain events or conditions will never occur or do not need to be worried about, such as low memory conditions, lack of access to resources due to restrictive permissions, or misbehaving clients or components. However, attackers may intentionally trigger these unusual conditions, thus violating the programmer's assumptions, possibly introducing instability, incorrect behavior, or a vulnerability.

Note that this entry is not exclusively about the use of exceptions and exception handling, which are mechanisms for both checking and handling unusual or unexpected conditions.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

DoS: Crash, Exit, or Restart; Unexpected State

Scope: Integrity, Availability

The data which were produced as a result of a function call could be in a bad state upon return. If the return value is not checked, then this bad data may be used in operations, possibly leading to a crash or other unintended behaviors.
+ Potential Mitigations
Phase(s) Mitigation

Requirements

Strategy: Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

Choose languages with features such as exception handling that force the programmer to anticipate unusual conditions that may generate exceptions. Custom exceptions may need to be developed to handle unusual business-logic conditions. Be careful not to pass sensitive exceptions back to the user (CWE-209, CWE-248).

Implementation

Check the results of all functions that return a value and verify that the value is expected.

Effectiveness: High

Note: Checking the return value of the function will typically be sufficient, however beware of race conditions (CWE-362) in a concurrent environment.

Implementation

If using exception handling, catch and throw specific exceptions instead of overly-general exceptions (CWE-396, CWE-397). Catch and handle exceptions as locally as possible so that exceptions do not propagate too far up the call stack (CWE-705). Avoid unchecked or uncaught exceptions where feasible (CWE-248).

Effectiveness: High

Note: Using specific exceptions, and ensuring that exceptions are checked, helps programmers to anticipate and appropriately handle many unusual events that could occur.

Implementation

Ensure that error messages only contain minimal details that are useful to the intended audience and no one else. The messages need to strike the balance between being too cryptic (which can confuse users) or being too detailed (which may reveal more than intended). The messages should not reveal the methods that were used to determine the error. Attackers can use detailed information to refine or optimize their original attack, thereby increasing their chances of success.

If errors must be captured in some detail, record them in log messages, but consider what could occur if the log messages can be viewed by attackers. Highly sensitive information such as passwords should never be saved to log files.

Avoid inconsistent messaging that might accidentally tip off an attacker about internal state, such as whether a user account exists or not.

Exposing additional information to a potential attacker in the context of an exceptional condition can help the attacker determine what attack vectors are most likely to succeed beyond DoS.

Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

Note: Performing extensive input validation does not help with handling unusual conditions, but it will minimize their occurrences and will make it more difficult for attackers to trigger them.

Architecture and Design; Implementation

If the program must fail, ensure that it fails gracefully (fails closed). There may be a temptation to simply let the program fail poorly in cases such as low memory conditions, but an attacker may be able to assert control before the software has fully exited. Alternately, an uncontrolled failure could cause cascading problems with other downstream components; for example, the program could send a signal to a downstream process so the process immediately knows that a problem has occurred and has a better chance of recovery.

Architecture and Design

Use system limits, which should help to prevent resource exhaustion. However, the product should still handle low resource conditions since they may still occur.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 703 Improper Check or Handling of Exceptional Conditions
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 252 Unchecked Return Value
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 253 Incorrect Check of Function Return Value
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 273 Improper Check for Dropped Privileges
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 354 Improper Validation of Integrity Check Value
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 391 Unchecked Error Condition
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 394 Unexpected Status Code or Return Value
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 476 NULL Pointer Dereference
CanPrecede Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 416 Use After Free
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Nature Type ID Name
MemberOf View View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1003 Weaknesses for Simplified Mapping of Published Vulnerabilities
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 252 Unchecked Return Value
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 273 Improper Check for Dropped Privileges
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 476 NULL Pointer Dereference
+ Relevant to the view "Architectural Concepts" (View-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1012 Cross Cutting
+ Background Details
Many functions will return some value about the success of their actions. This will alert the program whether or not to handle any errors caused by that function.
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation REALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Likelihood Of Exploit
Medium
+ Demonstrative Examples

Example 1


Consider the following code segment:

(bad code)
Example Language:
char buf[10], cp_buf[10];
fgets(buf, 10, stdin);
strcpy(cp_buf, buf);

The programmer expects that when fgets() returns, buf will contain a null-terminated string of length 9 or less. But if an I/O error occurs, fgets() will not null-terminate buf. Furthermore, if the end of the file is reached before any characters are read, fgets() returns without writing anything to buf. In both of these situations, fgets() signals that something unusual has happened by returning NULL, but in this code, the warning will not be noticed. The lack of a null terminator in buf can result in a buffer overflow in the subsequent call to strcpy().



Example 2


The following code does not check to see if memory allocation succeeded before attempting to use the pointer returned by malloc().

(bad code)
Example Language:
buf = (char*) malloc(req_size);
strncpy(buf, xfer, req_size);

The traditional defense of this coding error is: "If my program runs out of memory, it will fail. It doesn't matter whether I handle the error or simply allow the program to die with a segmentation fault when it tries to dereference the null pointer." This argument ignores three important considerations:

  • Depending upon the type and size of the application, it may be possible to free memory that is being used elsewhere so that execution can continue.
  • It is impossible for the program to perform a graceful exit if required. If the program is performing an atomic operation, it can leave the system in an inconsistent state.
  • The programmer has lost the opportunity to record diagnostic information. Did the call to malloc() fail because req_size was too large or because there were too many requests being handled at the same time? Or was it caused by a memory leak that has built up over time? Without handling the error, there is no way to know.



Example 3


The following examples read a file into a byte array.

(bad code)
Example Language: C# 
char[] byteArray = new char[1024];
for (IEnumerator i=users.GetEnumerator(); i.MoveNext() ;i.Current()) {
String userName = (String) i.Current();
String pFileName = PFILE_ROOT + "/" + userName;
StreamReader sr = new StreamReader(pFileName);
sr.Read(byteArray,0,1024);//the file is always 1k bytes
sr.Close();
processPFile(userName, byteArray);
}
(bad code)
Example Language: Java 
FileInputStream fis;
byte[] byteArray = new byte[1024];
for (Iterator i=users.iterator(); i.hasNext();) {
String userName = (String) i.next();
String pFileName = PFILE_ROOT + "/" + userName;
FileInputStream fis = new FileInputStream(pFileName);
fis.read(byteArray); // the file is always 1k bytes
fis.close();
processPFile(userName, byteArray);

The code loops through a set of users, reading a private data file for each user. The programmer assumes that the files are always 1 kilobyte in size and therefore ignores the return value from Read(). If an attacker can create a smaller file, the program will recycle the remainder of the data from the previous user and treat it as though it belongs to the attacker.



Example 4


The following code does not check to see if the string returned by getParameter() is null before calling the member function compareTo(), potentially causing a NULL dereference.

(bad code)
Example Language: Java 
String itemName = request.getParameter(ITEM_NAME);
if (itemName.compareTo(IMPORTANT_ITEM) == 0) {
...
}
...

The following code does not check to see if the string returned by the Item property is null before calling the member function Equals(), potentially causing a NULL dereference.

(bad code)
Example Language: Java 
String itemName = request.Item(ITEM_NAME);
if (itemName.Equals(IMPORTANT_ITEM)) {
...
}
...

The traditional defense of this coding error is: "I know the requested value will always exist because.... If it does not exist, the program cannot perform the desired behavior so it doesn't matter whether I handle the error or simply allow the program to die dereferencing a null value." But attackers are skilled at finding unexpected paths through programs, particularly when exceptions are involved.



Example 5


The following code shows a system property that is set to null and later dereferenced by a programmer who mistakenly assumes it will always be defined.

(bad code)
Example Language: Java 
System.clearProperty("os.name");
...
String os = System.getProperty("os.name");
if (os.equalsIgnoreCase("Windows 95")) System.out.println("Not supported");

The traditional defense of this coding error is: "I know the requested value will always exist because.... If it does not exist, the program cannot perform the desired behavior so it doesn't matter whether I handle the error or simply allow the program to die dereferencing a null value." But attackers are skilled at finding unexpected paths through programs, particularly when exceptions are involved.



Example 6


The following VB.NET code does not check to make sure that it has read 50 bytes from myfile.txt. This can cause DoDangerousOperation() to operate on an unexpected value.

(bad code)
Example Language: C# 
Dim MyFile As New FileStream("myfile.txt", FileMode.Open, FileAccess.Read, FileShare.Read)
Dim MyArray(50) As Byte
MyFile.Read(MyArray, 0, 50)
DoDangerousOperation(MyArray(20))

In .NET, it is not uncommon for programmers to misunderstand Read() and related methods that are part of many System.IO classes. The stream and reader classes do not consider it to be unusual or exceptional if only a small amount of data becomes available. These classes simply add the small amount of data to the return buffer, and set the return value to the number of bytes or characters read. There is no guarantee that the amount of data returned is equal to the amount of data requested.



Example 7


This example takes an IP address from a user, verifies that it is well formed and then looks up the hostname and copies it into a buffer.

(bad code)
Example Language:
void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);

/*routine that ensures user_supplied_addr is in the right format for conversion */

validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr( addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);
}

If an attacker provides an address that appears to be well-formed, but the address does not resolve to a hostname, then the call to gethostbyaddr() will return NULL. Since the code does not check the return value from gethostbyaddr (CWE-252), a NULL pointer dereference (CWE-476) would then occur in the call to strcpy().

Note that this code is also vulnerable to a buffer overflow (CWE-119).



Example 8


In the following C/C++ example the method outputStringToFile opens a file in the local filesystem and outputs a string to the file. The input parameters output and filename contain the string to output to the file and the name of the file respectively.

(bad code)
Example Language: C++ 
int outputStringToFile(char *output, char *filename) {

openFileToWrite(filename);
writeToFile(output);
closeFile(filename);
}

However, this code does not check the return values of the methods openFileToWrite, writeToFile, closeFile to verify that the file was properly opened and closed and that the string was successfully written to the file. The return values for these methods should be checked to determine if the method was successful and allow for detection of errors or unexpected conditions as in the following example.

(good code)
Example Language: C++ 
int outputStringToFile(char *output, char *filename) {
int isOutput = SUCCESS;

int isOpen = openFileToWrite(filename);
if (isOpen == FAIL) {
printf("Unable to open file %s", filename);
isOutput = FAIL;
}
else {
int isWrite = writeToFile(output);
if (isWrite == FAIL) {
printf("Unable to write to file %s", filename);
isOutput = FAIL;
}

int isClose = closeFile(filename);
if (isClose == FAIL)
isOutput = FAIL;
}
return isOutput;
}


Example 9


In the following Java example the method readFromFile uses a FileReader object to read the contents of a file. The FileReader object is created using the File object readFile, the readFile object is initialized using the setInputFile method. The setInputFile method should be called before calling the readFromFile method.

(bad code)
Example Language: Java 
private File readFile = null;

public void setInputFile(String inputFile) {

// create readFile File object from string containing name of file
}

public void readFromFile() {
try {
reader = new FileReader(readFile);

// read input file
} catch (FileNotFoundException ex) {...}
}

However, the readFromFile method does not check to see if the readFile object is null, i.e. has not been initialized, before creating the FileReader object and reading from the input file. The readFromFile method should verify whether the readFile object is null and output an error message and raise an exception if the readFile object is null, as in the following code.

(good code)
Example Language: Java 
private File readFile = null;

public void setInputFile(String inputFile) {

// create readFile File object from string containing name of file
}

public void readFromFile() {
try {
if (readFile == null) {
System.err.println("Input file has not been set, call setInputFile method before calling openInputFile");
throw NullPointerException;
}

reader = new FileReader(readFile);

// read input file
} catch (FileNotFoundException ex) {...}
catch (NullPointerException ex) {...}
}


+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Chain: function in web caching proxy does not correctly check a return value (CWE-253) leading to a reachable assertion (CWE-617)
Unchecked return value leads to resultant integer overflow and code execution.
Program does not check return value when invoking functions to drop privileges, which could leave users with higher privileges than expected by forcing those functions to fail.
Program does not check return value when invoking functions to drop privileges, which could leave users with higher privileges than expected by forcing those functions to fail.
+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis may be useful for detecting unusual conditions involving system resources or common programming idioms, but not for violations of business rules.

Effectiveness: Moderate

Manual Dynamic Analysis

Identify error conditions that are not likely to occur during normal usage and trigger them. For example, run the program under low memory conditions, run with insufficient privileges or permissions, interrupt a transaction before it is completed, or disable connectivity to basic network services such as DNS. Monitor the software for any unexpected behavior. If you trigger an unhandled exception or similar error that was discovered and handled by the application's environment, it may still indicate unexpected conditions that were not handled by the application itself.
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 742 CERT C Secure Coding Standard (2008) Chapter 9 - Memory Management (MEM)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 802 2010 Top 25 - Risky Resource Management
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 867 2011 Top 25 - Weaknesses On the Cusp
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 876 CERT C++ Secure Coding Section 08 - Memory Management (MEM)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 880 CERT C++ Secure Coding Section 12 - Exceptions and Error Handling (ERR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 962 SFP Secondary Cluster: Unchecked Status Condition
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1141 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior (ERR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1181 SEI CERT Perl Coding Standard - Guidelines 03. Expressions (EXP)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1364 ICS Communications: Zone Boundary Failures
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1405 Comprehensive Categorization: Improper Check or Handling of Exceptional Conditions
+ Vulnerability Mapping Notes
Usage ALLOWED-WITH-REVIEW
(this CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review)
Reason Abstraction

Rationale

This CWE entry is a Class and might have Base-level children that would be more appropriate

Comments

Examine children of this entry to see if there is a better fit
+ Notes

Relationship

Sometimes, when a return value can be used to indicate an error, an unchecked return value is a code-layer instance of a missing application-layer check for exceptional conditions. However, return values are not always needed to communicate exceptional conditions. For example, expiration of resources, values passed by reference, asynchronously modified data, sockets, etc. may indicate exceptional conditions without the use of a return value.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
SEI CERT Perl Coding Standard EXP31-PL CWE More Abstract Do not suppress or ignore exceptions
ISA/IEC 62443 Part 4-2 Req CR 3.5
ISA/IEC 62443 Part 4-2 Req CR 3.7
+ References
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 7, "Program Building Blocks" Page 341. 1st Edition. Addison Wesley. 2006.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 1, "Exceptional Conditions," Page 22. 1st Edition. Addison Wesley. 2006.
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 11: Failure to Handle Errors Correctly." Page 183. McGraw-Hill. 2010.
[REF-622] Frank Kim. "Top 25 Series - Rank 15 - Improper Check for Unusual or Exceptional Conditions". SANS Software Security Institute. 2010-03-15.
<https://www.sans.org/blog/top-25-series-rank-15-improper-check-for-unusual-or-exceptional-conditions/>. (URL validated: 2023-04-07)
+ Content History
+ Submissions
Submission Date Submitter Organization
2009-03-03
(CWE 1.3, 2009-03-10)
CWE Content Team MITRE
New entry for reorganization of CWE-703.
+ Contributions
Contribution Date Contributor Organization
2023-04-25 "Mapping CWE to 62443" Sub-Working Group CWE-CAPEC ICS/OT SIG
Suggested mappings to ISA/IEC 62443.
+ Modifications
Modification Date Modifier Organization
2024-07-16
(CWE 4.15, 2024-07-16)
CWE Content Team MITRE
updated Relationships
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Observed_Examples
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated References, Relationships, Taxonomy_Mappings
2023-01-31 CWE Content Team MITRE
updated Description, Potential_Mitigations
2022-04-28 CWE Content Team MITRE
updated Relationships
2021-07-20 CWE Content Team MITRE
updated Relationships
2021-03-15 CWE Content Team MITRE
updated Demonstrative_Examples, Relationships
2020-12-10 CWE Content Team MITRE
updated Potential_Mitigations
2020-06-25 CWE Content Team MITRE
updated Potential_Mitigations
2020-02-24 CWE Content Team MITRE
updated Potential_Mitigations, Relationships
2019-06-20 CWE Content Team MITRE
updated Description, Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Modes_of_Introduction, References, Relationships, Taxonomy_Mappings
2017-01-19 CWE Content Team MITRE
updated Relationships
2015-12-07 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Demonstrative_Examples, Relationships
2013-02-21 CWE Content Team MITRE
updated Relationships
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Relationships
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Common_Consequences, Related_Attack_Patterns, Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2011-03-29 CWE Content Team MITRE
updated Description, Relationships
2010-12-13 CWE Content Team MITRE
updated Relationship_Notes
2010-09-27 CWE Content Team MITRE
updated Potential_Mitigations
2010-06-21 CWE Content Team MITRE
updated Common_Consequences, Detection_Factors, Potential_Mitigations, References
2010-04-05 CWE Content Team MITRE
updated Demonstrative_Examples, Related_Attack_Patterns
2010-02-16 CWE Content Team MITRE
updated Background_Details, Common_Consequences, Demonstrative_Examples, Description, Detection_Factors, Name, Observed_Examples, Potential_Mitigations, References, Related_Attack_Patterns, Relationship_Notes, Relationships
2009-12-28 CWE Content Team MITRE
updated Applicable_Platforms, Likelihood_of_Exploit, Time_of_Introduction
2009-07-27 CWE Content Team MITRE
updated Relationships
+ Previous Entry Names
Change Date Previous Entry Name
2010-02-16 Improper Check for Exceptional Conditions

CWE-703: Improper Check or Handling of Exceptional Conditions

Weakness ID: 703
Vulnerability Mapping: DISCOURAGED This CWE ID should not be used to map to real-world vulnerabilities
Abstraction: Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product does not properly anticipate or handle exceptional conditions that rarely occur during normal operation of the product.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Read Application Data; DoS: Crash, Exit, or Restart; Unexpected State

Scope: Confidentiality, Availability, Integrity

+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
MemberOf View View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1000 Research Concepts
ParentOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 228 Improper Handling of Syntactically Invalid Structure
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 393 Return of Wrong Status Code
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 397 Declaration of Throws for Generic Exception
ParentOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 754 Improper Check for Unusual or Exceptional Conditions
ParentOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 755 Improper Handling of Exceptional Conditions
ParentOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 1384 Improper Handling of Physical or Environmental Conditions
+ Relevant to the view "Architectural Concepts" (View-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1012 Cross Cutting
+ Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Nature Type ID Name
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 248 Uncaught Exception
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 391 Unchecked Error Condition
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 392 Missing Report of Error Condition
+ Relevant to the view "CISQ Data Protection Measures" (View-1340)
Nature Type ID Name
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 248 Uncaught Exception
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 391 Unchecked Error Condition
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 392 Missing Report of Error Condition
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design
Implementation REALIZATION: This weakness is caused during implementation of an architectural security tactic.
Operation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

Technologies

Class: Not Technology-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


Consider the following code segment:

(bad code)
Example Language:
char buf[10], cp_buf[10];
fgets(buf, 10, stdin);
strcpy(cp_buf, buf);

The programmer expects that when fgets() returns, buf will contain a null-terminated string of length 9 or less. But if an I/O error occurs, fgets() will not null-terminate buf. Furthermore, if the end of the file is reached before any characters are read, fgets() returns without writing anything to buf. In both of these situations, fgets() signals that something unusual has happened by returning NULL, but in this code, the warning will not be noticed. The lack of a null terminator in buf can result in a buffer overflow in the subsequent call to strcpy().



Example 2


The following method throws three types of exceptions.

(good code)
Example Language: Java 
public void doExchange() throws IOException, InvocationTargetException, SQLException {
...
}

While it might seem tidier to write

(bad code)
Example Language: Java 
public void doExchange() throws Exception {
...
}

doing so hampers the caller's ability to understand and handle the exceptions that occur. Further, if a later revision of doExchange() introduces a new type of exception that should be treated differently than previous exceptions, there is no easy way to enforce this requirement.



+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Chain: JavaScript-based cryptocurrency library can fall back to the insecure Math.random() function instead of reporting a failure (CWE-392), thus reducing the entropy (CWE-332) and leading to generation of non-unique cryptographic keys for Bitcoin wallets (CWE-1391)
Chain: an operating system does not properly process malformed Open Shortest Path First (OSPF) Type/Length/Value Identifiers (TLV) (CWE-703), which can cause the process to enter an infinite loop (CWE-835)
+ Detection Methods
Method Details

Dynamic Analysis with Manual Results Interpretation

According to SOAR [REF-1479], the following detection techniques may be useful:

Highly cost effective:
  • Fault Injection - source code
  • Fault Injection - binary
Cost effective for partial coverage:
  • Forced Path Execution

Effectiveness: High

Manual Static Analysis - Source Code

According to SOAR [REF-1479], the following detection techniques may be useful:

Highly cost effective:
  • Manual Source Code Review (not inspections)
Cost effective for partial coverage:
  • Focused Manual Spotcheck - Focused manual analysis of source

Effectiveness: High

Automated Static Analysis - Source Code

According to SOAR [REF-1479], the following detection techniques may be useful:

Cost effective for partial coverage:
  • Source code Weakness Analyzer
  • Context-configured Source Code Weakness Analyzer

Effectiveness: SOAR Partial

Architecture or Design Review

According to SOAR [REF-1479], the following detection techniques may be useful:

Highly cost effective:
  • Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)
  • Formal Methods / Correct-By-Construction

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 851 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 8 - Exceptional Behavior (ERR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 876 CERT C++ Secure Coding Section 08 - Memory Management (MEM)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 880 CERT C++ Secure Coding Section 12 - Exceptions and Error Handling (ERR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 961 SFP Secondary Cluster: Incorrect Exception Behavior
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1141 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior (ERR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1306 CISQ Quality Measures - Reliability
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1340 CISQ Data Protection Measures
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1405 Comprehensive Categorization: Improper Check or Handling of Exceptional Conditions
+ Vulnerability Mapping Notes
Usage DISCOURAGED
(this CWE ID should not be used to map to real-world vulnerabilities)
Reason Abstraction

Rationale

This CWE entry is extremely high-level, a Pillar.

Comments

Consider children or descendants of this entry instead.
+ Notes

Relationship

This is a high-level class that might have some overlap with other classes. It could be argued that even "normal" weaknesses such as buffer overflows involve unusual or exceptional conditions. In that sense, this might be an inherent aspect of most other weaknesses within CWE, similar to API Abuse (CWE-227) and Indicator of Poor Code Quality (CWE-398). However, this entry is currently intended to unify disparate concepts that do not have other places within the Research Concepts view (CWE-1000).
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure Coding Standard for Java (2011) ERR06-J Do not throw undeclared checked exceptions
+ References
[REF-567] Taimur Aslam. "A Taxonomy of Security Faults in the UNIX Operating System". 1995-08-01.
<http://ftp.cerias.purdue.edu/pub/papers/taimur-aslam/aslam-taxonomy-msthesis.pdf>.
[REF-568] Taimur Aslam, Ivan Krsul and Eugene H. Spafford. "Use of A Taxonomy of Security Faults". 1995-08-01.
<https://csrc.nist.gov/csrc/media/publications/conference-paper/1996/10/22/proceedings-of-the-19th-nissc-1996/documents/paper057/paper.pdf>. (URL validated: 2023-04-07)
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 8: C++ Catastrophes." Page 143. McGraw-Hill. 2010.
[REF-1374] Unciphered. "Randstorm: You Can't Patch a House of Cards". 2023-11-14.
<https://www.unciphered.com/disclosure-of-vulnerable-bitcoin-wallet-library-2/>. (URL validated: 2025-07-29)
[REF-1479] Gregory Larsen, E. Kenneth Hong Fong, David A. Wheeler and Rama S. Moorthy. "State-of-the-Art Resources (SOAR) for Software Vulnerability Detection, Test, and Evaluation". 2014-07.
<https://www.ida.org/-/media/feature/publications/s/st/stateoftheart-resources-soar-for-software-vulnerability-detection-test-and-evaluation/p-5061.ashx>. (URL validated: 2025-09-05)
+ Content History
+ Submissions
Submission Date Submitter Organization
2008-09-09
(CWE 1.0, 2008-09-09)
CWE Content Team MITRE
Note: this date reflects when the entry was first published. Draft versions of this entry were provided to members of the CWE community and modified between Draft 9 and 1.0.
+ Modifications
Modification Date Modifier Organization
2025-09-09
(CWE 4.18, 2025-09-09)
CWE Content Team MITRE
updated Detection_Factors, References
2025-04-03
(CWE 4.17, 2025-04-03)
CWE Content Team MITRE
updated Demonstrative_Examples
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Demonstrative_Examples, Observed_Examples, References, Relationships
2023-10-26 CWE Content Team MITRE
updated Observed_Examples
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes, Relationships
2023-04-27 CWE Content Team MITRE
updated References, Relationships
2023-01-31 CWE Content Team MITRE
updated Description, Relationships
2022-04-28 CWE Content Team MITRE
updated Relationships
2021-10-28 CWE Content Team MITRE
updated Relationships
2021-07-20 CWE Content Team MITRE
updated Relationships
2020-12-10 CWE Content Team MITRE
updated Relationships
2020-08-20 CWE Content Team MITRE
updated Relationships
2020-02-24 CWE Content Team MITRE
updated Applicable_Platforms, Relationships, Type
2019-06-20 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Modes_of_Introduction, References, Relationships, Taxonomy_Mappings
2017-01-19 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Detection_Factors, Relationships
2012-05-11 CWE Content Team MITRE
updated References, Relationships, Taxonomy_Mappings
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Common_Consequences
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-03-29 CWE Content Team MITRE
updated Relationships
2010-12-13 CWE Content Team MITRE
updated Name, Relationship_Notes
2010-02-16 CWE Content Team MITRE
updated Relationships
2009-10-29 CWE Content Team MITRE
updated Other_Notes
2009-03-10 CWE Content Team MITRE
updated Relationships
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2010-12-13 Failure to Handle Exceptional Conditions

CWE-460: Improper Cleanup on Thrown Exception

Weakness ID: 460
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product does not clean up its state or incorrectly cleans up its state when an exception is thrown, leading to unexpected state or control flow.
+ Extended Description
Often, when functions or loops become complicated, some level of resource cleanup is needed throughout execution. Exceptions can disturb the flow of the code and prevent the necessary cleanup from happening.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Varies by Context

Scope: Other

The code could be left in a bad state.
+ Potential Mitigations
Phase(s) Mitigation

Implementation

If one breaks from a loop or function by throwing an exception, make sure that cleanup happens or that you should exit the program. Use throwing exceptions sparsely.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 459 Incomplete Cleanup
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 755 Improper Handling of Exceptional Conditions
+ Relevant to the view "Architectural Concepts" (View-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1012 Cross Cutting
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation REALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

C (Undetermined Prevalence)

C++ (Undetermined Prevalence)

Java (Undetermined Prevalence)

C# (Undetermined Prevalence)

+ Likelihood Of Exploit
Medium
+ Demonstrative Examples

Example 1


The following example demonstrates the weakness.

(bad code)
Example Language: Java 
public class foo {
public static final void main( String args[] ) {

boolean returnValue;
returnValue=doStuff();
}
public static final boolean doStuff( ) {

boolean threadLock;
boolean truthvalue=true;
try {

while(
//check some condition
) {

threadLock=true; //do some stuff to truthvalue
threadLock=false;
}
}
catch (Exception e){

System.err.println("You did something bad");
if (something) return truthvalue;
}
return truthvalue;
}
}

In this case, a thread might be left locked accidentally.



+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 851 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 8 - Exceptional Behavior (ERR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 880 CERT C++ Secure Coding Section 12 - Exceptions and Error Handling (ERR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 961 SFP Secondary Cluster: Incorrect Exception Behavior
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1141 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior (ERR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1181 SEI CERT Perl Coding Standard - Guidelines 03. Expressions (EXP)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1416 Comprehensive Categorization: Resource Lifecycle Management
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Improper cleanup on thrown exception
The CERT Oracle Secure Coding Standard for Java (2011) ERR03-J Restore prior object state on method failure
The CERT Oracle Secure Coding Standard for Java (2011) ERR05-J Do not let checked exceptions escape from a finally block
SEI CERT Perl Coding Standard EXP31-PL Imprecise Do not suppress or ignore exceptions
+ References
[REF-18] Secure Software, Inc.. "The CLASP Application Security Process". 2005.
<https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf>. (URL validated: 2024-11-17)
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
CLASP
+ Modifications
Modification Date Modifier Organization
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Demonstrative_Examples
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships
2021-03-15 CWE Content Team MITRE
updated Relationships
2020-02-24 CWE Content Team MITRE
updated References, Type
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Demonstrative_Examples, Modes_of_Introduction, Relationships, Taxonomy_Mappings
2014-07-30 CWE Content Team MITRE
updated Relationships
2014-06-23 CWE Content Team MITRE
updated Description, Other_Notes
2012-05-11 CWE Content Team MITRE
updated Relationships
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Common_Consequences
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2009-05-27 CWE Content Team MITRE
updated Description
2009-03-10 CWE Content Team MITRE
updated Relationships
2008-09-08 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Relationships, Other_Notes, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction

CWE-116: Improper Encoding or Escaping of Output

Weakness ID: 116
Vulnerability Mapping: ALLOWED This CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review (with careful review of mapping notes)
Abstraction: Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product prepares a structured message for communication with another component, but encoding or escaping of the data is either missing or done incorrectly. As a result, the intended structure of the message is not preserved.
+ Extended Description

Improper encoding or escaping can allow attackers to change the commands that are sent to another component, inserting malicious commands instead.

Most products follow a certain protocol that uses structured messages for communication between components, such as queries or commands. These structured messages can contain raw data interspersed with metadata or control information. For example, "GET /index.html HTTP/1.1" is a structured message containing a command ("GET") with a single argument ("/index.html") and metadata about which protocol version is being used ("HTTP/1.1").

If an application uses attacker-supplied inputs to construct a structured message without properly encoding or escaping, then the attacker could insert special characters that will cause the data to be interpreted as control information or metadata. Consequently, the component that receives the output will perform the wrong operations, or otherwise interpret the data incorrectly.

+ Alternate Terms
Output Sanitization
Output Validation
Output Encoding
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Modify Application Data

Scope: Integrity

The communications between components can be modified in unexpected ways. Unexpected commands can be executed, bypassing other security mechanisms. Incoming data can be misinterpreted.

Execute Unauthorized Code or Commands

Scope: Integrity, Confidentiality, Availability, Access Control

The communications between components can be modified in unexpected ways. Unexpected commands can be executed, bypassing other security mechanisms. Incoming data can be misinterpreted.

Bypass Protection Mechanism

Scope: Confidentiality

The communications between components can be modified in unexpected ways. Unexpected commands can be executed, bypassing other security mechanisms. Incoming data can be misinterpreted.
+ Potential Mitigations
Phase(s) Mitigation

Architecture and Design

Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

For example, consider using the ESAPI Encoding control [REF-45] or a similar tool, library, or framework. These will help the programmer encode outputs in a manner less prone to error.

Alternately, use built-in functions, but consider using wrappers in case those functions are discovered to have a vulnerability.

Architecture and Design

Strategy: Parameterization

If available, use structured mechanisms that automatically enforce the separation between data and code. These mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on the developer to provide this capability at every point where output is generated.

For example, stored procedures can enforce database query structure and reduce the likelihood of SQL injection.

Architecture and Design; Implementation

Understand the context in which your data will be used and the encoding that will be expected. This is especially important when transmitting data between different components, or when generating outputs that can contain multiple encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication protocols and data representations to determine the required encoding strategies.

Architecture and Design

In some cases, input validation may be an important strategy when output encoding is not a complete solution. For example, you may be providing the same output that will be processed by multiple consumers that use different encodings or representations. In other cases, you may be required to allow user-supplied input to contain control information, such as limited HTML tags that support formatting in a wiki or bulletin board. When this type of requirement must be met, use an extremely strict allowlist to limit which control sequences can be used. Verify that the resulting syntactic structure is what you expect. Use your normal encoding methods for the remainder of the input.

Architecture and Design

Use input validation as a defense-in-depth measure to reduce the likelihood of output encoding errors (see CWE-20).

Requirements

Fully specify which encodings are required by components that will be communicating with each other.

Implementation

When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 707 Improper Neutralization
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 117 Improper Output Neutralization for Logs
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 644 Improper Neutralization of HTTP Headers for Scripting Syntax
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 838 Inappropriate Encoding for Output Context
CanPrecede Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 74 Improper Neutralization of Special Elements in Output Used by a Downstream Component ('Injection')
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Nature Type ID Name
MemberOf View View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1003 Weaknesses for Simplified Mapping of Published Vulnerabilities
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 838 Inappropriate Encoding for Output Context
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
Operation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Often Prevalent)

Technologies

AI/ML (Undetermined Prevalence)

Database Server (Often Prevalent)

Web Server (Often Prevalent)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1


This code displays an email address that was submitted as part of a form.

(bad code)
Example Language: JSP 
<% String email = request.getParameter("email"); %>
...
Email Address: <%= email %>

The value read from the form parameter is reflected back to the client browser without having been encoded prior to output, allowing various XSS attacks (CWE-79).



Example 2


Consider a chat application in which a front-end web application communicates with a back-end server. The back-end is legacy code that does not perform authentication or authorization, so the front-end must implement it. The chat protocol supports two commands, SAY and BAN, although only administrators can use the BAN command. Each argument must be separated by a single space. The raw inputs are URL-encoded. The messaging protocol allows multiple commands to be specified on the same line if they are separated by a "|" character.

First let's look at the back end command processor code

(bad code)
Example Language: Perl 
$inputString = readLineFromFileHandle($serverFH);

# generate an array of strings separated by the "|" character.
@commands = split(/\|/, $inputString);

foreach $cmd (@commands) {

# separate the operator from its arguments based on a single whitespace
($operator, $args) = split(/ /, $cmd, 2);

$args = UrlDecode($args);
if ($operator eq "BAN") {
ExecuteBan($args);
}
elsif ($operator eq "SAY") {
ExecuteSay($args);
}
}

The front end web application receives a command, encodes it for sending to the server, performs the authorization check, and sends the command to the server.

(bad code)
Example Language: Perl 
$inputString = GetUntrustedArgument("command");
($cmd, $argstr) = split(/\s+/, $inputString, 2);

# removes extra whitespace and also changes CRLF's to spaces
$argstr =~ s/\s+/ /gs;

$argstr = UrlEncode($argstr);
if (($cmd eq "BAN") && (! IsAdministrator($username))) {
die "Error: you are not the admin.\n";
}

# communicate with file server using a file handle
$fh = GetServerFileHandle("myserver");

print $fh "$cmd $argstr\n";

It is clear that, while the protocol and back-end allow multiple commands to be sent in a single request, the front end only intends to send a single command. However, the UrlEncode function could leave the "|" character intact. If an attacker provides:

(attack code)
 
SAY hello world|BAN user12

then the front end will see this is a "SAY" command, and the $argstr will look like "hello world | BAN user12". Since the command is "SAY", the check for the "BAN" command will fail, and the front end will send the URL-encoded command to the back end:

(result)
 
SAY hello%20world|BAN%20user12

The back end, however, will treat these as two separate commands:

(result)
 
SAY hello world
BAN user12

Notice, however, that if the front end properly encodes the "|" with "%7C", then the back end will only process a single command.



Example 3


This example takes user input, passes it through an encoding scheme and then creates a directory specified by the user.

(bad code)
Example Language: Perl 
sub GetUntrustedInput {
return($ARGV[0]);
}

sub encode {
my($str) = @_;
$str =~ s/\&/\&amp;/gs;
$str =~ s/\"/\&quot;/gs;
$str =~ s/\'/\&apos;/gs;
$str =~ s/\</\&lt;/gs;
$str =~ s/\>/\&gt;/gs;
return($str);
}

sub doit {
my $uname = encode(GetUntrustedInput("username"));
print "<b>Welcome, $uname!</b><p>\n";
system("cd /home/$uname; /bin/ls -l");
}

The programmer attempts to encode dangerous characters, however the denylist for encoding is incomplete (CWE-184) and an attacker can still pass a semicolon, resulting in a chain with command injection (CWE-77).

Additionally, the encoding routine is used inappropriately with command execution. An attacker doesn't even need to insert their own semicolon. The attacker can instead leverage the encoding routine to provide the semicolon to separate the commands. If an attacker supplies a string of the form:

(attack code)
 
' pwd

then the program will encode the apostrophe and insert the semicolon, which functions as a command separator when passed to the system function. This allows the attacker to complete the command injection.



+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Chain: authentication routine in Go-based agile development product does not escape user name (CWE-116), allowing LDAP injection (CWE-90)
OS command injection in backup software using shell metacharacters in a filename; correct behavior would require that this filename could not be changed.
Web application does not set the charset when sending a page to a browser, allowing for XSS exploitation when a browser chooses an unexpected encoding.
Program does not set the charset when sending a page to a browser, allowing for XSS exploitation when a browser chooses an unexpected encoding.
SQL injection via password parameter; a strong password might contain "&"
Cross-site scripting in chat application via a message subject, which normally might contain "&" and other XSS-related characters.
Cross-site scripting in chat application via a message, which normally might be allowed to contain arbitrary content.
+ Detection Methods
Method Details

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools use data flow analysis or constraint-based techniques to minimize the number of false positives.

Effectiveness: Moderate

Note:This is not a perfect solution, since 100% accuracy and coverage are not feasible.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the software using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The software's operation may slow down, but it should not become unstable, crash, or generate incorrect results.
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 751 2009 Top 25 - Insecure Interaction Between Components
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 845 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 2 - Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 992 SFP Secondary Cluster: Faulty Input Transformation
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1134 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1179 SEI CERT Perl Coding Standard - Guidelines 01. Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1347 OWASP Top Ten 2021 Category A03:2021 - Injection
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1407 Comprehensive Categorization: Improper Neutralization
+ Vulnerability Mapping Notes
Usage ALLOWED-WITH-REVIEW
(this CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review)
Reason Abstraction

Rationale

This CWE entry is a Class and might have Base-level children that would be more appropriate

Comments

Examine children of this entry to see if there is a better fit
+ Notes

Relationship

This weakness is primary to all weaknesses related to injection (CWE-74) since the inherent nature of injection involves the violation of structured messages.

Relationship

CWE-116 and CWE-20 have a close association because, depending on the nature of the structured message, proper input validation can indirectly prevent special characters from changing the meaning of a structured message. For example, by validating that a numeric ID field should only contain the 0-9 characters, the programmer effectively prevents injection attacks.

However, input validation is not always sufficient, especially when less stringent data types must be supported, such as free-form text. Consider a SQL injection scenario in which a last name is inserted into a query. The name "O'Reilly" would likely pass the validation step since it is a common last name in the English language. However, it cannot be directly inserted into the database because it contains the "'" apostrophe character, which would need to be escaped or otherwise neutralized. In this case, stripping the apostrophe might reduce the risk of SQL injection, but it would produce incorrect behavior because the wrong name would be recorded.

Terminology

The usage of the "encoding" and "escaping" terms varies widely. For example, in some programming languages, the terms are used interchangeably, while other languages provide APIs that use both terms for different tasks. This overlapping usage extends to the Web, such as the "escape" JavaScript function whose purpose is stated to be encoding. The concepts of encoding and escaping predate the Web by decades. Given such a context, it is difficult for CWE to adopt a consistent vocabulary that will not be misinterpreted by some constituency.

Theoretical

This is a data/directive boundary error in which data boundaries are not sufficiently enforced before it is sent to a different control sphere.

Research Gap

While many published vulnerabilities are related to insufficient output encoding, there is such an emphasis on input validation as a protection mechanism that the underlying causes are rarely described. Within CVE, the focus is primarily on well-understood issues like cross-site scripting and SQL injection. It is likely that this weakness frequently occurs in custom protocols that support multiple encodings, which are not necessarily detectable with automated techniques.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
WASC 22 Improper Output Handling
The CERT Oracle Secure Coding Standard for Java (2011) IDS00-J Exact Sanitize untrusted data passed across a trust boundary
The CERT Oracle Secure Coding Standard for Java (2011) IDS05-J Use a subset of ASCII for file and path names
SEI CERT Oracle Coding Standard for Java IDS00-J Imprecise Prevent SQL injection
SEI CERT Perl Coding Standard IDS33-PL Exact Sanitize untrusted data passed across a trust boundary
+ References
[REF-45] OWASP. "OWASP Enterprise Security API (ESAPI) Project".
<https://owasp.org/www-project-enterprise-security-api/>. (URL validated: 2025-07-24)
[REF-46] Joshbw. "Output Sanitization". 2008-09-18.
<https://web.archive.org/web/20081208054333/http://analyticalengine.net/archives/58>. (URL validated: 2023-04-07)
[REF-47] Niyaz PK. "Sanitizing user data: How and where to do it". 2008-09-11.
<https://web.archive.org/web/20090105222005/http://www.diovo.com/2008/09/sanitizing-user-data-how-and-where-to-do-it/>. (URL validated: 2023-04-07)
[REF-48] Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007-01-30.
<https://blog.jeremiahgrossman.com/2007/01/input-validation-or-output-filtering.html>. (URL validated: 2023-04-07)
[REF-49] Jim Manico. "Input Validation - Not That Important". 2008-08-10.
<https://manicode.blogspot.com/2008/08/input-validation-not-that-important.html>. (URL validated: 2023-04-07)
[REF-50] Michael Eddington. "Preventing XSS with Correct Output Encoding".
<http://phed.org/2008/05/19/preventing-xss-with-correct-output-encoding/>.
[REF-7] Michael Howard and David LeBlanc. "Writing Secure Code". Chapter 11, "Canonical Representation Issues" Page 363. 2nd Edition. Microsoft Press. 2002-12-04.
<https://www.microsoftpressstore.com/store/writing-secure-code-9780735617223>.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
CWE Community
Submitted by members of the CWE community to extend early CWE versions
+ Modifications
Modification Date Modifier Organization
2025-09-09
(CWE 4.18, 2025-09-09)
CWE Content Team MITRE
updated References
2024-07-16
(CWE 4.15, 2024-07-16)
CWE Content Team MITRE
updated Applicable_Platforms
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated References, Relationships, Time_of_Introduction
2023-01-31 CWE Content Team MITRE
updated Description
2022-10-13 CWE Content Team MITRE
updated Observed_Examples
2021-10-28 CWE Content Team MITRE
updated Relationships
2021-03-15 CWE Content Team MITRE
updated Relationships, Terminology_Notes
2020-06-25 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Potential_Mitigations
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-06-20 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2018-03-27 CWE Content Team MITRE
updated References
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Demonstrative_Examples, Likelihood_of_Exploit, References, Taxonomy_Mappings
2017-05-03 CWE Content Team MITRE
updated Related_Attack_Patterns
2017-01-19 CWE Content Team MITRE
updated Relationships
2015-12-07 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Demonstrative_Examples, Relationships
2014-06-23 CWE Content Team MITRE
updated References
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated References, Relationships, Taxonomy_Mappings
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-03-29 CWE Content Team MITRE
updated Relationship_Notes, Relationships
2010-06-21 CWE Content Team MITRE
updated Potential_Mitigations
2010-04-05 CWE Content Team MITRE
updated Potential_Mitigations
2010-02-16 CWE Content Team MITRE
updated Detection_Factors, Potential_Mitigations, References, Taxonomy_Mappings
2009-12-28 CWE Content Team MITRE
updated Demonstrative_Examples, Potential_Mitigations
2009-10-29 CWE Content Team MITRE
updated Relationships
2009-07-27 CWE Content Team MITRE
updated Demonstrative_Examples
2009-05-27 CWE Content Team MITRE
updated Related_Attack_Patterns
2009-03-10 CWE Content Team MITRE
updated Description, Potential_Mitigations
2009-01-12 CWE Content Team MITRE
updated Alternate_Terms, Applicable_Platforms, Common_Consequences, Demonstrative_Examples, Description, Likelihood_of_Exploit, Name, Observed_Examples, Potential_Mitigations, References, Relationship_Notes, Relationships, Research_Gaps, Terminology_Notes, Theoretical_Notes
2008-09-08 CWE Content Team MITRE
updated Name, Relationships
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-07-01 Sean Eidemiller Cigital
added/updated demonstrative examples
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Output Validation
2008-09-09 Incorrect Output Sanitization
2009-01-12 Insufficient Output Sanitization

CWE-573: Improper Following of Specification by Caller

Weakness ID: 573
Vulnerability Mapping: ALLOWED This CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review (with careful review of mapping notes)
Abstraction: Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product does not follow or incorrectly follows the specifications as required by the implementation language, environment, framework, protocol, or platform.
+ Extended Description
When leveraging external functionality, such as an API, it is important that the caller does so in accordance with the requirements of the external functionality or else unintended behaviors may result, possibly leaving the system vulnerable to any number of exploits.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Quality Degradation; Varies by Context

Scope: Other

+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 710 Improper Adherence to Coding Standards
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 103 Struts: Incomplete validate() Method Definition
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 104 Struts: Form Bean Does Not Extend Validation Class
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 243 Creation of chroot Jail Without Changing Working Directory
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 253 Incorrect Check of Function Return Value
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 296 Improper Following of a Certificate's Chain of Trust
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 304 Missing Critical Step in Authentication
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 325 Missing Cryptographic Step
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 329 Generation of Predictable IV with CBC Mode
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 358 Improperly Implemented Security Check for Standard
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 475 Undefined Behavior for Input to API
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 568 finalize() Method Without super.finalize()
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 577 EJB Bad Practices: Use of Sockets
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 578 EJB Bad Practices: Use of Class Loader
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 579 J2EE Bad Practices: Non-serializable Object Stored in Session
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 580 clone() Method Without super.clone()
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 581 Object Model Violation: Just One of Equals and Hashcode Defined
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 628 Function Call with Incorrectly Specified Arguments
ParentOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 675 Multiple Operations on Resource in Single-Operation Context
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 694 Use of Multiple Resources with Duplicate Identifier
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 695 Use of Low-Level Functionality
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Crypto implementation removes padding when it shouldn't, allowing forged signatures
Crypto implementation removes padding when it shouldn't, allowing forged signatures
+ Weakness Ordinalities
Ordinality Description
Primary
(where the weakness exists independent of other weaknesses)
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 850 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 7 - Methods (MET)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1001 SFP Secondary Cluster: Use of an Improper API
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1140 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1412 Comprehensive Categorization: Poor Coding Practices
+ Vulnerability Mapping Notes
Usage ALLOWED-WITH-REVIEW
(this CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review)
Reason Abstraction

Rationale

This CWE entry is a Class and might have Base-level children that would be more appropriate

Comments

Examine children of this entry to see if there is a better fit
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure Coding Standard for Java (2011) MET10-J Follow the general contract when implementing the compareTo() method
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-12-15
(CWE Draft 5, 2006-12-15)
CWE Community
Submitted by members of the CWE community to extend early CWE versions
+ Modifications
Modification Date Modifier Organization
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings, Weakness_Ordinalities
2017-11-08 CWE Content Team MITRE
updated Observed_Examples, Relationships
2017-01-19 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships
2012-05-11 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Common_Consequences
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-03-29 CWE Content Team MITRE
updated Description, Name
2008-09-08 CWE Content Team MITRE
updated Description, Relationships
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2011-03-29 Failure to Follow Specification

CWE-409: Improper Handling of Highly Compressed Data (Data Amplification)

Weakness ID: 409
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product does not handle or incorrectly handles a compressed input with a very high compression ratio that produces a large output.
+ Extended Description
An example of data amplification is a "decompression bomb," a small ZIP file that can produce a large amount of data when it is decompressed.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

DoS: Amplification; DoS: Crash, Exit, or Restart; DoS: Resource Consumption (CPU); DoS: Resource Consumption (Memory)

Scope: Availability

System resources, CPU and memory, can be quickly consumed. This can lead to poor system performance or system crash.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 405 Asymmetric Resource Consumption (Amplification)
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 19 Data Processing Errors
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


The DTD and the very brief XML below illustrate what is meant by an XML bomb. The ZERO entity contains one character, the letter A. The choice of entity name ZERO is being used to indicate length equivalent to that exponent on two, that is, the length of ZERO is 2^0. Similarly, ONE refers to ZERO twice, therefore the XML parser will expand ONE to a length of 2, or 2^1. Ultimately, we reach entity THIRTYTWO, which will expand to 2^32 characters in length, or 4 GB, probably consuming far more data than expected.

(attack code)
Example Language: XML 
<?xml version="1.0"?>
<!DOCTYPE MaliciousDTD [
<!ENTITY ZERO "A">
<!ENTITY ONE "&ZERO;&ZERO;">
<!ENTITY TWO "&ONE;&ONE;">
...
<!ENTITY THIRTYTWO "&THIRTYONE;&THIRTYONE;">
]>
<data>&THIRTYTWO;</data>


+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
XML bomb in web server module
Parsing library allows XML bomb
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 845 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 2 - Input Validation and Data Sanitization (IDS)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 977 SFP Secondary Cluster: Design
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1134 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1416 Comprehensive Categorization: Resource Lifecycle Management
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Data Amplification
The CERT Oracle Secure Coding Standard for Java (2011) IDS04-J Limit the size of files passed to ZipInputStream
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Modifications
Modification Date Modifier Organization
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms
2014-07-30 CWE Content Team MITRE
updated Relationships
2012-05-11 CWE Content Team MITRE
updated Common_Consequences, Demonstrative_Examples, Observed_Examples, Relationships, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2009-07-27 CWE Content Team MITRE
updated Relationships
2009-05-27 CWE Content Team MITRE
updated Description, Name
2008-10-14 CWE Content Team MITRE
updated Description
2008-09-08 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Data Amplification
2009-05-27 Failure to Handle Highly Compressed Data (Data Amplification)

CWE-67: Improper Handling of Windows Device Names

Weakness ID: 67
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product constructs pathnames from user input, but it does not handle or incorrectly handles a pathname containing a Windows device name such as AUX or CON. This typically leads to denial of service or an information exposure when the application attempts to process the pathname as a regular file.
+ Extended Description
Not properly handling virtual filenames (e.g. AUX, CON, PRN, COM1, LPT1) can result in different types of vulnerabilities. In some cases an attacker can request a device via injection of a virtual filename in a URL, which may cause an error that leads to a denial of service or an error page that reveals sensitive information. A product that allows device names to bypass filtering runs the risk of an attacker injecting malicious code in a file with the name of a device.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

DoS: Crash, Exit, or Restart; Read Application Data; Other

Scope: Availability, Confidentiality, Other

+ Potential Mitigations
Phase(s) Mitigation

Implementation

Be familiar with the device names in the operating system where your system is deployed. Check input for these device names.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 66 Improper Handling of File Names that Identify Virtual Resources
+ Background Details
Historically, there was a bug in the Windows operating system that caused a blue screen of death. Even after that issue was fixed DOS device names continue to be a factor.
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
Operation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

Operating Systems

Class: Windows (Undetermined Prevalence)

+ Likelihood Of Exploit
High
+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Server allows remote attackers to cause a denial of service via a series of requests to .JSP files that contain an MS-DOS device name.
Server allows remote attackers to cause a denial of service via an HTTP request for an MS-DOS device name.
Product allows remote attackers to use MS-DOS device names in HTTP requests to cause a denial of service or obtain the physical path of the server.
Server allows remote attackers to cause a denial of service via a URL that contains an MS-DOS device name.
Server allows a remote attacker to create a denial of service via a URL request which includes a MS-DOS device name.
Microsoft Windows 9x operating systems allow an attacker to cause a denial of service via a pathname that includes file device names, aka the "DOS Device in Path Name" vulnerability.
Server allows remote attackers to determine the physical path of the server via a URL containing MS-DOS device names.
Product does not properly handle files whose names contain reserved MS-DOS device names, which can allow malicious code to bypass detection when it is installed, copied, or executed.
Server allows remote attackers to cause a denial of service (application crash) via a URL with a filename containing a .cgi extension and an MS-DOS device name.
+ Weakness Ordinalities
Ordinality Description
Resultant
(where the weakness is typically related to the presence of some other weaknesses)
+ Functional Areas
  • File Processing
+ Affected Resources
  • File or Directory
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 743 CERT C Secure Coding Standard (2008) Chapter 10 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 857 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 14 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 877 CERT C++ Secure Coding Section 09 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 981 SFP Secondary Cluster: Path Traversal
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1147 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1163 SEI CERT C Coding Standard - Guidelines 09. Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1404 Comprehensive Categorization: File Handling
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Windows MS-DOS device names
CERT C Secure Coding FIO32-C CWE More Specific Do not perform operations on devices that are only appropriate for files
The CERT Oracle Secure Coding Standard for Java (2011) FIO00-J Do not operate on files in shared directories
Software Fault Patterns SFP16 Path Traversal
+ References
[REF-7] Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft Press. 2002-12-04.
<https://www.microsoftpressstore.com/store/writing-secure-code-9780735617223>.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 11, "Device Files", Page 666. 1st Edition. Addison Wesley. 2006.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Modifications
Modification Date Modifier Organization
2025-09-09
(CWE 4.18, 2025-09-09)
CWE Content Team MITRE
updated Functional_Areas
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Relationships, Time_of_Introduction
2023-01-31 CWE Content Team MITRE
updated Description
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2018-03-27 CWE Content Team MITRE
updated References
2017-11-08 CWE Content Team MITRE
updated Affected_Resources, Applicable_Platforms, Causal_Nature, Likelihood_of_Exploit, References, Relationships, Taxonomy_Mappings
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Observed_Examples, References, Relationships, Taxonomy_Mappings
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-03-29 CWE Content Team MITRE
updated Description
2010-09-27 CWE Content Team MITRE
updated Description
2009-10-29 CWE Content Team MITRE
updated Background_Details, Other_Notes
2009-03-10 CWE Content Team MITRE
updated Description, Name
2008-11-24 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2008-10-14 CWE Content Team MITRE
updated Description
2008-09-08 CWE Content Team MITRE
updated Applicable_Platforms, Relationships, Other_Notes, Taxonomy_Mappings, Weakness_Ordinalities
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Windows MS-DOS Device Names
2009-03-10 Failure to Handle Windows Device Names

CWE-665: Improper Initialization

Weakness ID: 665
Vulnerability Mapping: DISCOURAGED This CWE ID should not be used to map to real-world vulnerabilities
Abstraction: Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product does not initialize or incorrectly initializes a resource, which might leave the resource in an unexpected state when it is accessed or used.
+ Extended Description
This can have security implications when the associated resource is expected to have certain properties or values, such as a variable that determines whether a user has been authenticated or not.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Read Memory; Read Application Data

Scope: Confidentiality

When reusing a resource such as memory or a program variable, the original contents of that resource may not be cleared before it is sent to an untrusted party.

Bypass Protection Mechanism

Scope: Access Control

If security-critical decisions rely on a variable having a "0" or equivalent value, and the programming language performs this initialization on behalf of the programmer, then a bypass of security may occur.

DoS: Crash, Exit, or Restart

Scope: Availability

The uninitialized data may contain values that cause program flow to change in ways that the programmer did not intend. For example, if an uninitialized variable is used as an array index in C, then its previous contents may produce an index that is outside the range of the array, possibly causing a crash or an exit in other environments.
+ Potential Mitigations
Phase(s) Mitigation

Requirements

Strategy: Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

For example, in Java, if the programmer does not explicitly initialize a variable, then the code could produce a compile-time error (if the variable is local) or automatically initialize the variable to the default value for the variable's type. In Perl, if explicit initialization is not performed, then a default value of undef is assigned, which is interpreted as 0, false, or an equivalent value depending on the context in which the variable is accessed.

Architecture and Design

Identify all variables and data stores that receive information from external sources, and apply input validation to make sure that they are only initialized to expected values.

Implementation

Explicitly initialize all your variables and other data stores, either during declaration or just before the first usage.

Implementation

Pay close attention to complex conditionals that affect initialization, since some conditions might not perform the initialization.

Implementation

Avoid race conditions (CWE-362) during initialization routines.

Build and Compilation

Run or compile your product with settings that generate warnings about uninitialized variables or data.

Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques use data flow analysis to minimize the number of false positives. This is not a perfect solution, since 100% accuracy and coverage are not feasible.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 664 Improper Control of a Resource Through its Lifetime
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 455 Non-exit on Failed Initialization
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 770 Allocation of Resources Without Limits or Throttling
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 908 Use of Uninitialized Resource
ParentOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 909 Missing Initialization of Resource
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1279 Cryptographic Operations are run Before Supporting Units are Ready
ParentOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 1419 Incorrect Initialization of Resource
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1434 Insecure Setting of Generative AI/ML Model Inference Parameters
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Nature Type ID Name
MemberOf View View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1003 Weaknesses for Simplified Mapping of Published Vulnerabilities
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 908 Use of Uninitialized Resource
ParentOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 909 Missing Initialization of Resource
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1188 Initialization of a Resource with an Insecure Default
+ Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Nature Type ID Name
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 456 Missing Initialization of a Variable
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 457 Use of Uninitialized Variable
+ Relevant to the view "CISQ Data Protection Measures" (View-1340)
Nature Type ID Name
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 456 Missing Initialization of a Variable
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 457 Use of Uninitialized Variable
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation This weakness can occur in code paths that are not well-tested, such as rare error conditions. This is because the use of uninitialized data would be noticed as a bug during frequently-used functionality.
Operation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Likelihood Of Exploit
Medium
+ Demonstrative Examples

Example 1


Here, a boolean initiailized field is consulted to ensure that initialization tasks are only completed once. However, the field is mistakenly set to true during static initialization, so the initialization code is never reached.

(bad code)
Example Language: Java 
private boolean initialized = true;
public void someMethod() {
if (!initialized) {

// perform initialization tasks
...

initialized = true;
}


Example 2


The following code intends to limit certain operations to the administrator only.

(bad code)
Example Language: Perl 
$username = GetCurrentUser();
$state = GetStateData($username);
if (defined($state)) {
$uid = ExtractUserID($state);
}

# do stuff
if ($uid == 0) {
DoAdminThings();
}

If the application is unable to extract the state information - say, due to a database timeout - then the $uid variable will not be explicitly set by the programmer. This will cause $uid to be regarded as equivalent to "0" in the conditional, allowing the original user to perform administrator actions. Even if the attacker cannot directly influence the state data, unexpected errors could cause incorrect privileges to be assigned to a user just by accident.



Example 3


The following code intends to concatenate a string to a variable and print the string.

(bad code)
Example Language:
char str[20];
strcat(str, "hello world");
printf("%s", str);

This might seem innocent enough, but str was not initialized, so it contains random memory. As a result, str[0] might not contain the null terminator, so the copy might start at an offset other than 0. The consequences can vary, depending on the underlying memory.

If a null terminator is found before str[8], then some bytes of random garbage will be printed before the "hello world" string. The memory might contain sensitive information from previous uses, such as a password (which might occur as a result of CWE-14 or CWE-244). In this example, it might not be a big deal, but consider what could happen if large amounts of memory are printed out before the null terminator is found.

If a null terminator isn't found before str[8], then a buffer overflow could occur, since strcat will first look for the null terminator, then copy 12 bytes starting with that location. Alternately, a buffer over-read might occur (CWE-126) if a null terminator isn't found before the end of the memory segment is reached, leading to a segmentation fault and crash.



+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
chain: an invalid value prevents a library file from being included, skipping initialization of key variables, leading to resultant eval injection.
Improper error checking in protection mechanism produces an uninitialized variable, allowing security bypass and code execution.
Use of uninitialized memory may allow code execution.
Free of an uninitialized pointer leads to crash and possible code execution.
OS kernel does not reset a port when starting a setuid program, allowing local users to access the port and gain privileges.
Product does not clear memory contents when generating an error message, leading to information leak.
Lack of initialization triggers NULL pointer dereference or double-free.
Uninitialized variable leads to code execution in popular desktop application.
chain: Uninitialized variable leads to infinite loop.
chain: Improper initialization leads to memory corruption.
Composite: race condition allows attacker to modify an object while it is still being initialized, causing software to access uninitialized memory.
Chain: Bypass of access restrictions due to improper authorization (CWE-862) of a user results from an improperly initialized (CWE-909) I/O permission bitmap
chain: game server can access player data structures before initialization has happened leading to NULL dereference
chain: uninitialized function pointers can be dereferenced allowing code execution
chain: improper initialization of memory can lead to NULL dereference
chain: some unprivileged ioctls do not verify that a structure has been initialized before invocation, leading to NULL dereference
+ Weakness Ordinalities
Ordinality Description
Primary
(where the weakness exists independent of other weaknesses)
Resultant
(where the weakness is typically related to the presence of some other weaknesses)
+ Detection Methods
Method Details

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the software using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The software's operation may slow down, but it should not become unstable, crash, or generate incorrect results.

Initialization problems may be detected with a stress-test by calling the software simultaneously from a large number of threads or processes, and look for evidence of any unexpected behavior. The software's operation may slow down, but it should not become unstable, crash, or generate incorrect results.

Effectiveness: Moderate

Manual Dynamic Analysis

Identify error conditions that are not likely to occur during normal usage and trigger them. For example, run the program under low memory conditions, run with insufficient privileges or permissions, interrupt a transaction before it is completed, or disable connectivity to basic network services such as DNS. Monitor the software for any unexpected behavior. If you trigger an unhandled exception or similar error that was discovered and handled by the application's environment, it may still indicate unexpected conditions that were not handled by the application itself.

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 740 CERT C Secure Coding Standard (2008) Chapter 7 - Arrays (ARR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 742 CERT C Secure Coding Standard (2008) Chapter 9 - Memory Management (MEM)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 752 2009 Top 25 - Risky Resource Management
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 846 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 3 - Declarations and Initialization (DCL)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 874 CERT C++ Secure Coding Section 06 - Arrays and the STL (ARR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 876 CERT C++ Secure Coding Section 08 - Memory Management (MEM)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 962 SFP Secondary Cluster: Unchecked Status Condition
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1135 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 01. Declarations and Initialization (DCL)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1306 CISQ Quality Measures - Reliability
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1308 CISQ Quality Measures - Security
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1340 CISQ Data Protection Measures
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1416 Comprehensive Categorization: Resource Lifecycle Management
+ Vulnerability Mapping Notes
Usage DISCOURAGED
(this CWE ID should not be used to map to real-world vulnerabilities)
Reason Abstraction

Rationale

This CWE entry is a level-1 Class (i.e., a child of a Pillar). It might have lower-level children that would be more appropriate

Comments

Examine children of this entry to see if there is a better fit
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Incorrect initialization
CERT C Secure Coding ARR02-C Explicitly specify array bounds, even if implicitly defined by an initializer
The CERT Oracle Secure Coding Standard for Java (2011) DCL00-J Prevent class initialization cycles
Software Fault Patterns SFP4 Unchecked Status Condition
+ References
[REF-436] mercy. "Exploiting Uninitialized Data". 2006-01.
<https://web.archive.org/web/20070403193636/http://www.felinemenace.org/~mercy/papers/UBehavior/UBehavior.zip>. (URL validated: 2025-07-24)
[REF-437] Microsoft Security Vulnerability Research & Defense. "MS08-014 : The Case of the Uninitialized Stack Variable Vulnerability". 2008-03-11.
<https://msrc.microsoft.com/blog/2008/03/ms08-014-the-case-of-the-uninitialized-stack-variable-vulnerability/>. (URL validated: 2023-04-07)
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 7, "Variable Initialization", Page 312. 1st Edition. Addison Wesley. 2006.
+ Content History
+ Submissions
Submission Date Submitter Organization
2008-04-11
(CWE Draft 9, 2008-04-11)
PLOVER
+ Modifications
Modification Date Modifier Organization
2025-09-09
(CWE 4.18, 2025-09-09)
CWE Content Team MITRE
updated References, Relationships
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Mapping_Notes
2023-10-26 CWE Content Team MITRE
updated Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, References, Relationships
2023-01-31 CWE Content Team MITRE
updated Description, Potential_Mitigations, Relationships
2021-03-15 CWE Content Team MITRE
updated Observed_Examples
2020-12-10 CWE Content Team MITRE
updated Relationships
2020-08-20 CWE Content Team MITRE
updated Relationships
2020-06-25 CWE Content Team MITRE
updated Relationships
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-06-20 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Related_Attack_Patterns, Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated References, Taxonomy_Mappings
2017-01-19 CWE Content Team MITRE
updated Type
2015-12-07 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2013-02-21 CWE Content Team MITRE
updated Demonstrative_Examples, Relationships
2012-05-11 CWE Content Team MITRE
updated Demonstrative_Examples, References, Relationships, Taxonomy_Mappings
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2010-09-27 CWE Content Team MITRE
updated Observed_Examples
2010-06-21 CWE Content Team MITRE
updated Detection_Factors, Potential_Mitigations
2010-04-05 CWE Content Team MITRE
updated Applicable_Platforms
2010-02-16 CWE Content Team MITRE
updated Potential_Mitigations
2009-10-29 CWE Content Team MITRE
updated Common_Consequences
2009-07-27 CWE Content Team MITRE
updated Related_Attack_Patterns
2009-05-27 CWE Content Team MITRE
updated Description, Relationships
2009-03-10 CWE Content Team MITRE
updated Potential_Mitigations
2009-01-12 CWE Content Team MITRE
updated Common_Consequences, Demonstrative_Examples, Description, Likelihood_of_Exploit, Modes_of_Introduction, Name, Observed_Examples, Potential_Mitigations, References, Relationships, Weakness_Ordinalities
2008-11-24 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2008-09-08 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Potential_Mitigations, Time_of_Introduction
2008-07-01 Sean Eidemiller Cigital
added/updated demonstrative examples
+ Previous Entry Names
Change Date Previous Entry Name
2009-01-12 Incorrect or Incomplete Initialization

CWE-667: Improper Locking

Weakness ID: 667
Vulnerability Mapping: ALLOWED This CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review (with careful review of mapping notes)
Abstraction: Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product does not properly acquire or release a lock on a resource, leading to unexpected resource state changes and behaviors.
+ Extended Description

Locking is a type of synchronization behavior that ensures that multiple independently-operating processes or threads do not interfere with each other when accessing the same resource. All processes/threads are expected to follow the same steps for locking. If these steps are not followed precisely - or if no locking is done at all - then another process/thread could modify the shared resource in a way that is not visible or predictable to the original process. This can lead to data or memory corruption, denial of service, etc.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

DoS: Resource Consumption (CPU)

Scope: Availability

Inconsistent locking discipline can lead to deadlock.
+ Potential Mitigations
Phase(s) Mitigation

Implementation

Strategy: Libraries or Frameworks

Use industry standard APIs to implement locking mechanism.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 662 Improper Synchronization
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 412 Unrestricted Externally Accessible Lock
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 413 Improper Resource Locking
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 414 Missing Lock Check
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 609 Double-Checked Locking
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 764 Multiple Locks of a Critical Resource
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 765 Multiple Unlocks of a Critical Resource
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 832 Unlock of a Resource that is not Locked
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 833 Deadlock
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1232 Improper Lock Behavior After Power State Transition
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1233 Security-Sensitive Hardware Controls with Missing Lock Bit Protection
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1234 Hardware Internal or Debug Modes Allow Override of Locks
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 662 Improper Synchronization
+ Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 662 Improper Synchronization
+ Relevant to the view "CISQ Data Protection Measures" (View-1340)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 662 Improper Synchronization
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design
Implementation
+ Demonstrative Examples

Example 1


In the following Java snippet, methods are defined to get and set a long field in an instance of a class that is shared across multiple threads. Because operations on double and long are nonatomic in Java, concurrent access may cause unexpected behavior. Thus, all operations on long and double fields should be synchronized.

(bad code)
Example Language: Java 
private long someLongValue;
public long getLongValue() {
return someLongValue;
}

public void setLongValue(long l) {
someLongValue = l;
}


Example 2


This code tries to obtain a lock for a file, then writes to it.

(bad code)
Example Language: PHP 
function writeToLog($message){
$logfile = fopen("logFile.log", "a");
//attempt to get logfile lock
if (flock($logfile, LOCK_EX)) {
fwrite($logfile,$message);
// unlock logfile
flock($logfile, LOCK_UN);
}
else {
print "Could not obtain lock on logFile.log, message not recorded\n";
}
}
fclose($logFile);

PHP by default will wait indefinitely until a file lock is released. If an attacker is able to obtain the file lock, this code will pause execution, possibly leading to denial of service for other users. Note that in this case, if an attacker can perform an flock() on the file, they may already have privileges to destroy the log file. However, this still impacts the execution of other programs that depend on flock().



Example 3


The following function attempts to acquire a lock in order to perform operations on a shared resource.

(bad code)
Example Language:
void f(pthread_mutex_t *mutex) {
pthread_mutex_lock(mutex);

/* access shared resource */


pthread_mutex_unlock(mutex);
}

However, the code does not check the value returned by pthread_mutex_lock() for errors. If pthread_mutex_lock() cannot acquire the mutex for any reason, the function may introduce a race condition into the program and result in undefined behavior.

In order to avoid data races, correctly written programs must check the result of thread synchronization functions and appropriately handle all errors, either by attempting to recover from them or reporting them to higher levels.

(good code)
Example Language:
int f(pthread_mutex_t *mutex) {
int result;

result = pthread_mutex_lock(mutex);
if (0 != result)
return result;


/* access shared resource */


return pthread_mutex_unlock(mutex);
}


Example 4


It may seem that the following bit of code achieves thread safety while avoiding unnecessary synchronization...

(bad code)
Example Language: Java 
if (helper == null) {
synchronized (this) {
if (helper == null) {
helper = new Helper();
}
}
}
return helper;

The programmer wants to guarantee that only one Helper() object is ever allocated, but does not want to pay the cost of synchronization every time this code is called.

Suppose that helper is not initialized. Then, thread A sees that helper==null and enters the synchronized block and begins to execute:

(bad code)
Example Language: Java 
helper = new Helper();

If a second thread, thread B, takes over in the middle of this call and helper has not finished running the constructor, then thread B may make calls on helper while its fields hold incorrect values.



+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Chain: improper locking (CWE-667) leads to race condition (CWE-362), as exploited in the wild per CISA KEV.
Attacker provides invalid address to a memory-reading function, causing a mutex to be unlocked twice
function in OS kernel unlocks a mutex that was not previously locked, causing a panic or overwrite of arbitrary memory.
Chain: OS kernel does not properly handle a failure of a function call (CWE-755), leading to an unlock of a resource that was not locked (CWE-832), with resultant crash.
OS kernel performs an unlock in some incorrect circumstances, leading to panic.
OS deadlock
OS deadlock involving 3 separate functions
deadlock in library
deadlock triggered by packets that force collisions in a routing table
read/write deadlock between web server and script
web server deadlock involving multiple listening connections
multiple simultaneous calls to the same function trigger deadlock.
chain: other weakness leads to NULL pointer dereference (CWE-476) or deadlock (CWE-833).
deadlock when an operation is performed on a resource while it is being removed.
Deadlock in device driver triggered by using file handle of a related device.
Deadlock when large number of small messages cannot be processed quickly enough.
OS kernel has deadlock triggered by a signal during a core dump.
Race condition leads to deadlock.
Chain: array index error (CWE-129) leads to deadlock (CWE-833)
Program can not execute when attacker obtains a mutex.
Program can not execute when attacker obtains a lock on a critical output file.
Program can not execute when attacker obtains a lock on a critical output file.
Critical file can be opened with exclusive read access by user, preventing application of security policy. Possibly related to improper permissions, large-window race condition.
Chain: predictable file names used for locking, allowing attacker to create the lock beforehand. Resultant from permissions and randomness.
Chain: Lock files with predictable names. Resultant from randomness.
Product does not check if it can write to a log file, allowing attackers to avoid logging by accessing the file using an exclusive lock. Overlaps unchecked error condition. This is not quite CWE-412, but close.
+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 748 CERT C Secure Coding Standard (2008) Appendix - POSIX (POS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 852 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 9 - Visibility and Atomicity (VNA)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 853 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 10 - Locking (LCK)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 986 SFP Secondary Cluster: Missing Lock
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1131 CISQ Quality Measures (2016) - Security
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1142 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity (VNA)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1143 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 09. Locking (LCK)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1169 SEI CERT C Coding Standard - Guidelines 14. Concurrency (CON)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1171 SEI CERT C Coding Standard - Guidelines 50. POSIX (POS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1401 Comprehensive Categorization: Concurrency
+ Vulnerability Mapping Notes
Usage ALLOWED-WITH-REVIEW
(this CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review)
Reason Abstraction

Rationale

This CWE entry is a Class and might have Base-level children that would be more appropriate

Comments

Examine children of this entry to see if there is a better fit
+ Notes

Maintenance

Deeper research is necessary for synchronization and related mechanisms, including locks, mutexes, semaphores, and other mechanisms. Multiple entries are dependent on this research, which includes relationships to concurrency, race conditions, reentrant functions, etc. CWE-662 and its children - including CWE-667, CWE-820, CWE-821, and others - may need to be modified significantly, along with their relationships.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding CON31-C CWE More Abstract Do not destroy a mutex while it is locked
CERT C Secure Coding POS48-C CWE More Abstract Do not unlock or destroy another POSIX thread's mutex
The CERT Oracle Secure Coding Standard for Java (2011) VNA00-J Ensure visibility when accessing shared primitive variables
The CERT Oracle Secure Coding Standard for Java (2011) VNA02-J Ensure that compound operations on shared variables are atomic
The CERT Oracle Secure Coding Standard for Java (2011) VNA05-J Ensure atomicity when reading and writing 64-bit values
The CERT Oracle Secure Coding Standard for Java (2011) LCK06-J Do not use an instance lock to protect shared static data
Software Fault Patterns SFP19 Missing Lock
OMG ASCSM ASCSM-CWE-667
+ References
[REF-962] Object Management Group (OMG). "Automated Source Code Security Measure (ASCSM)". ASCSM-CWE-667. 2016-01.
<http://www.omg.org/spec/ASCSM/1.0/>.
+ Content History
+ Submissions
Submission Date Submitter Organization
2008-04-11
(CWE Draft 9, 2008-04-11)
CWE Content Team MITRE
+ Modifications
Modification Date Modifier Organization
2025-04-03
(CWE 4.17, 2025-04-03)
CWE Content Team MITRE
updated Demonstrative_Examples
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2022-06-28 CWE Content Team MITRE
updated Observed_Examples
2021-03-15 CWE Content Team MITRE
updated Demonstrative_Examples
2020-12-10 CWE Content Team MITRE
updated Relationships
2020-08-20 CWE Content Team MITRE
updated Relationships
2020-02-24 CWE Content Team MITRE
updated Relationships, Type
2019-09-23 CWE Content Team MITRE
updated Description, Maintenance_Notes, Relationships
2019-09-19 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated References, Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Taxonomy_Mappings
2017-05-03 CWE Content Team MITRE
updated Related_Attack_Patterns
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Demonstrative_Examples, Observed_Examples, Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2010-12-13 CWE Content Team MITRE
updated Description, Name, Relationships
2010-09-27 CWE Content Team MITRE
updated Relationships
2009-07-27 CWE Content Team MITRE
updated Common_Consequences
2009-05-27 CWE Content Team MITRE
updated Relationships
2009-03-10 CWE Content Team MITRE
updated Related_Attack_Patterns
2008-11-24 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2008-09-08 CWE Content Team MITRE
updated Relationships
2008-07-01 Eric Dalci Cigital
updated Potential_Mitigations, Time_of_Introduction
2008-07-01 Sean Eidemiller Cigital
added/updated demonstrative examples
+ Previous Entry Names
Change Date Previous Entry Name
2010-12-13 Insufficient Locking

CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences

Weakness ID: 150
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product receives input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could be interpreted as escape, meta, or control character sequences when they are sent to a downstream component.
+ Extended Description
As data is parsed, an injected/absent/malformed delimiter may cause the process to take unexpected actions.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Unexpected State

Scope: Integrity

+ Potential Mitigations
Phase(s) Mitigation
Developers should anticipate that escape, meta and control characters/sequences will be injected/removed/manipulated in the input vectors of their product. Use an appropriate combination of denylists and allowlists to ensure only valid, expected and appropriate input is processed by the system.

Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

Implementation

Strategy: Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control and data together, sometimes it may be unavoidable. Properly quote arguments and escape any special characters within those arguments. The most conservative approach is to escape or filter all characters that do not pass an extremely strict allowlist (such as everything that is not alphanumeric or white space). If some special characters are still needed, such as white space, wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection (CWE-88).

Implementation

Strategy: Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180). Make sure that the application does not decode the same input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by introducing dangerous inputs after they have been checked.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 138 Improper Neutralization of Special Elements
+ Relevant to the view "Architectural Concepts" (View-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1019 Validate Inputs
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation REALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
The mail program processes special "~" escape sequence even when not in interactive mode.
Setuid program does not filter escape sequences before calling mail program.
Mail function does not filter control characters from arguments, allowing mail message content to be modified.
Multi-channel issue. Terminal escape sequences not filtered from log files.
Multi-channel issue. Terminal escape sequences not filtered from log files.
Terminal escape sequences not filtered by terminals when displaying files.
Terminal escape sequences not filtered by terminals when displaying files.
Terminal escape sequences not filtered by terminals when displaying files.
Terminal escape sequences not filtered by terminals when displaying files.
Terminal escape sequences not filtered by terminals when displaying files.
MFV. (multi-channel). Injection of control characters into log files that allow information hiding when using raw Unix programs to read the files.
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 845 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 2 - Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 990 SFP Secondary Cluster: Tainted Input to Command
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1134 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1407 Comprehensive Categorization: Improper Neutralization
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Escape, Meta, or Control Character / Sequence
The CERT Oracle Secure Coding Standard for Java (2011) IDS03-J Do not log unsanitized user input
Software Fault Patterns SFP24 Tainted input to command
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Modifications
Modification Date Modifier Organization
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-01-31 CWE Content Team MITRE
updated Description, Potential_Mitigations
2020-06-25 CWE Content Team MITRE
updated Potential_Mitigations
2020-02-24 CWE Content Team MITRE
updated Potential_Mitigations, Relationships, Taxonomy_Mappings
2019-06-20 CWE Content Team MITRE
updated Related_Attack_Patterns
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Modes_of_Introduction, Relationships
2017-05-03 CWE Content Team MITRE
updated Potential_Mitigations
2014-07-30 CWE Content Team MITRE
updated Relationships
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Common_Consequences
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Observed_Examples, Relationships, Taxonomy_Mappings
2011-03-29 CWE Content Team MITRE
updated Potential_Mitigations
2010-04-05 CWE Content Team MITRE
updated Description, Name
2009-07-27 CWE Content Team MITRE
updated Potential_Mitigations
2008-10-14 CWE Content Team MITRE
updated Description
2008-09-08 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Potential_Mitigations, Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2008-01-30 Escape, Meta, or Control Character / Sequence
2008-04-11 Failure to Remove Escape, Meta, or Control Character / Sequence
2010-04-05 Failure to Sanitize Escape, Meta, or Control Sequences

CWE-144: Improper Neutralization of Line Delimiters

Weakness ID: 144
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product receives input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could be interpreted as line delimiters when they are sent to a downstream component.
+ Extended Description
As data is parsed, an injected/absent/malformed delimiter may cause the process to take unexpected actions.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Unexpected State

Scope: Integrity

+ Potential Mitigations
Phase(s) Mitigation
Developers should anticipate that line delimiters will be injected/removed/manipulated in the input vectors of their product. Use an appropriate combination of denylists and allowlists to ensure only valid, expected and appropriate input is processed by the system.

Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

Implementation

Strategy: Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control and data together, sometimes it may be unavoidable. Properly quote arguments and escape any special characters within those arguments. The most conservative approach is to escape or filter all characters that do not pass an extremely strict allowlist (such as everything that is not alphanumeric or white space). If some special characters are still needed, such as white space, wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection (CWE-88).

Implementation

Strategy: Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180). Make sure that the application does not decode the same input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by introducing dangerous inputs after they have been checked.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 140 Improper Neutralization of Delimiters
CanAlsoBe Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 93 Improper Neutralization of CRLF Sequences ('CRLF Injection')
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Linebreak in field of PHP script allows admin privileges when written to data file.
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 845 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 2 - Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 990 SFP Secondary Cluster: Tainted Input to Command
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1134 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1407 Comprehensive Categorization: Improper Neutralization
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Relationship

Depending on the language and syntax being used, this could be the same as the record delimiter (CWE-143).
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Line Delimiter
The CERT Oracle Secure Coding Standard for Java (2011) IDS03-J Do not log unsanitized user input
Software Fault Patterns SFP24 Tainted input to command
+ References
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 8, "Embedded Delimiters", Page 408. 1st Edition. Addison Wesley. 2006.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Modifications
Modification Date Modifier Organization
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-01-31 CWE Content Team MITRE
updated Description, Potential_Mitigations
2020-06-25 CWE Content Team MITRE
updated Potential_Mitigations
2020-02-24 CWE Content Team MITRE
updated Potential_Mitigations, Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms
2017-05-03 CWE Content Team MITRE
updated Potential_Mitigations
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated References, Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Common_Consequences
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-03-29 CWE Content Team MITRE
updated Potential_Mitigations
2010-04-05 CWE Content Team MITRE
updated Description, Name
2009-07-27 CWE Content Team MITRE
updated Potential_Mitigations
2008-09-08 CWE Content Team MITRE
updated Relationships, Relationship_Notes, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Potential_Mitigations, Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Line Delimiter
2010-04-05 Failure to Sanitize Line Delimiters

CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')

Weakness ID: 78
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product constructs all or part of an OS command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended OS command when it is sent to a downstream component. Diagram for CWE-78
+ Extended Description

This weakness can lead to a vulnerability in environments in which the attacker does not have direct access to the operating system, such as in web applications. Alternately, if the weakness occurs in a privileged program, it could allow the attacker to specify commands that normally would not be accessible, or to call alternate commands with privileges that the attacker does not have. The problem is exacerbated if the compromised process does not follow the principle of least privilege, because the attacker-controlled commands may run with special system privileges that increases the amount of damage.

There are at least two subtypes of OS command injection:

  • The application intends to execute a single, fixed program that is under its own control. It intends to use externally-supplied inputs as arguments to that program. For example, the program might use system("nslookup [HOSTNAME]") to run nslookup and allow the user to supply a HOSTNAME, which is used as an argument. Attackers cannot prevent nslookup from executing. However, if the program does not remove command separators from the HOSTNAME argument, attackers could place the separators into the arguments, which allows them to execute their own program after nslookup has finished executing.
  • The application accepts an input that it uses to fully select which program to run, as well as which commands to use. The application simply redirects this entire command to the operating system. For example, the program might use "exec([COMMAND])" to execute the [COMMAND] that was supplied by the user. If the COMMAND is under attacker control, then the attacker can execute arbitrary commands or programs. If the command is being executed using functions like exec() and CreateProcess(), the attacker might not be able to combine multiple commands together in the same line.

From a weakness standpoint, these variants represent distinct programmer errors. In the first variant, the programmer clearly intends that input from untrusted parties will be part of the arguments in the command to be executed. In the second variant, the programmer does not intend for the command to be accessible to any untrusted party, but the programmer probably has not accounted for alternate ways in which malicious attackers can provide input.

+ Alternate Terms
Shell injection
Shell metacharacters
OS Command Injection
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Execute Unauthorized Code or Commands; DoS: Crash, Exit, or Restart; Read Files or Directories; Modify Files or Directories; Read Application Data; Modify Application Data; Hide Activities

Scope: Confidentiality, Integrity, Availability, Non-Repudiation

Attackers could execute unauthorized operating system commands, which could then be used to disable the product, or read and modify data for which the attacker does not have permissions to access directly. Since the targeted application is directly executing the commands instead of the attacker, any malicious activities may appear to come from the application or the application's owner.
+ Potential Mitigations
Phase(s) Mitigation

Architecture and Design

If at all possible, use library calls rather than external processes to recreate the desired functionality.

Architecture and Design; Operation

Strategy: Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between the process and the operating system. This may effectively restrict which files can be accessed in a particular directory or which commands can be executed by the software.

OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some protection. For example, java.io.FilePermission in the Java SecurityManager allows the software to specify restrictions on file operations.

This may not be a feasible solution, and it only limits the impact to the operating system; the rest of the application may still be subject to compromise.

Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness: Limited

Note: The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox or jail being used and might only help to reduce the scope of an attack, such as restricting the attacker to certain system calls or limiting the portion of the file system that can be accessed.

Architecture and Design

Strategy: Attack Surface Reduction

For any data that will be used to generate a command to be executed, keep as much of that data out of external control as possible. For example, in web applications, this may require storing the data locally in the session's state instead of sending it out to the client in a hidden form field.

Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.

Architecture and Design

Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

For example, consider using the ESAPI Encoding control [REF-45] or a similar tool, library, or framework. These will help the programmer encode outputs in a manner less prone to error.

Implementation

Strategy: Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control and data together, sometimes it may be unavoidable. Properly quote arguments and escape any special characters within those arguments. The most conservative approach is to escape or filter all characters that do not pass an extremely strict allowlist (such as everything that is not alphanumeric or white space). If some special characters are still needed, such as white space, wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection (CWE-88).

Implementation

If the program to be executed allows arguments to be specified within an input file or from standard input, then consider using that mode to pass arguments instead of the command line.

Architecture and Design

Strategy: Parameterization

If available, use structured mechanisms that automatically enforce the separation between data and code. These mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on the developer to provide this capability at every point where output is generated.

Some languages offer multiple functions that can be used to invoke commands. Where possible, identify any function that invokes a command shell using a single string, and replace it with a function that requires individual arguments. These functions typically perform appropriate quoting and filtering of arguments. For example, in C, the system() function accepts a string that contains the entire command to be executed, whereas execl(), execve(), and others require an array of strings, one for each argument. In Windows, CreateProcess() only accepts one command at a time. In Perl, if system() is provided with an array of arguments, then it will quote each of the arguments.

Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

When constructing OS command strings, use stringent allowlists that limit the character set based on the expected value of the parameter in the request. This will indirectly limit the scope of an attack, but this technique is less important than proper output encoding and escaping.

Note that proper output encoding, escaping, and quoting is the most effective solution for preventing OS command injection, although input validation may provide some defense-in-depth. This is because it effectively limits what will appear in output. Input validation will not always prevent OS command injection, especially if you are required to support free-form text fields that could contain arbitrary characters. For example, when invoking a mail program, you might need to allow the subject field to contain otherwise-dangerous inputs like ";" and ">" characters, which would need to be escaped or otherwise handled. In this case, stripping the character might reduce the risk of OS command injection, but it would produce incorrect behavior because the subject field would not be recorded as the user intended. This might seem to be a minor inconvenience, but it could be more important when the program relies on well-structured subject lines in order to pass messages to other components.

Even if you make a mistake in your validation (such as forgetting one out of 100 input fields), appropriate encoding is still likely to protect you from injection-based attacks. As long as it is not done in isolation, input validation is still a useful technique, since it may significantly reduce your attack surface, allow you to detect some attacks, and provide other security benefits that proper encoding does not address.

Architecture and Design

Strategy: Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs, and reject all other inputs.

Operation

Strategy: Compilation or Build Hardening

Run the code in an environment that performs automatic taint propagation and prevents any command execution that uses tainted variables, such as Perl's "-T" switch. This will force the program to perform validation steps that remove the taint, although you must be careful to correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted (see CWE-183 and CWE-184).

Operation

Strategy: Environment Hardening

Run the code in an environment that performs automatic taint propagation and prevents any command execution that uses tainted variables, such as Perl's "-T" switch. This will force the program to perform validation steps that remove the taint, although you must be careful to correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted (see CWE-183 and CWE-184).

Implementation

Ensure that error messages only contain minimal details that are useful to the intended audience and no one else. The messages need to strike the balance between being too cryptic (which can confuse users) or being too detailed (which may reveal more than intended). The messages should not reveal the methods that were used to determine the error. Attackers can use detailed information to refine or optimize their original attack, thereby increasing their chances of success.

If errors must be captured in some detail, record them in log messages, but consider what could occur if the log messages can be viewed by attackers. Highly sensitive information such as passwords should never be saved to log files.

Avoid inconsistent messaging that might accidentally tip off an attacker about internal state, such as whether a user account exists or not.

In the context of OS Command Injection, error information passed back to the user might reveal whether an OS command is being executed and possibly which command is being used.

Operation

Strategy: Sandbox or Jail

Use runtime policy enforcement to create an allowlist of allowable commands, then prevent use of any command that does not appear in the allowlist. Technologies such as AppArmor are available to do this.

Operation

Strategy: Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial in cases in which the code cannot be fixed (because it is controlled by a third party), as an emergency prevention measure while more comprehensive software assurance measures are applied, or to provide defense in depth [REF-1481].

Effectiveness: Moderate

Note: An application firewall might not cover all possible input vectors. In addition, attack techniques might be available to bypass the protection mechanism, such as using malformed inputs that can still be processed by the component that receives those inputs. Depending on functionality, an application firewall might inadvertently reject or modify legitimate requests. Finally, some manual effort may be required for customization.

Architecture and Design; Operation

Strategy: Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations.

Operation; Implementation

Strategy: Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During implementation, develop the application so that it does not rely on this feature, but be wary of implementing a register_globals emulation that is subject to weaknesses such as CWE-95, CWE-621, and similar issues.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 77 Improper Neutralization of Special Elements used in a Command ('Command Injection')
CanAlsoBe Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 88 Improper Neutralization of Argument Delimiters in a Command ('Argument Injection')
CanFollow Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 184 Incomplete List of Disallowed Inputs
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 137 Data Neutralization Issues
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 74 Improper Neutralization of Special Elements in Output Used by a Downstream Component ('Injection')
+ Relevant to the view "Architectural Concepts" (View-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1019 Validate Inputs
+ Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 77 Improper Neutralization of Special Elements used in a Command ('Command Injection')
+ Relevant to the view "CISQ Data Protection Measures" (View-1340)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 77 Improper Neutralization of Special Elements used in a Command ('Command Injection')
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation REALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

Technologies

AI/ML (Undetermined Prevalence)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1


This example code intends to take the name of a user and list the contents of that user's home directory. It is subject to the first variant of OS command injection.

(bad code)
Example Language: PHP 
$userName = $_POST["user"];
$command = 'ls -l /home/' . $userName;
system($command);

The $userName variable is not checked for malicious input. An attacker could set the $userName variable to an arbitrary OS command such as:

(attack code)
 
;rm -rf /

Which would result in $command being:

(result)
 
ls -l /home/;rm -rf /

Since the semi-colon is a command separator in Unix, the OS would first execute the ls command, then the rm command, deleting the entire file system.

Also note that this example code is vulnerable to Path Traversal (CWE-22) and Untrusted Search Path (CWE-426) attacks.



Example 2


The following simple program accepts a filename as a command line argument and displays the contents of the file back to the user. The program is installed setuid root because it is intended for use as a learning tool to allow system administrators in-training to inspect privileged system files without giving them the ability to modify them or damage the system.

(bad code)
Example Language:
int main(int argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat ";
strcat(cmd, argv[1]);
system(cmd);
}

Because the program runs with root privileges, the call to system() also executes with root privileges. If a user specifies a standard filename, the call works as expected. However, if an attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a lack of arguments and then plows on to recursively delete the contents of the root partition.

Note that if argv[1] is a very long argument, then this issue might also be subject to a buffer overflow (CWE-120).



Example 3


This example is a web application that intends to perform a DNS lookup of a user-supplied domain name. It is subject to the first variant of OS command injection.

(bad code)
Example Language: Perl 
use CGI qw(:standard);
$name = param('name');
$nslookup = "/path/to/nslookup";
print header;
if (open($fh, "$nslookup $name|")) {
while (<$fh>) {
print escapeHTML($_);
print "<br>\n";
}
close($fh);
}

Suppose an attacker provides a domain name like this:

(attack code)
 
cwe.mitre.org%20%3B%20/bin/ls%20-l

The "%3B" sequence decodes to the ";" character, and the %20 decodes to a space. The open() statement would then process a string like this:

(result)
 
/path/to/nslookup cwe.mitre.org ; /bin/ls -l

As a result, the attacker executes the "/bin/ls -l" command and gets a list of all the files in the program's working directory. The input could be replaced with much more dangerous commands, such as installing a malicious program on the server.



Example 4


The example below reads the name of a shell script to execute from the system properties. It is subject to the second variant of OS command injection.

(bad code)
Example Language: Java 
String script = System.getProperty("SCRIPTNAME");
if (script != null)
System.exec(script);

If an attacker has control over this property, then they could modify the property to point to a dangerous program.



Example 5


In the example below, a method is used to transform geographic coordinates from latitude and longitude format to UTM format. The method gets the input coordinates from a user through a HTTP request and executes a program local to the application server that performs the transformation. The method passes the latitude and longitude coordinates as a command-line option to the external program and will perform some processing to retrieve the results of the transformation and return the resulting UTM coordinates.

(bad code)
Example Language: Java 
public String coordinateTransformLatLonToUTM(String coordinates)
{
String utmCoords = null;
try {
String latlonCoords = coordinates;
Runtime rt = Runtime.getRuntime();
Process exec = rt.exec("cmd.exe /C latlon2utm.exe -" + latlonCoords);
// process results of coordinate transform

// ...
}
catch(Exception e) {...}
return utmCoords;
}

However, the method does not verify that the contents of the coordinates input parameter includes only correctly-formatted latitude and longitude coordinates. If the input coordinates were not validated prior to the call to this method, a malicious user could execute another program local to the application server by appending '&' followed by the command for another program to the end of the coordinate string. The '&' instructs the Windows operating system to execute another program.



Example 6


The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies what type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user.

(bad code)
Example Language: Java 
...
String btype = request.getParameter("backuptype");
String cmd = new String("cmd.exe /K \"
c:\\util\\rmanDB.bat "
+btype+
"&&c:\\utl\\cleanup.bat\"")

System.Runtime.getRuntime().exec(cmd);
...

The problem here is that the program does not do any validation on the backuptype parameter read from the user. Typically the Runtime.exec() function will not execute multiple commands, but in this case the program first runs the cmd.exe shell in order to run multiple commands with a single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well.



Example 7


The following code is a wrapper around the UNIX command cat which prints the contents of a file to standard out. It is also injectable:

(bad code)
Example Language:
#include <stdio.h>
#include <unistd.h>

int main(int argc, char **argv) {

char cat[] = "cat ";
char *command;
size_t commandLength;

commandLength = strlen(cat) + strlen(argv[1]) + 1;
command = (char *) malloc(commandLength);
strncpy(command, cat, commandLength);
strncat(command, argv[1], (commandLength - strlen(cat)) );

system(command);
return (0);
}

Used normally, the output is simply the contents of the file requested, such as Story.txt:

(informative)
 
./catWrapper Story.txt
(result)
 
When last we left our heroes...

However, if the provided argument includes a semicolon and another command, such as:

(attack code)
 
Story.txt; ls

Then the "ls" command is executed by catWrapper with no complaint:

(result)
 
./catWrapper Story.txt; ls

Two commands would then be executed: catWrapper, then ls. The result might look like:

(result)
 
When last we left our heroes...
Story.txt
SensitiveFile.txt
PrivateData.db
a.out*

If catWrapper had been set to have a higher privilege level than the standard user, arbitrary commands could be executed with that higher privilege.



+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Platform for handling LLMs has OS command injection during training due to insecure use of the "Popen" function
OS command injection in Wi-Fi router, as exploited in the wild per CISA KEV.
Template functionality in network configuration management tool allows OS command injection, as exploited in the wild per CISA KEV.
Chain: improper input validation (CWE-20) in username parameter, leading to OS command injection (CWE-78), as exploited in the wild per CISA KEV.
Canonical example of OS command injection. CGI program does not neutralize "|" metacharacter when invoking a phonebook program.
Language interpreter's mail function accepts another argument that is concatenated to a string used in a dangerous popen() call. Since there is no neutralization of this argument, both OS Command Injection (CWE-78) and Argument Injection (CWE-88) are possible.
Web server allows command execution using "|" (pipe) character.
FTP client does not filter "|" from filenames returned by the server, allowing for OS command injection.
Shell metacharacters in a filename in a ZIP archive
Shell metacharacters in a telnet:// link are not properly handled when the launching application processes the link.
OS command injection through environment variable.
OS command injection through https:// URLs
Chain: incomplete denylist for OS command injection
Product allows remote users to execute arbitrary commands by creating a file whose pathname contains shell metacharacters.
+ Detection Methods
Method Details

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools use data flow analysis or constraint-based techniques to minimize the number of false positives.

Automated static analysis might not be able to recognize when proper input validation is being performed, leading to false positives - i.e., warnings that do not have any security consequences or require any code changes.

Automated static analysis might not be able to detect the usage of custom API functions or third-party libraries that indirectly invoke OS commands, leading to false negatives - especially if the API/library code is not available for analysis.

Note:This is not a perfect solution, since 100% accuracy and coverage are not feasible.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the product using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The product's operation may slow down, but it should not become unstable, crash, or generate incorrect results.

Effectiveness: Moderate

Manual Static Analysis

Since this weakness does not typically appear frequently within a single software package, manual white box techniques may be able to provide sufficient code coverage and reduction of false positives if all potentially-vulnerable operations can be assessed within limited time constraints.

Effectiveness: High

Automated Static Analysis - Binary or Bytecode

According to SOAR [REF-1479], the following detection techniques may be useful:

Highly cost effective:
  • Bytecode Weakness Analysis - including disassembler + source code weakness analysis
  • Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness: High

Dynamic Analysis with Automated Results Interpretation

According to SOAR [REF-1479], the following detection techniques may be useful:

Cost effective for partial coverage:
  • Web Application Scanner
  • Web Services Scanner
  • Database Scanners

Effectiveness: SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR [REF-1479], the following detection techniques may be useful:

Cost effective for partial coverage:
  • Fuzz Tester
  • Framework-based Fuzzer

Effectiveness: SOAR Partial

Manual Static Analysis - Source Code

According to SOAR [REF-1479], the following detection techniques may be useful:

Highly cost effective:
  • Manual Source Code Review (not inspections)
Cost effective for partial coverage:
  • Focused Manual Spotcheck - Focused manual analysis of source

Effectiveness: High

Automated Static Analysis - Source Code

According to SOAR [REF-1479], the following detection techniques may be useful:

Highly cost effective:
  • Source code Weakness Analyzer
  • Context-configured Source Code Weakness Analyzer

Effectiveness: High

Architecture or Design Review

According to SOAR [REF-1479], the following detection techniques may be useful:

Highly cost effective:
  • Formal Methods / Correct-By-Construction
Cost effective for partial coverage:
  • Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness: High

+ Functional Areas
  • Program Invocation
+ Affected Resources
  • System Process
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 635 Weaknesses Originally Used by NVD from 2008 to 2016
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 714 OWASP Top Ten 2007 Category A3 - Malicious File Execution
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 727 OWASP Top Ten 2004 Category A6 - Injection Flaws
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 741 CERT C Secure Coding Standard (2008) Chapter 8 - Characters and Strings (STR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 744 CERT C Secure Coding Standard (2008) Chapter 11 - Environment (ENV)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 751 2009 Top 25 - Insecure Interaction Between Components
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 801 2010 Top 25 - Insecure Interaction Between Components
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 810 OWASP Top Ten 2010 Category A1 - Injection
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 845 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 2 - Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 864 2011 Top 25 - Insecure Interaction Between Components
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 875 CERT C++ Secure Coding Section 07 - Characters and Strings (STR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 878 CERT C++ Secure Coding Section 10 - Environment (ENV)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 929 OWASP Top Ten 2013 Category A1 - Injection
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 990 SFP Secondary Cluster: Tainted Input to Command
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1027 OWASP Top Ten 2017 Category A1 - Injection
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1131 CISQ Quality Measures (2016) - Security
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1134 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1165 SEI CERT C Coding Standard - Guidelines 10. Environment (ENV)
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous Software Errors
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous Software Weaknesses
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1347 OWASP Top Ten 2021 Category A03:2021 - Injection
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous Software Weaknesses
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous Software Weaknesses
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1409 Comprehensive Categorization: Injection
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1425 Weaknesses in the 2023 CWE Top 25 Most Dangerous Software Weaknesses
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1430 Weaknesses in the 2024 CWE Top 25 Most Dangerous Software Weaknesses
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Terminology

The "OS command injection" phrase carries different meanings to different people. For some people, it only refers to cases in which the attacker injects command separators into arguments for an application-controlled program that is being invoked. For some people, it refers to any type of attack that can allow the attacker to execute OS commands of their own choosing. This usage could include untrusted search path weaknesses (CWE-426) that cause the application to find and execute an attacker-controlled program. Further complicating the issue is the case when argument injection (CWE-88) allows alternate command-line switches or options to be inserted into the command line, such as an "-exec" switch whose purpose may be to execute the subsequent argument as a command (this -exec switch exists in the UNIX "find" command, for example). In this latter case, however, CWE-88 could be regarded as the primary weakness in a chain with CWE-78.

Research Gap

More investigation is needed into the distinction between the OS command injection variants, including the role with argument injection (CWE-88). Equivalent distinctions may exist in other injection-related problems such as SQL injection.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER OS Command Injection
OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
CERT C Secure Coding ENV03-C Sanitize the environment when invoking external programs
CERT C Secure Coding ENV33-C CWE More Specific Do not call system()
CERT C Secure Coding STR02-C Sanitize data passed to complex subsystems
WASC 31 OS Commanding
The CERT Oracle Secure Coding Standard for Java (2011) IDS07-J Do not pass untrusted, unsanitized data to the Runtime.exec() method
Software Fault Patterns SFP24 Tainted input to command
OMG ASCSM ASCSM-CWE-78
+ References
[REF-140] Greg Hoglund and Gary McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. 2004-02-27.
<https://www.amazon.com/Exploiting-Software-How-Break-Code/dp/0201786958>. (URL validated: 2023-04-07)
[REF-685] Pascal Meunier. "Meta-Character Vulnerabilities". 2008-02-20.
<https://web.archive.org/web/20100714032622/https://www.cs.purdue.edu/homes/cs390s/slides/week09.pdf>. (URL validated: 2023-04-07)
[REF-686] Robert Auger. "OS Commanding". 2009-06.
<http://projects.webappsec.org/w/page/13246950/OS%20Commanding>. (URL validated: 2023-04-07)
[REF-687] Lincoln Stein and John Stewart. "The World Wide Web Security FAQ". chapter: "CGI Scripts". 2002-02-04.
<https://www.w3.org/Security/Faq/wwwsf4.html>. (URL validated: 2023-04-07)
[REF-688] Jordan Dimov, Cigital. "Security Issues in Perl Scripts".
<https://www.cgisecurity.com/lib/sips.html>. (URL validated: 2023-04-07)
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 10: Command Injection." Page 171. McGraw-Hill. 2010.
[REF-690] Frank Kim. "Top 25 Series - Rank 9 - OS Command Injection". SANS Software Security Institute. 2010-02-24.
<https://www.sans.org/blog/top-25-series-rank-9-os-command-injection/>. (URL validated: 2023-04-07)
[REF-45] OWASP. "OWASP Enterprise Security API (ESAPI) Project".
<https://owasp.org/www-project-enterprise-security-api/>. (URL validated: 2025-07-24)
[REF-76] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14.
<https://web.archive.org/web/20211209014121/https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/least-privilege>. (URL validated: 2023-04-07)
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 8, "Shell Metacharacters", Page 425. 1st Edition. Addison Wesley. 2006.
[REF-962] Object Management Group (OMG). "Automated Source Code Security Measure (ASCSM)". ASCSM-CWE-78. 2016-01.
<http://www.omg.org/spec/ASCSM/1.0/>.
[REF-1449] Cybersecurity and Infrastructure Security Agency. "Secure by Design Alert: Eliminating OS Command Injection Vulnerabilities". 2024-07-10.
<https://www.cisa.gov/resources-tools/resources/secure-design-alert-eliminating-os-command-injection-vulnerabilities>. (URL validated: 2024-07-14)
[REF-1479] Gregory Larsen, E. Kenneth Hong Fong, David A. Wheeler and Rama S. Moorthy. "State-of-the-Art Resources (SOAR) for Software Vulnerability Detection, Test, and Evaluation". 2014-07.
<https://www.ida.org/-/media/feature/publications/s/st/stateoftheart-resources-soar-for-software-vulnerability-detection-test-and-evaluation/p-5061.ashx>. (URL validated: 2025-09-05)
[REF-1481] D3FEND. "D3FEND: Application Layer Firewall".
<https://d3fend.mitre.org/dao/artifact/d3f:ApplicationLayerFirewall/>. (URL validated: 2025-09-06)
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Contributions
Contribution Date Contributor Organization
2024-02-29
(CWE 4.15, 2024-07-16)
Abhi Balakrishnan
Provided diagram to improve CWE usability
+ Modifications
Modification Date Modifier Organization
2025-09-09
(CWE 4.18, 2025-09-09)
CWE Content Team MITRE
updated Applicable_Platforms, Detection_Factors, Observed_Examples, Potential_Mitigations, References
2024-11-19
(CWE 4.16, 2024-11-19)
CWE Content Team MITRE
updated Relationships
2024-07-16
(CWE 4.15, 2024-07-16)
CWE Content Team MITRE
updated Alternate_Terms, Common_Consequences, Demonstrative_Examples, Description, Diagram, References
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes, Relationships
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, References, Relationships, Time_of_Introduction
2023-01-31 CWE Content Team MITRE
updated Common_Consequences, Description
2022-10-13 CWE Content Team MITRE
updated References
2022-06-28 CWE Content Team MITRE
updated Observed_Examples, Relationships
2022-04-28 CWE Content Team MITRE
updated Demonstrative_Examples
2021-10-28 CWE Content Team MITRE
updated Relationships
2021-07-20 CWE Content Team MITRE
updated Observed_Examples, Relationships
2020-12-10 CWE Content Team MITRE
updated Potential_Mitigations, Relationships
2020-08-20 CWE Content Team MITRE
updated Relationships
2020-06-25 CWE Content Team MITRE
updated Observed_Examples, Potential_Mitigations
2020-02-24 CWE Content Team MITRE
updated Potential_Mitigations, Relationships
2019-09-19 CWE Content Team MITRE
updated Relationships
2019-06-20 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated References, Relationships, Taxonomy_Mappings
2018-03-27 CWE Content Team MITRE
updated Relationships
2017-11-08 CWE Content Team MITRE
updated Modes_of_Introduction, References, Relationships, Taxonomy_Mappings, White_Box_Definitions
2015-12-07 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Detection_Factors, Relationships, Taxonomy_Mappings
2014-06-23 CWE Content Team MITRE
updated Relationships
2014-02-18 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Terminology_Notes
2012-10-30 CWE Content Team MITRE
updated Observed_Examples, Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Demonstrative_Examples, References, Relationships, Taxonomy_Mappings
2011-09-13 CWE Content Team MITRE
updated Potential_Mitigations, References, Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-03-29 CWE Content Team MITRE
updated Demonstrative_Examples, Description
2010-12-13 CWE Content Team MITRE
updated Description, Potential_Mitigations
2010-09-27 CWE Content Team MITRE
updated Potential_Mitigations
2010-06-21 CWE Content Team MITRE
updated Common_Consequences, Description, Detection_Factors, Name, Observed_Examples, Potential_Mitigations, References, Relationships
2010-04-05 CWE Content Team MITRE
updated Potential_Mitigations
2010-02-16 CWE Content Team MITRE
updated Detection_Factors, Potential_Mitigations, References, Relationships, Taxonomy_Mappings
2009-12-28 CWE Content Team MITRE
updated Detection_Factors
2009-10-29 CWE Content Team MITRE
updated Observed_Examples, References
2009-07-27 CWE Content Team MITRE
updated Description, Name, White_Box_Definitions
2009-07-17 KDM Analytics
Improved the White_Box_Definition
2009-05-27 CWE Content Team MITRE
updated Name, Related_Attack_Patterns
2009-03-10 CWE Content Team MITRE
updated Potential_Mitigations
2009-01-12 CWE Content Team MITRE
updated Common_Consequences, Demonstrative_Examples, Description, Likelihood_of_Exploit, Name, Observed_Examples, Other_Notes, Potential_Mitigations, Relationships, Research_Gaps, Terminology_Notes
2008-11-24 CWE Content Team MITRE
updated Observed_Examples, Relationships, Taxonomy_Mappings
2008-10-14 CWE Content Team MITRE
updated Description
2008-09-08 CWE Content Team MITRE
updated Relationships, Other_Notes, Taxonomy_Mappings
2008-08-15 Veracode
Suggested OWASP Top Ten 2004 mapping
2008-08-01 KDM Analytics
added/updated white box definitions
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-07-01 Sean Eidemiller Cigital
added/updated demonstrative examples
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 OS Command Injection
2009-01-12 Failure to Sanitize Data into an OS Command (aka 'OS Command Injection')
2009-05-27 Failure to Preserve OS Command Structure (aka 'OS Command Injection')
2009-07-27 Failure to Preserve OS Command Structure ('OS Command Injection')
2010-06-21 Improper Sanitization of Special Elements used in an OS Command ('OS Command Injection')

CWE-117: Improper Output Neutralization for Logs

Weakness ID: 117
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product constructs a log message from external input, but it does not neutralize or incorrectly neutralizes special elements when the message is written to a log file. Diagram for CWE-117
+ Alternate Terms
Log forging
An attack-oriented term that could be used in cases in which the adversary can add additional log entries or modify how a log entry is parsed.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Modify Application Data; Hide Activities; Execute Unauthorized Code or Commands

Scope: Integrity, Confidentiality, Availability, Non-Repudiation

Interpretation of the log files may be hindered or misdirected if an attacker can supply data to the application that is subsequently logged verbatim. In the most benign case, an attacker may be able to insert false entries into the log file by providing the application with input that includes appropriate characters. Forged or otherwise corrupted log files can be used to cover an attacker's tracks, possibly by skewing statistics, or even to implicate another party in the commission of a malicious act. If the log file is processed automatically, the attacker can render the file unusable by corrupting the format of the file or injecting unexpected characters. An attacker may inject code or other commands into the log file and take advantage of a vulnerability in the log processing utility.
+ Potential Mitigations
Phase(s) Mitigation

Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

Implementation

Strategy: Output Encoding

Use and specify an output encoding that can be handled by the downstream component that is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an encoding is not specified, a downstream component may choose a different encoding, either by assuming a default encoding or automatically inferring which encoding is being used, which can be erroneous. When the encodings are inconsistent, the downstream component might treat some character or byte sequences as special, even if they are not special in the original encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks; they even might be able to bypass protection mechanisms that assume the original encoding is also being used by the downstream component.

Implementation

Strategy: Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180). Make sure that the application does not decode the same input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by introducing dangerous inputs after they have been checked.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 116 Improper Encoding or Escaping of Output
CanFollow Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 93 Improper Neutralization of CRLF Sequences ('CRLF Injection')
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 137 Data Neutralization Issues
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1210 Audit / Logging Errors
+ Relevant to the view "Architectural Concepts" (View-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1009 Audit
+ Relevant to the view "Seven Pernicious Kingdoms" (View-700)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 20 Improper Input Validation
+ Background Details
Applications typically use log files to store a history of events or transactions for later review, statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing log files may be performed manually on an as-needed basis or automated with a tool that automatically culls logs for important events or trending information.
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation REALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Likelihood Of Exploit
Medium
+ Demonstrative Examples

Example 1


The following web application code attempts to read an integer value from a request object. If the parseInt call fails, then the input is logged with an error message indicating what happened.

(bad code)
Example Language: Java 
String val = request.getParameter("val");
try {

int value = Integer.parseInt(val);
}
catch (NumberFormatException) {
log.info("Failed to parse val = " + val);
}
...

If a user submits the string "twenty-one" for val, the following entry is logged:

  • INFO: Failed to parse val=twenty-one

However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:

  • INFO: Failed to parse val=twenty-one
  • INFO: User logged out=badguy

Clearly, attackers can use this same mechanism to insert arbitrary log entries.



+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Chain: inject fake log entries with fake timestamps using CRLF injection
+ Weakness Ordinalities
Ordinality Description
Primary
(where the weakness exists independent of other weaknesses)
+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 727 OWASP Top Ten 2004 Category A6 - Injection Flaws
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 963 SFP Secondary Cluster: Exposed Data
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1134 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1355 OWASP Top Ten 2021 Category A09:2021 - Security Logging and Monitoring Failures
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1407 Comprehensive Categorization: Improper Neutralization
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Log Forging
Software Fault Patterns SFP23 Exposed Data
The CERT Oracle Secure Coding Standard for Java (2011) IDS03-J Exact Do not log unsanitized user input
SEI CERT Oracle Coding Standard for Java IDS03-J Exact Do not log unsanitized user input
+ References
[REF-6] Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools Techniques and Metrics. NIST. 2005-11-07.
<https://samate.nist.gov/SSATTM_Content/papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf>.
[REF-52] Greg Hoglund and Gary McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. 2004-02-27.
<http://www.exploitingsoftware.com/>.
[REF-53] Alec Muffet. "The night the log was forged".
<http://doc.novsu.ac.ru/oreilly/tcpip/puis/ch10_05.htm>.
[REF-43] OWASP. "OWASP TOP 10". 2007-05-18.
<https://github.com/owasp-top/owasp-top-2007>.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
7 Pernicious Kingdoms
+ Modifications
Modification Date Modifier Organization
2025-04-03
(CWE 4.17, 2025-04-03)
CWE Content Team MITRE
updated Alternate_Terms, Description, Diagram
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, References, Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2021-10-28 CWE Content Team MITRE
updated Relationships
2020-06-25 CWE Content Team MITRE
updated Potential_Mitigations
2020-02-24 CWE Content Team MITRE
updated Potential_Mitigations, References, Relationships
2019-06-20 CWE Content Team MITRE
updated Related_Attack_Patterns
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Causal_Nature, Modes_of_Introduction, References, Relationships
2017-05-03 CWE Content Team MITRE
updated Related_Attack_Patterns
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Common_Consequences, Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2011-03-29 CWE Content Team MITRE
updated Description, Potential_Mitigations
2010-12-13 CWE Content Team MITRE
updated Demonstrative_Examples
2010-06-21 CWE Content Team MITRE
updated Description, Name
2009-10-29 CWE Content Team MITRE
updated Common_Consequences, Other_Notes, Relationships
2009-07-27 CWE Content Team MITRE
updated Potential_Mitigations
2009-05-27 CWE Content Team MITRE
updated Demonstrative_Examples, Description, Name, Related_Attack_Patterns
2009-03-10 CWE Content Team MITRE
updated Relationships
2008-11-24 CWE Content Team MITRE
updated Background_Details, Common_Consequences, Description, Other_Notes, References
2008-09-08 CWE Content Team MITRE
updated Relationships, Other_Notes, References, Taxonomy_Mappings, Weakness_Ordinalities
2008-07-01 Eric Dalci Cigital
updated References, Potential_Mitigations, Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Log Forging
2009-05-27 Incorrect Output Sanitization for Logs
2010-06-21 Improper Output Sanitization for Logs

CWE-413: Improper Resource Locking

Weakness ID: 413
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product does not lock or does not correctly lock a resource when the product must have exclusive access to the resource.
+ Extended Description
When a resource is not properly locked, an attacker could modify the resource while it is being operated on by the product. This might violate the product's assumption that the resource will not change, potentially leading to unexpected behaviors.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Modify Application Data; DoS: Instability; DoS: Crash, Exit, or Restart

Scope: Integrity, Availability

+ Potential Mitigations
Phase(s) Mitigation

Architecture and Design

Use a non-conflicting privilege scheme.

Architecture and Design; Implementation

Use synchronization when locking a resource.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 667 Improper Locking
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 591 Sensitive Data Storage in Improperly Locked Memory
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 411 Resource Locking Problems
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


The following function attempts to acquire a lock in order to perform operations on a shared resource.

(bad code)
Example Language:
void f(pthread_mutex_t *mutex) {
pthread_mutex_lock(mutex);

/* access shared resource */


pthread_mutex_unlock(mutex);
}

However, the code does not check the value returned by pthread_mutex_lock() for errors. If pthread_mutex_lock() cannot acquire the mutex for any reason, the function may introduce a race condition into the program and result in undefined behavior.

In order to avoid data races, correctly written programs must check the result of thread synchronization functions and appropriately handle all errors, either by attempting to recover from them or reporting them to higher levels.

(good code)
Example Language:
int f(pthread_mutex_t *mutex) {
int result;

result = pthread_mutex_lock(mutex);
if (0 != result)
return result;


/* access shared resource */


return pthread_mutex_unlock(mutex);
}


Example 2


This Java example shows a simple BankAccount class with deposit and withdraw methods.

(bad code)
Example Language: Java 
public class BankAccount {

// variable for bank account balance
private double accountBalance;

// constructor for BankAccount
public BankAccount() {
accountBalance = 0;
}

// method to deposit amount into BankAccount
public void deposit(double depositAmount) {

double newBalance = accountBalance + depositAmount;
accountBalance = newBalance;
}

// method to withdraw amount from BankAccount
public void withdraw(double withdrawAmount) {

double newBalance = accountBalance - withdrawAmount;
accountBalance = newBalance;
}

// other methods for accessing the BankAccount object
...
}

However, the deposit and withdraw methods have shared access to the account balance private class variable. This can result in a race condition if multiple threads attempt to call the deposit and withdraw methods simultaneously where the account balance is modified by one thread before another thread has completed modifying the account balance. For example, if a thread attempts to withdraw funds using the withdraw method before another thread that is depositing funds using the deposit method completes the deposit then there may not be sufficient funds for the withdraw transaction.

To prevent multiple threads from having simultaneous access to the account balance variable the deposit and withdraw methods should be synchronized using the synchronized modifier.

(good code)
Example Language: Java 
public class BankAccount {
...
// synchronized method to deposit amount into BankAccount
public synchronized void deposit(double depositAmount) {
...
}

// synchronized method to withdraw amount from BankAccount
public synchronized void withdraw(double withdrawAmount) {
...
}

...
}

An alternative solution is to use a lock object to ensure exclusive access to the bank account balance variable. As shown below, the deposit and withdraw methods use the lock object to set a lock to block access to the BankAccount object from other threads until the method has completed updating the bank account balance variable.

(good code)
Example Language: Java 
public class BankAccount {
...
// lock object for thread access to methods
private ReentrantLock balanceChangeLock;

// condition object to temporarily release lock to other threads
private Condition sufficientFundsCondition;

// method to deposit amount into BankAccount
public void deposit(double amount) {

// set lock to block access to BankAccount from other threads
balanceChangeLock.lock();
try {
double newBalance = balance + amount;
balance = newBalance;

// inform other threads that funds are available
sufficientFundsCondition.signalAll();
} catch (Exception e) {...}
finally {
// unlock lock object
balanceChangeLock.unlock();
}
}

// method to withdraw amount from bank account
public void withdraw(double amount) {

// set lock to block access to BankAccount from other threads
balanceChangeLock.lock();
try {
while (balance < amount) {

// temporarily unblock access

// until sufficient funds are available
sufficientFundsCondition.await();
}
double newBalance = balance - amount;
balance = newBalance;
} catch (Exception e) {...}
finally {
// unlock lock object
balanceChangeLock.unlock();
}
}
...
}


+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Chain: an operating system kernel has insufficent resource locking (CWE-413) leading to a use after free (CWE-416).
+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 852 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 9 - Visibility and Atomicity (VNA)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 853 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 10 - Locking (LCK)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 986 SFP Secondary Cluster: Missing Lock
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1142 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity (VNA)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1401 Comprehensive Categorization: Concurrency
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Insufficient Resource Locking
The CERT Oracle Secure Coding Standard for Java (2011) VNA00-J Ensure visibility when accessing shared primitive variables
The CERT Oracle Secure Coding Standard for Java (2011) VNA02-J Ensure that compound operations on shared variables are atomic
The CERT Oracle Secure Coding Standard for Java (2011) LCK00-J Use private final lock objects to synchronize classes that may interact with untrusted code
Software Fault Patterns SFP19 Missing Lock
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Contributions
Contribution Date Contributor Organization
2010-04-30 Martin Sebor Cisco Systems, Inc.
Provided Demonstrative Example
+ Modifications
Modification Date Modifier Organization
2023-10-26 CWE Content Team MITRE
updated Observed_Examples
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2021-03-15 CWE Content Team MITRE
updated Demonstrative_Examples
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Demonstrative_Examples, Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2010-12-13 CWE Content Team MITRE
updated Demonstrative_Examples
2010-09-27 CWE Content Team MITRE
updated Description, Name
2010-06-21 CWE Content Team MITRE
updated Demonstrative_Examples
2008-09-08 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Potential_Mitigations, Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2010-09-27 Insufficient Resource Locking

CWE-404: Improper Resource Shutdown or Release

Weakness ID: 404
Vulnerability Mapping: ALLOWED This CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review (with careful review of mapping notes)
Abstraction: Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product does not release or incorrectly releases a resource before it is made available for re-use.
+ Extended Description
When a resource is created or allocated, the developer is responsible for properly releasing the resource as well as accounting for all potential paths of expiration or invalidation, such as a set period of time or revocation.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

DoS: Resource Consumption (Other); Varies by Context

Scope: Availability, Other

Most unreleased resource issues result in general software reliability problems, but if an attacker can intentionally trigger a resource leak, the attacker might be able to launch a denial of service attack by depleting the resource pool.

Read Application Data

Scope: Confidentiality

When a resource containing sensitive information is not correctly shutdown, it may expose the sensitive data in a subsequent allocation.
+ Potential Mitigations
Phase(s) Mitigation

Requirements

Strategy: Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

For example, languages such as Java, Ruby, and Lisp perform automatic garbage collection that releases memory for objects that have been deallocated.

Implementation

It is good practice to be responsible for freeing all resources you allocate and to be consistent with how and where you free memory in a function. If you allocate memory that you intend to free upon completion of the function, you must be sure to free the memory at all exit points for that function including error conditions.

Implementation

Memory should be allocated/freed using matching functions such as malloc/free, new/delete, and new[]/delete[].

Implementation

When releasing a complex object or structure, ensure that you properly dispose of all of its member components, not just the object itself.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 664 Improper Control of a Resource Through its Lifetime
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 299 Improper Check for Certificate Revocation
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 459 Incomplete Cleanup
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 763 Release of Invalid Pointer or Reference
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 772 Missing Release of Resource after Effective Lifetime
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1266 Improper Scrubbing of Sensitive Data from Decommissioned Device
PeerOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 239 Failure to Handle Incomplete Element
PeerOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 405 Asymmetric Resource Consumption (Amplification)
CanPrecede Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 619 Dangling Database Cursor ('Cursor Injection')
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Nature Type ID Name
MemberOf View View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1003 Weaknesses for Simplified Mapping of Published Vulnerabilities
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 401 Missing Release of Memory after Effective Lifetime
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 459 Incomplete Cleanup
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 763 Release of Invalid Pointer or Reference
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 772 Missing Release of Resource after Effective Lifetime
+ Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Nature Type ID Name
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 401 Missing Release of Memory after Effective Lifetime
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 772 Missing Release of Resource after Effective Lifetime
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 775 Missing Release of File Descriptor or Handle after Effective Lifetime
+ Relevant to the view "CISQ Data Protection Measures" (View-1340)
Nature Type ID Name
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 761 Free of Pointer not at Start of Buffer
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 762 Mismatched Memory Management Routines
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 763 Release of Invalid Pointer or Reference
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 772 Missing Release of Resource after Effective Lifetime
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 775 Missing Release of File Descriptor or Handle after Effective Lifetime
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Likelihood Of Exploit
Medium
+ Demonstrative Examples

Example 1


The following method never closes the new file handle. Given enough time, the Finalize() method for BufferReader should eventually call Close(), but there is no guarantee as to how long this action will take. In fact, there is no guarantee that Finalize() will ever be invoked. In a busy environment, the Operating System could use up all of the available file handles before the Close() function is called.

(bad code)
Example Language: Java 
private void processFile(string fName)
{
BufferReader fil = new BufferReader(new FileReader(fName));
String line;
while ((line = fil.ReadLine()) != null)
{
processLine(line);
}
}

The good code example simply adds an explicit call to the Close() function when the system is done using the file. Within a simple example such as this the problem is easy to see and fix. In a real system, the problem may be considerably more obscure.

(good code)
Example Language: Java 
private void processFile(string fName)
{
BufferReader fil = new BufferReader(new FileReader(fName));
String line;
while ((line = fil.ReadLine()) != null)
{
processLine(line);
}
fil.Close();
}


Example 2


This code attempts to open a connection to a database and catches any exceptions that may occur.

(bad code)
Example Language: Java 
try {
Connection con = DriverManager.getConnection(some_connection_string);
}
catch ( Exception e ) {
log( e );
}

If an exception occurs after establishing the database connection and before the same connection closes, the pool of database connections may become exhausted. If the number of available connections is exceeded, other users cannot access this resource, effectively denying access to the application.



Example 3


Under normal conditions the following C# code executes a database query, processes the results returned by the database, and closes the allocated SqlConnection object. But if an exception occurs while executing the SQL or processing the results, the SqlConnection object is not closed. If this happens often enough, the database will run out of available cursors and not be able to execute any more SQL queries.

(bad code)
Example Language: C# 
...
SqlConnection conn = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand(queryString);
cmd.Connection = conn;
conn.Open();
SqlDataReader rdr = cmd.ExecuteReader();
HarvestResults(rdr);
conn.Connection.Close();
...


Example 4


The following C function does not close the file handle it opens if an error occurs. If the process is long-lived, the process can run out of file handles.

(bad code)
Example Language:
int decodeFile(char* fName) {
char buf[BUF_SZ];
FILE* f = fopen(fName, "r");
if (!f) {
printf("cannot open %s\n", fName);
return DECODE_FAIL;
}
else {
while (fgets(buf, BUF_SZ, f)) {
if (!checkChecksum(buf)) {
return DECODE_FAIL;
}
else {
decodeBlock(buf);
}
}
}
fclose(f);
return DECODE_SUCCESS;
}


Example 5


In this example, the program does not use matching functions such as malloc/free, new/delete, and new[]/delete[] to allocate/deallocate the resource.

(bad code)
Example Language: C++ 
class A {
void foo();
};
void A::foo(){
int *ptr;
ptr = (int*)malloc(sizeof(int));
delete ptr;
}


Example 6


In this example, the program calls the delete[] function on non-heap memory.

(bad code)
Example Language: C++ 
class A{
void foo(bool);
};
void A::foo(bool heap) {
int localArray[2] = {
11,22
};
int *p = localArray;
if (heap){
p = new int[2];
}
delete[] p;
}


+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Does not shut down named pipe connections if malformed data is sent.
Sockets not properly closed when attacker repeatedly connects and disconnects from server.
Chain: Return values of file/socket operations are not checked (CWE-252), allowing resultant consumption of file descriptors (CWE-772).
+ Weakness Ordinalities
Ordinality Description
Primary
(where the weakness exists independent of other weaknesses)
Improper release or shutdown of resources can be primary to resource exhaustion, performance, and information confidentiality problems to name a few.
Resultant
(where the weakness is typically related to the presence of some other weaknesses)
Improper release or shutdown of resources can be resultant from improper error handling or insufficient resource tracking.
+ Detection Methods
Method Details

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the software using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The software's operation may slow down, but it should not become unstable, crash, or generate incorrect results.

Resource clean up errors might be detected with a stress-test by calling the software simultaneously from a large number of threads or processes, and look for evidence of any unexpected behavior. The software's operation may slow down, but it should not become unstable, crash, or generate incorrect results.

Effectiveness: Moderate

Manual Dynamic Analysis

Identify error conditions that are not likely to occur during normal usage and trigger them. For example, run the product under low memory conditions, run with insufficient privileges or permissions, interrupt a transaction before it is completed, or disable connectivity to basic network services such as DNS. Monitor the software for any unexpected behavior. If you trigger an unhandled exception or similar error that was discovered and handled by the application's environment, it may still indicate unexpected conditions that were not handled by the application itself.

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 398 7PK - Code Quality
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 730 OWASP Top Ten 2004 Category A9 - Denial of Service
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 743 CERT C Secure Coding Standard (2008) Chapter 10 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 752 2009 Top 25 - Risky Resource Management
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 857 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 14 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 876 CERT C++ Secure Coding Section 08 - Memory Management (MEM)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 877 CERT C++ Secure Coding Section 09 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 882 CERT C++ Secure Coding Section 14 - Concurrency (CON)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 982 SFP Secondary Cluster: Failure to Release Resource
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1147 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1162 SEI CERT C Coding Standard - Guidelines 08. Memory Management (MEM)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1163 SEI CERT C Coding Standard - Guidelines 09. Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1306 CISQ Quality Measures - Reliability
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1308 CISQ Quality Measures - Security
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1309 CISQ Quality Measures - Efficiency
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1340 CISQ Data Protection Measures
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1416 Comprehensive Categorization: Resource Lifecycle Management
+ Vulnerability Mapping Notes
Usage ALLOWED-WITH-REVIEW
(this CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review)
Reason Abstraction

Rationale

This CWE entry is a Class and might have Base-level children that would be more appropriate

Comments

Examine children of this entry to see if there is a better fit
+ Notes

Relationship

Overlaps memory leaks, asymmetric resource consumption, malformed input errors.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Improper resource shutdown or release
7 Pernicious Kingdoms Unreleased Resource
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
CERT C Secure Coding FIO42-C CWE More Abstract Close files when they are no longer needed
CERT C Secure Coding MEM31-C CWE More Abstract Free dynamically allocated memory when no longer needed
The CERT Oracle Secure Coding Standard for Java (2011) FIO04-J Release resources when they are no longer needed
Software Fault Patterns SFP14 Failure to release resource
+ References
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 8: C++ Catastrophes." Page 143. McGraw-Hill. 2010.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Modifications
Modification Date Modifier Organization
2023-10-26 CWE Content Team MITRE
updated Observed_Examples
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships, Time_of_Introduction
2023-01-31 CWE Content Team MITRE
updated Description, Detection_Factors
2022-10-13 CWE Content Team MITRE
updated Relationships
2021-07-20 CWE Content Team MITRE
updated Related_Attack_Patterns
2021-03-15 CWE Content Team MITRE
updated Demonstrative_Examples
2020-12-10 CWE Content Team MITRE
updated Relationships
2020-08-20 CWE Content Team MITRE
updated Relationships
2020-06-25 CWE Content Team MITRE
updated Relationships
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-06-20 CWE Content Team MITRE
updated Related_Attack_Patterns, Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings, Type
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Functional_Areas, Likelihood_of_Exploit, Relationships, Taxonomy_Mappings
2017-05-03 CWE Content Team MITRE
updated Related_Attack_Patterns
2017-01-19 CWE Content Team MITRE
updated Relationships
2015-12-07 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2014-06-23 CWE Content Team MITRE
updated Related_Attack_Patterns
2014-02-18 CWE Content Team MITRE
updated Demonstrative_Examples
2012-05-11 CWE Content Team MITRE
updated Demonstrative_Examples, References, Relationships, Taxonomy_Mappings
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Common_Consequences
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-03-29 CWE Content Team MITRE
updated Weakness_Ordinalities
2010-12-13 CWE Content Team MITRE
updated Demonstrative_Examples
2010-06-21 CWE Content Team MITRE
updated Detection_Factors, Potential_Mitigations
2010-02-16 CWE Content Team MITRE
updated Potential_Mitigations, Relationships
2009-10-29 CWE Content Team MITRE
updated Other_Notes
2009-07-27 CWE Content Team MITRE
updated Demonstrative_Examples, Related_Attack_Patterns
2009-05-27 CWE Content Team MITRE
updated Description, Relationships
2009-03-10 CWE Content Team MITRE
updated Potential_Mitigations
2009-01-12 CWE Content Team MITRE
updated Common_Consequences, Likelihood_of_Exploit, Other_Notes, Potential_Mitigations, Relationship_Notes, Relationships, Weakness_Ordinalities
2008-11-24 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2008-10-14 CWE Content Team MITRE
updated Relationships
2008-09-08 CWE Content Team MITRE
updated Description, Relationships, Other_Notes, Taxonomy_Mappings
2008-08-15 Veracode
Suggested OWASP Top Ten 2004 mapping
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction

CWE-662: Improper Synchronization

Weakness ID: 662
Vulnerability Mapping: DISCOURAGED This CWE ID should not be used to map to real-world vulnerabilities
Abstraction: Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product utilizes multiple threads or processes to allow temporary access to a shared resource that can only be exclusive to one process at a time, but it does not properly synchronize these actions, which might cause simultaneous accesses of this resource by multiple threads or processes.
+ Extended Description

Synchronization refers to a variety of behaviors and mechanisms that allow two or more independently-operating processes or threads to ensure that they operate on shared resources in predictable ways that do not interfere with each other. Some shared resource operations cannot be executed atomically; that is, multiple steps must be guaranteed to execute sequentially, without any interference by other processes. Synchronization mechanisms vary widely, but they may include locking, mutexes, and semaphores. When a multi-step operation on a shared resource cannot be guaranteed to execute independent of interference, then the resulting behavior can be unpredictable. Improper synchronization could lead to data or memory corruption, denial of service, etc.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Modify Application Data; Read Application Data; Alter Execution Logic

Scope: Integrity, Confidentiality, Other

+ Potential Mitigations
Phase(s) Mitigation

Implementation

Use industry standard APIs to synchronize your code.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 664 Improper Control of a Resource Through its Lifetime
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 691 Insufficient Control Flow Management
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 663 Use of a Non-reentrant Function in a Concurrent Context
ParentOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 667 Improper Locking
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 820 Missing Synchronization
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 821 Incorrect Synchronization
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1058 Invokable Control Element in Multi-Thread Context with non-Final Static Storable or Member Element
CanPrecede Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Nature Type ID Name
MemberOf View View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1003 Weaknesses for Simplified Mapping of Published Vulnerabilities
ParentOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 667 Improper Locking
+ Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Nature Type ID Name
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 366 Race Condition within a Thread
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 543 Use of Singleton Pattern Without Synchronization in a Multithreaded Context
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 567 Unsynchronized Access to Shared Data in a Multithreaded Context
ParentOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 667 Improper Locking
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 764 Multiple Locks of a Critical Resource
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 820 Missing Synchronization
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 821 Incorrect Synchronization
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 833 Deadlock
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1058 Invokable Control Element in Multi-Thread Context with non-Final Static Storable or Member Element
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 1096 Singleton Class Instance Creation without Proper Locking or Synchronization
+ Relevant to the view "CISQ Data Protection Measures" (View-1340)
Nature Type ID Name
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 366 Race Condition within a Thread
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 543 Use of Singleton Pattern Without Synchronization in a Multithreaded Context
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 567 Unsynchronized Access to Shared Data in a Multithreaded Context
ParentOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 667 Improper Locking
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 764 Multiple Locks of a Critical Resource
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 820 Missing Synchronization
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 821 Incorrect Synchronization
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1058 Invokable Control Element in Multi-Thread Context with non-Final Static Storable or Member Element
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 1096 Singleton Class Instance Creation without Proper Locking or Synchronization
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design
Implementation
+ Demonstrative Examples

Example 1


The following function attempts to acquire a lock in order to perform operations on a shared resource.

(bad code)
Example Language:
void f(pthread_mutex_t *mutex) {
pthread_mutex_lock(mutex);

/* access shared resource */


pthread_mutex_unlock(mutex);
}

However, the code does not check the value returned by pthread_mutex_lock() for errors. If pthread_mutex_lock() cannot acquire the mutex for any reason, the function may introduce a race condition into the program and result in undefined behavior.

In order to avoid data races, correctly written programs must check the result of thread synchronization functions and appropriately handle all errors, either by attempting to recover from them or reporting them to higher levels.

(good code)
Example Language:
int f(pthread_mutex_t *mutex) {
int result;

result = pthread_mutex_lock(mutex);
if (0 != result)
return result;


/* access shared resource */


return pthread_mutex_unlock(mutex);
}


Example 2


The following code intends to fork a process, then have both the parent and child processes print a single line.

(bad code)
Example Language:
static void print (char * string) {
char * word;
int counter;
for (word = string; counter = *word++; ) {
putc(counter, stdout);
fflush(stdout);
/* Make timing window a little larger... */

sleep(1);
}
}

int main(void) {
pid_t pid;

pid = fork();
if (pid == -1) {
exit(-2);
}
else if (pid == 0) {
print("child\n");
}
else {
print("PARENT\n");
}
exit(0);
}

One might expect the code to print out something like:

PARENT
child

However, because the parent and child are executing concurrently, and stdout is flushed each time a character is printed, the output might be mixed together, such as:

PcAhRiElNdT
[blank line]
[blank line]



+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Chain: improper locking (CWE-667) leads to race condition (CWE-362), as exploited in the wild per CISA KEV.
Attacker provides invalid address to a memory-reading function, causing a mutex to be unlocked twice
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 745 CERT C Secure Coding Standard (2008) Chapter 12 - Signals (SIG)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 852 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 9 - Visibility and Atomicity (VNA)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 879 CERT C++ Secure Coding Section 11 - Signals (SIG)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 986 SFP Secondary Cluster: Missing Lock
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1142 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity (VNA)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1166 SEI CERT C Coding Standard - Guidelines 11. Signals (SIG)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1306 CISQ Quality Measures - Reliability
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1308 CISQ Quality Measures - Security
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1340 CISQ Data Protection Measures
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1416 Comprehensive Categorization: Resource Lifecycle Management
+ Vulnerability Mapping Notes
Usage DISCOURAGED
(this CWE ID should not be used to map to real-world vulnerabilities)
Reason Abstraction

Rationale

This CWE entry is a level-1 Class (i.e., a child of a Pillar). It might have lower-level children that would be more appropriate

Comments

Examine children of this entry to see if there is a better fit
+ Notes

Maintenance

Deeper research is necessary for synchronization and related mechanisms, including locks, mutexes, semaphores, and other mechanisms. Multiple entries are dependent on this research, which includes relationships to concurrency, race conditions, reentrant functions, etc. CWE-662 and its children - including CWE-667, CWE-820, CWE-821, and others - may need to be modified significantly, along with their relationships.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding SIG00-C Mask signals handled by noninterruptible signal handlers
CERT C Secure Coding SIG31-C CWE More Abstract Do not access shared objects in signal handlers
CLASP State synchronization error
The CERT Oracle Secure Coding Standard for Java (2011) VNA03-J Do not assume that a group of calls to independently atomic methods is atomic
Software Fault Patterns SFP19 Missing Lock
+ Content History
+ Submissions
Submission Date Submitter Organization
2008-04-11
(CWE Draft 9, 2008-04-11)
CWE Community
Submitted by members of the CWE community to extend early CWE versions
+ Modifications
Modification Date Modifier Organization
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Mapping_Notes
2023-10-26 CWE Content Team MITRE
updated Demonstrative_Examples, Observed_Examples
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2020-12-10 CWE Content Team MITRE
updated Relationships
2020-08-20 CWE Content Team MITRE
updated Relationships
2020-02-24 CWE Content Team MITRE
updated Description, Relationships
2019-09-23 CWE Content Team MITRE
updated Description, Maintenance_Notes, Relationships
2019-06-20 CWE Content Team MITRE
updated Type
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Taxonomy_Mappings
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2013-07-17 CWE Content Team MITRE
updated Relationships
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Relationships
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2010-12-13 CWE Content Team MITRE
updated Description, Relationships, Taxonomy_Mappings
2010-09-27 CWE Content Team MITRE
updated Name, Relationships
2009-05-27 CWE Content Team MITRE
updated Relationships
2009-03-10 CWE Content Team MITRE
updated Related_Attack_Patterns
2008-11-24 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2008-10-14 CWE Content Team MITRE
updated Relationships
2008-09-08 CWE Content Team MITRE
updated Relationships
2008-07-01 Eric Dalci Cigital
updated Potential_Mitigations, Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2010-09-27 Insufficient Synchronization

CWE-838: Inappropriate Encoding for Output Context

Weakness ID: 838
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product uses or specifies an encoding when generating output to a downstream component, but the specified encoding is not the same as the encoding that is expected by the downstream component.
+ Extended Description

This weakness can cause the downstream component to use a decoding method that produces different data than what the product intended to send. When the wrong encoding is used - even if closely related - the downstream component could decode the data incorrectly. This can have security consequences when the provided boundaries between control and data are inadvertently broken, because the resulting data could introduce control characters or special elements that were not sent by the product. The resulting data could then be used to bypass protection mechanisms such as input validation, and enable injection attacks.

While using output encoding is essential for ensuring that communications between components are accurate, the use of the wrong encoding - even if closely related - could cause the downstream component to misinterpret the output.

For example, HTML entity encoding is used for elements in the HTML body of a web page. However, a programmer might use entity encoding when generating output for that is used within an attribute of an HTML tag, which could contain functional Javascript that is not affected by the HTML encoding.

While web applications have received the most attention for this problem, this weakness could potentially apply to any type of product that uses a communications stream that could support multiple encodings.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Modify Application Data; Execute Unauthorized Code or Commands

Scope: Integrity, Confidentiality, Availability

An attacker could modify the structure of the message or data being sent to the downstream component, possibly injecting commands.
+ Potential Mitigations
Phase(s) Mitigation

Implementation

Strategy: Output Encoding

Use context-aware encoding. That is, understand which encoding is being used by the downstream component, and ensure that this encoding is used. If an encoding can be specified, do so, instead of assuming that the default encoding is the same as the default being assumed by the downstream component.

Architecture and Design

Strategy: Output Encoding

Where possible, use communications protocols or data formats that provide strict boundaries between control and data. If this is not feasible, ensure that the protocols or formats allow the communicating components to explicitly state which encoding/decoding method is being used. Some template frameworks provide built-in support.

Architecture and Design

Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

For example, consider using the ESAPI Encoding control [REF-45] or a similar tool, library, or framework. These will help the programmer encode outputs in a manner less prone to error.

Note that some template mechanisms provide built-in support for the appropriate encoding.

+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 116 Improper Encoding or Escaping of Output
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 137 Data Neutralization Issues
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 116 Improper Encoding or Escaping of Output
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


This code dynamically builds an HTML page using POST data:

(bad code)
Example Language: PHP 
$username = $_POST['username'];
$picSource = $_POST['picsource'];
$picAltText = $_POST['picalttext'];
...

echo "<title>Welcome, " . htmlentities($username) ."</title>";
echo "<img src='". htmlentities($picSource) ." ' alt='". htmlentities($picAltText) . '" />';
...

The programmer attempts to avoid XSS exploits (CWE-79) by encoding the POST values so they will not be interpreted as valid HTML. However, the htmlentities() encoding is not appropriate when the data are used as HTML attributes, allowing more attributes to be injected.

For example, an attacker can set picAltText to:

(attack code)
 
"altTextHere' onload='alert(document.cookie)"

This will result in the generated HTML image tag:

(result)
Example Language: HTML 
<img src='pic.jpg' alt='altTextHere' onload='alert(document.cookie)' />

The attacker can inject arbitrary javascript into the tag due to this incorrect encoding.



+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Server does not properly handle requests that do not contain UTF-8 data; browser assumes UTF-8, allowing XSS.
+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 845 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 2 - Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 867 2011 Top 25 - Weaknesses On the Cusp
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 884 CWE Cross-section
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1138 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 04. Characters and Strings (STR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1407 Comprehensive Categorization: Improper Neutralization
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure Coding Standard for Java (2011) IDS13-J Use compatible encodings on both sides of file or network IO
+ References
[REF-786] Jim Manico. "Injection-safe templating languages". 2010-06-30.
<https://manicode.blogspot.com/2010/06/injection-safe-templating-languages_30.html>. (URL validated: 2023-04-07)
[REF-787] Dinis Cruz. "Can we please stop saying that XSS is boring and easy to fix!". 2010-09-25.
<http://diniscruz.blogspot.com/2010/09/can-we-please-stop-saying-that-xss-is.html>.
[REF-788] Ivan Ristic. "Canoe: XSS prevention via context-aware output encoding". 2010-09-24.
<https://blog.ivanristic.com/2010/09/introducing-canoe-context-aware-output-encoding-for-xss-prevention.html>. (URL validated: 2023-04-07)
[REF-789] Jim Manico. "What is the Future of Automated XSS Defense Tools?". 2011-03-08.
<http://software-security.sans.org/downloads/appsec-2011-files/manico-appsec-future-tools.pdf>.
[REF-709] Jeremiah Grossman, Robert "RSnake" Hansen, Petko "pdp" D. Petkov, Anton Rager and Seth Fogie. "XSS Attacks". Preventing XSS Attacks. Syngress. 2007.
[REF-725] OWASP. "DOM based XSS Prevention Cheat Sheet".
<http://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet>.
[REF-45] OWASP. "OWASP Enterprise Security API (ESAPI) Project".
<https://owasp.org/www-project-enterprise-security-api/>. (URL validated: 2025-07-24)
+ Content History
+ Submissions
Submission Date Submitter Organization
2011-03-24
(CWE 1.12, 2011-03-30)
CWE Content Team MITRE
+ Modifications
Modification Date Modifier Organization
2025-09-09
(CWE 4.18, 2025-09-09)
CWE Content Team MITRE
updated References
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, References, Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2020-02-24 CWE Content Team MITRE
updated Relationships
2019-06-20 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated References, Taxonomy_Mappings
2012-05-11 CWE Content Team MITRE
updated Potential_Mitigations, References, Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Demonstrative_Examples, Related_Attack_Patterns, Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings

CWE-459: Incomplete Cleanup

Weakness ID: 459
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product does not properly "clean up" and remove temporary or supporting resources after they have been used.
+ Alternate Terms
Insufficient Cleanup
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Other; Read Application Data; Modify Application Data; DoS: Resource Consumption (Other)

Scope: Other, Confidentiality, Integrity

It is possible to overflow the number of temporary files because directories typically have limits on the number of files allowed. This could create a denial of service problem.
+ Potential Mitigations
Phase(s) Mitigation

Architecture and Design; Implementation

Temporary files and other supporting resources should be deleted/released immediately after they are no longer needed.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 404 Improper Resource Shutdown or Release
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 226 Sensitive Information in Resource Not Removed Before Reuse
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 460 Improper Cleanup on Thrown Exception
ParentOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 568 finalize() Method Without super.finalize()
+ Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 452 Initialization and Cleanup Errors
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 404 Improper Resource Shutdown or Release
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


Stream resources in a Java application should be released in a finally block, otherwise an exception thrown before the call to close() would result in an unreleased I/O resource. In the example below, the close() method is called in the try block (incorrect).

(bad code)
Example Language: Java 
try {
InputStream is = new FileInputStream(path);
byte b[] = new byte[is.available()];
is.read(b);
is.close();
} catch (Throwable t) {
log.error("Something bad happened: " + t.getMessage());
}


+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
World-readable temporary file not deleted after use.
Temporary file not deleted after use, leaking database usernames and passwords.
Interaction error creates a temporary file that can not be deleted due to strong permissions.
Alternate data streams for NTFS files are not cleared when files are wiped (alternate channel / infoleak).
Alternate data streams for NTFS files are not cleared when files are wiped (alternate channel / infoleak).
Alternate data streams for NTFS files are not cleared when files are wiped (alternate channel / infoleak).
Alternate data streams for NTFS files are not cleared when files are wiped (alternate channel / infoleak).
Alternate data streams for NTFS files are not cleared when files are wiped (alternate channel / infoleak).
Users not logged out when application is restarted after security-relevant changes were made.
+ Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Functional Areas
  • File Processing
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration Management
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 857 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 14 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 982 SFP Secondary Cluster: Failure to Release Resource
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1141 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior (ERR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1147 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1162 SEI CERT C Coding Standard - Guidelines 08. Memory Management (MEM)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1163 SEI CERT C Coding Standard - Guidelines 09. Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1306 CISQ Quality Measures - Reliability
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1416 Comprehensive Categorization: Resource Lifecycle Management
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Relationship

CWE-459 is a child of CWE-404 because, while CWE-404 covers any type of improper shutdown or release of a resource, CWE-459 deals specifically with a multi-step shutdown process in which a crucial step for "proper" cleanup is omitted or impossible. That is, CWE-459 deals specifically with a cleanup or shutdown process that does not successfully remove all potentially sensitive data.

Relationship

Overlaps other categories such as permissions and containment. Concept needs further development. This could be primary (e.g. leading to infoleak) or resultant (e.g. resulting from unhandled error conditions or early termination).
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Incomplete Cleanup
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management
CERT C Secure Coding FIO42-C CWE More Abstract Close files when they are no longer needed
CERT C Secure Coding MEM31-C CWE More Abstract Free dynamically allocated memory when no longer needed
The CERT Oracle Secure Coding Standard for Java (2011) FIO04-J Release resources when they are no longer needed
The CERT Oracle Secure Coding Standard for Java (2011) FIO00-J Do not operate on files in shared directories
Software Fault Patterns SFP14 Failure to release resource
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Modifications
Modification Date Modifier Organization
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships, Time_of_Introduction
2023-01-31 CWE Content Team MITRE
updated Description
2020-08-20 CWE Content Team MITRE
updated Relationships
2019-06-20 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Taxonomy_Mappings
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2014-06-23 CWE Content Team MITRE
updated Common_Consequences, Other_Notes, Relationship_Notes
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2009-05-27 CWE Content Team MITRE
updated Relationship_Notes, Relationships
2008-09-08 CWE Content Team MITRE
updated Relationships, Other_Notes, Taxonomy_Mappings
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-07-01 Sean Eidemiller Cigital
added/updated demonstrative examples

CWE-180: Incorrect Behavior Order: Validate Before Canonicalize

Weakness ID: 180
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product validates input before it is canonicalized, which prevents the product from detecting data that becomes invalid after the canonicalization step.
+ Extended Description
This can be used by an attacker to bypass the validation and launch attacks that expose weaknesses that would otherwise be prevented, such as injection.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Bypass Protection Mechanism

Scope: Access Control

+ Potential Mitigations
Phase(s) Mitigation

Implementation

Strategy: Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180). Make sure that the application does not decode the same input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by introducing dangerous inputs after they have been checked.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 179 Incorrect Behavior Order: Early Validation
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


The following code attempts to validate a given input path by checking it against an allowlist and then return the canonical path. In this specific case, the path is considered valid if it starts with the string "/safe_dir/".

(bad code)
Example Language: Java 
String path = getInputPath();
if (path.startsWith("/safe_dir/"))
{
File f = new File(path);
return f.getCanonicalPath();
}

The problem with the above code is that the validation step occurs before canonicalization occurs. An attacker could provide an input path of "/safe_dir/../" that would pass the validation step. However, the canonicalization process sees the double dot as a traversal to the parent directory and hence when canonicized the path would become just "/".

To avoid this problem, validation should occur after canonicalization takes place. In this case canonicalization occurs during the initialization of the File object. The code below fixes the issue.

(good code)
Example Language: Java 
String path = getInputPath();
File f = new File(path);
if (f.getCanonicalPath().startsWith("/safe_dir/"))
{
return f.getCanonicalPath();
}



+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Product allows remote attackers to view restricted files via an HTTP request containing a "*" (wildcard or asterisk) character.
Product modifies the first two letters of a filename extension after performing a security check, which allows remote attackers to bypass authentication via a filename with a .ats extension instead of a .hts extension.
Database consumes an extra character when processing a character that cannot be converted, which could remove an escape character from the query and make the application subject to SQL injection attacks.
Overlaps "fakechild/../realchild"
Product checks URI for "<" and other literal characters, but does it before hex decoding the URI, so "%3E" and other sequences are allowed.
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 845 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 2 - Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 992 SFP Secondary Cluster: Faulty Input Transformation
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1134 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data Sanitization (IDS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1147 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1410 Comprehensive Categorization: Insufficient Control Flow Management
+ Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Relationship

This overlaps other categories.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Validate-Before-Canonicalize
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
The CERT Oracle Secure Coding Standard for Java (2011) IDS01-J Exact Normalize strings before validating them
SEI CERT Oracle Coding Standard for Java IDS01-J Exact Normalize strings before validating them
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Modifications
Modification Date Modifier Organization
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2020-06-25 CWE Content Team MITRE
updated Demonstrative_Examples, Potential_Mitigations
2020-02-24 CWE Content Team MITRE
updated Relationships, Type
2019-06-20 CWE Content Team MITRE
updated Related_Attack_Patterns
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Functional_Areas
2017-01-19 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships
2012-05-11 CWE Content Team MITRE
updated Demonstrative_Examples, Observed_Examples, Related_Attack_Patterns, Relationships, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-03-29 CWE Content Team MITRE
updated Potential_Mitigations
2010-02-16 CWE Content Team MITRE
updated Demonstrative_Examples
2009-05-27 CWE Content Team MITRE
updated Other_Notes, Relationship_Notes
2008-10-14 CWE Content Team MITRE
updated Description
2008-09-08 CWE Content Team MITRE
updated Relationships, Other_Notes, Taxonomy_Mappings, Type
2008-08-15 Veracode
Suggested OWASP Top Ten 2004 mapping
2008-07-01 Eric Dalci Cigital
updated Potential_Mitigations, Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Validate-Before-Canonicalize

CWE-682: Incorrect Calculation

Weakness ID: 682
Vulnerability Mapping: DISCOURAGED This CWE ID should not be used to map to real-world vulnerabilities
Abstraction: Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product performs a calculation that generates incorrect or unintended results that are later used in security-critical decisions or resource management.
+ Extended Description
When product performs a security-critical calculation incorrectly, it might lead to incorrect resource allocations, incorrect privilege assignments, or failed comparisons among other things. Many of the direct results of an incorrect calculation can lead to even larger problems such as failed protection mechanisms or even arbitrary code execution.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

DoS: Crash, Exit, or Restart

Scope: Availability

If the incorrect calculation causes the program to move into an unexpected state, it may lead to a crash or impairment of service.

DoS: Crash, Exit, or Restart; DoS: Resource Consumption (Other); Execute Unauthorized Code or Commands

Scope: Integrity, Confidentiality, Availability

If the incorrect calculation is used in the context of resource allocation, it could lead to an out-of-bounds operation (CWE-119) leading to a crash or even arbitrary code execution. Alternatively, it may result in an integer overflow (CWE-190) and / or a resource consumption problem (CWE-400).

Gain Privileges or Assume Identity

Scope: Access Control

In the context of privilege or permissions assignment, an incorrect calculation can provide an attacker with access to sensitive resources.

Bypass Protection Mechanism

Scope: Access Control

If the incorrect calculation leads to an insufficient comparison (CWE-697), it may compromise a protection mechanism such as a validation routine and allow an attacker to bypass the security-critical code.
+ Potential Mitigations
Phase(s) Mitigation

Implementation

Understand your programming language's underlying representation and how it interacts with numeric calculation. Pay close attention to byte size discrepancies, precision, signed/unsigned distinctions, truncation, conversion and casting between types, "not-a-number" calculations, and how your language handles numbers that are too large or too small for its underlying representation.

Implementation

Strategy: Input Validation

Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that the input meets both the minimum and maximum requirements for the expected range.

Implementation

Use the appropriate type for the desired action. For example, in C/C++, only use unsigned types for values that could never be negative, such as height, width, or other numbers related to quantity.

Architecture and Design

Strategy: Language Selection

Use languages, libraries, or frameworks that make it easier to handle numbers without unexpected consequences.

Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++).

Architecture and Design

Strategy: Libraries or Frameworks

Use languages, libraries, or frameworks that make it easier to handle numbers without unexpected consequences.

Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++).

Implementation

Strategy: Compilation or Build Hardening

Examine compiler warnings closely and eliminate problems with potential security implications, such as signed / unsigned mismatch in memory operations, or use of uninitialized variables. Even if the weakness is rarely exploitable, a single failure may lead to the compromise of the entire system.

Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques use data flow analysis to minimize the number of false positives. This is not a perfect solution, since 100% accuracy and coverage are not feasible.

Testing

Use dynamic tools and techniques that interact with the product using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The product's operation may slow down, but it should not become unstable, crash, or generate incorrect results.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
MemberOf View View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1000 Research Concepts
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 128 Wrap-around Error
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 131 Incorrect Calculation of Buffer Size
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 135 Incorrect Calculation of Multi-Byte String Length
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 190 Integer Overflow or Wraparound
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 191 Integer Underflow (Wrap or Wraparound)
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 193 Off-by-one Error
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 369 Divide By Zero
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 468 Incorrect Pointer Scaling
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 469 Use of Pointer Subtraction to Determine Size
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1335 Incorrect Bitwise Shift of Integer
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1339 Insufficient Precision or Accuracy of a Real Number
CanFollow Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 681 Incorrect Conversion between Numeric Types
CanFollow Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 839 Numeric Range Comparison Without Minimum Check
CanPrecede Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 170 Improper Null Termination
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Nature Type ID Name
MemberOf View View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1003 Weaknesses for Simplified Mapping of Published Vulnerabilities
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 131 Incorrect Calculation of Buffer Size
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 190 Integer Overflow or Wraparound
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 191 Integer Underflow (Wrap or Wraparound)
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 193 Off-by-one Error
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 369 Divide By Zero
+ Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Nature Type ID Name
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 131 Incorrect Calculation of Buffer Size
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 369 Divide By Zero
+ Relevant to the view "CISQ Data Protection Measures" (View-1340)
Nature Type ID Name
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 131 Incorrect Calculation of Buffer Size
ParentOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 369 Divide By Zero
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

Technologies

Class: Not Technology-Specific (Undetermined Prevalence)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1


The following image processing code allocates a table for images.

(bad code)
Example Language: